Neural Networks and Biological Modeling

Professor Wulfram Gerstner Laboratory of Computational Neuroscience

QUESTION SET 5

Exercise 1

Consider a Hopfield network composed of 9 neurons. Each neuron has connections to all other neurons.

1.1 How many connections are there in total? Choose the appropriate weights for the prototype pattern given in figure 1.

Figure 1: Prototype pattern. Black corresponds to S = +1.

Now keeping the learned weights fixed, present a pattern $S_i(t=0)$ and let it evolve according to:

$$S_i(t+1) = sign\left(\sum_j w_{ij}S_j(t)\right) \tag{1}$$

Suppose the initial state is again the swiss cross above but with one bit (neuron) flipped. Will the dynamics correct it?

1.2 Suppose that N bits are flipped. Will the dynamics correct them?

Exercise 2: Associative memory

Consider a Hopfield network with a continuous state variable $S_i(t) \in \mathbb{R}$. Assume that the network has stored 4 patterns

$$p^{1} = \{p_{1}^{1}, \cdots, p_{N}^{1}\}$$

$$\vdots$$

$$p^{4} = \{p_{1}^{4}, \cdots, p_{N}^{4}\}$$
(2)

that are orthogonal, i.e., $\frac{1}{N}\sum_{i=1}^{N}p_{i}^{\mu}p_{i}^{\nu}=\delta^{\mu\nu}$, where $\delta^{\mu\nu}$ is the Kronecker symbol

$$\delta^{\mu\nu} = \begin{cases} 1 & \text{if } \mu = \nu \\ 0 & \text{otherwise} \end{cases}$$

You present the network with an activity pattern that has overlap¹ with p^3 only (no overlap with other memories). The activity dynamics is given by

$$S_i(t+1) = g\left(\sum_j w_{ij}S_j(t)\right)$$
(3)

2.1 Calculate the change of the overlap with pattern 3 in one time step, i.e. calculate $m^3(t+1)$ as a function of $m^3(t)$. Moreover, $g(\cdot)$ is an odd function: g(-x) = -g(x)

Hint: Follow the derivations shown in class (and in the book Neuronal Dynamics, chapter 17.2): Use the definitions of the overlap $m^3(t)$ and the weights w_{ij} to express $S_i(t+1)$ (eq. 3) as a function of the overlap. Then, using $S_i(t+1)$ compute the overlap $m^3(t+1)$. Keep in mind that the state of each neuron always takes one of two values: $p_i \in \{-1, 1\}$.

2.2 Use this to discuss the evolution of the overlap over several time steps

- when g is the sign-function
- when g is an odd and monotonically increasing function mapping the real line onto [-1; 1]. As an example, consider $g(x) = \tanh(\beta x)$ with some real, positive parameter β . Think about the effect of changing β (sometimes called 'inverse temperature') and discuss the cases $\beta < 1$, $\beta > 1$ and $\beta \to \infty$.

Exercise 3: Probability of error in the Hopfield model

3.1 Consider a Hopfield network of N neurons (N = 10'000) storing P random prototypes p^{μ} and the following dynamics:

$$S_i(t+1) = sign\left(\sum_j w_{ij}S_j(t)\right)$$
(4)

Given the initial activation set to pattern 1, i.e. $S_i(t=0) = p_i^1$, show that

$$S_i(t=1) = p_i^1 sign(1 + \sum_{\mu \neq 1}^P \sum_{j=1}^N \frac{1}{N} p_i^1 p_j^\mu p_j^1 p_j^\mu).$$
(5)

¹by "having overlap with prototype μ " we mean with "having non-zero scalar product with p^{μ} "

Hint: Start with the dynamics equation 4. Use the definition of the weights w_{ij} to express the update in terms of the patterns.

Hint: You can always multiply a term with 1. In particular, with $1 = p_i^1 p_i^1$

3.2 In equation 5, formulate the condition for which S_i will change its state. That is, $S_i(t=1) \neq S_i(t=0)$.

3.3 Using the analogy for the sum as a random walk, show that the term $\sum_{\mu\neq 1}^{P} \sum_{j=1}^{N} \frac{1}{N} p_{i}^{1} p_{j}^{\mu} p_{j}^{1} p_{j}^{\mu}$ can be approximated by a Gaussian random variable, N(0, (P-1)/N).

Hint: Specify mean and variance of the distribution of the random variable $X = p_i^1 p_i^{\mu} p_j^1 p_j^{\mu}$. Then use the central limit theorem to approximate the sum by a Gaussian.

3.4 Show that the probability that a given neuron *i* will flip $(S_i(t=1) \neq S_i(t=0))$ is given by

$$P_{\rm error} = \frac{1}{2} \left[1 - \operatorname{erf}\left(\sqrt{\frac{N}{2(P-1)}}\right) \right] \tag{6}$$

where erf is the error function, defined by

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-x'^2} dx' \,. \tag{7}$$

3.5 How many random patterns can you store, if you accept on average at most 1 bit to be wrong? Consider erf(2.6) = 0.9998.

3.6 In many real application, patterns to be stored are not totally random and have substantial overlap. Rewrite the retrieval equation 5 as a function of overlap terms, $m^{\mu\nu} = \frac{1}{N} \sum_{i} p_{i}^{\mu} p_{i}^{\nu}$.

3.7 Assume that the overlap between different patterns is 0.1 for all pairs. How many patterns can you store now, allowing on average only one wrong bit?

Figure 2: Error probability: $P(x \le -1)$