Neural Networks and Biological Modeling

Professor Wulfram Gerstner
Laboratory of Computational Neuroscience

Question set 5

Exercise 1

Consider a Hopfield network composed of 9 neurons. Each neuron has connections to all other neurons.
1.1 How many connections are there in total? Choose the appropriate weights for the prototype pattern given in figure 1.

Figure 1: Prototype pattern. Black corresponds to $\mathrm{S}=+1$.

Now keeping the learned weights fixed, present a pattern $S_{i}(t=0)$ and let it evolve according to:

$$
\begin{equation*}
S_{i}(t+1)=\operatorname{sign}\left(\sum_{j} w_{i j} S_{j}(t)\right) \tag{1}
\end{equation*}
$$

Suppose the initial state is again the swiss cross above but with one bit (neuron) flipped. Will the dynamics correct it?
1.2 Suppose that N bits are flipped. Will the dynamics correct them?

Exercise 2: Associative memory

Consider a Hopfield network with a continuous state variable $S_{i}(t) \in \mathbb{R}$. Assume that the network has stored 4 patterns

$$
\begin{align*}
& p^{1}=\left\{p_{1}^{1}, \cdots, p_{N}^{1}\right\} \\
& \cdot \tag{2}\\
& p^{4}=\left\{p_{1}^{4}, \cdots, p_{N}^{4}\right\}
\end{align*}
$$

that are orthogonal, i.e., $\frac{1}{N} \sum_{i=1}^{N} p_{i}^{\mu} p_{i}^{\nu}=\delta^{\mu \nu}$, where $\delta^{\mu \nu}$ is the Kronecker symbol

$$
\delta^{\mu \nu}= \begin{cases}1 & \text { if } \mu=\nu \\ 0 & \text { otherwise }\end{cases}
$$

You present the network with an activity pattern that has overlap ${ }^{1}$ with p^{3} only (no overlap with other memories). The activity dynamics is given by

$$
\begin{equation*}
S_{i}(t+1)=g\left(\sum_{j} w_{i j} S_{j}(t)\right) \tag{3}
\end{equation*}
$$

2.1 Calculate the change of the overlap with pattern 3 in one time step, i.e. calculate $m^{3}(t+1)$ as a function of $m^{3}(t)$. Moreover, $g(\cdot)$ is an odd function: $g(-x)=-g(x)$

Hint: Follow the derivations shown in class (and in the book Neuronal Dynamics, chapter 17.2): Use the definitions of the overlap $m^{3}(t)$ and the weights $w_{i j}$ to express $S_{i}(t+1)$ (eq. 3) as a function of the overlap. Then, using $S_{i}(t+1)$ compute the overlap $m^{3}(t+1)$. Keep in mind that the state of each neuron always takes one of two values: $p_{i} \in\{-1,1\}$.
2.2 Use this to discuss the evolution of the overlap over several time steps

- when g is the sign-function
- when g is an odd and monotonically increasing function mapping the real line onto $[-1 ; 1]$. As an example, consider $g(x)=\tanh (\beta x)$ with some real, positive parameter β. Think about the effect of changing β (sometimes called 'inverse temperature') and discuss the cases $\beta<1, \beta>1$ and $\beta \rightarrow \infty$.

Exercise 3: Probability of error in the Hopfield model

3.1 Consider a Hopfield network of N neurons $\left(\mathrm{N}=10^{\prime} 000\right)$ storing P random prototypes p^{μ} and the following dynamics:

$$
\begin{equation*}
S_{i}(t+1)=\operatorname{sign}\left(\sum_{j} w_{i j} S_{j}(t)\right) \tag{4}
\end{equation*}
$$

Given the initial activation set to pattern 1, i.e. $S_{i}(t=0)=p_{i}^{1}$, show that

$$
\begin{equation*}
S_{i}(t=1)=p_{i}^{1} \operatorname{sign}\left(1+\sum_{\mu \neq 1}^{P} \sum_{j}^{N} \frac{1}{N} p_{i}^{1} p_{i}^{\mu} p_{j}^{1} p_{j}^{\mu}\right) \tag{5}
\end{equation*}
$$

[^0]Hint: Start with the dynamics equation 4. Use the definition of the weights $w_{i j}$ to express the update in terms of the patterns.
Hint: You can always multiply a term with 1 . In particular, with $1=p_{i}^{1} p_{i}^{1}$
3.2 In equation 5 , formulate the condition for which S_{i} will change its state.

That is, $S_{i}(t=1) \neq S_{i}(t=0)$.
3.3 Using the analogy for the sum as a random walk, show that the term $\sum_{\mu \neq 1}^{P} \sum_{j}^{N} \frac{1}{N} p_{i}^{1} p_{i}^{\mu} p_{j}^{1} p_{j}^{\mu}$ can be approximated by a Gaussian random variable, $N(0,(P-1) / N)$.
Hint: Specify mean and variance of the distribution of the random variable $X=p_{i}^{1} p_{i}^{\mu} p_{j}^{1} p_{j}^{\mu}$. Then use the central limit theorem to approximate the sum by a Gaussian.
3.4 Show that the probability that a given neuron i will flip $\left(S_{i}(t=1) \neq S_{i}(t=0)\right)$ is given by

$$
\begin{equation*}
P_{\text {error }}=\frac{1}{2}\left[1-\operatorname{erf}\left(\sqrt{\frac{N}{2(P-1)}}\right)\right] \tag{6}
\end{equation*}
$$

where erf is the error function, defined by

$$
\begin{equation*}
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{\prime 2}} d x^{\prime} \tag{7}
\end{equation*}
$$

3.5 How many random patterns can you store, if you accept on average at most 1 bit to be wrong? Consider $\operatorname{erf}(2.6)=0.9998$.
3.6 In many real application, patterns to be stored are not totally random and have substantial overlap. Rewrite the retrieval equation 5 as a function of overlap terms, $m^{\mu \nu}=\frac{1}{N} \sum_{i} p_{i}^{\mu} p_{i}^{\nu}$.
3.7 Assume that the overlap between different patterns is 0.1 for all pairs. How many patterns can you store now, allowing on average only one wrong bit?

Figure 2: Error probability: $P(x \leq-1)$

[^0]: ${ }^{1}$ by "having overlap with prototype μ " we mean with "having non-zero scalar product with $p^{\mu "}$

