
22/03/2019

1

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 5

Error landscape and optimization methods for deep networks

Objectives for today:

- Error function landscape: minima and saddle points

- Momentum

- Adam

- No Free Lunch

- Shallow versus Deep Networks

Reading for this lecture:

Goodfellow et al.,2016 Deep Learning

- Ch. 8.2, Ch. 8.5

- Ch. 4.3

- Ch. 5.11, 6.4, Ch. 15.4, 15.5

Further Reading for this Lecture:

22/03/2019

2

review: Artificial Neural Networks for classification

input

output

car dog

Aim of learning:

Adjust connections such

that output is correct

(for each input image,

even new ones)

Previous slide.

A multilayer perceptron for classification

22/03/2019

3

Review: Classification as a geometric problem

x
x

x
x

x
x

x

o
oo
o

o

o o
o

x

x
o

Previous slide.

… will implement a separating surface …

22/03/2019

4

Review: task of hidden neurons (blue)

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

xx x

x

x

xx
x

Previous slide.

… by stacking neurons over several layers. Each neuron implements a hyperplane in

the space of activites one layer below.

22/03/2019

5

𝑤𝑗,𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁+1

Review: Multilayer Perceptron –many parameters

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝑎

1

0

𝑔(𝑎)

Previous slide.

The hyperplanes are defined by the weight vector

22/03/2019

6

𝐸(𝒘) =
1

2

𝜇=1

𝑃

𝑡
𝜇

− 𝑦
𝜇 2

Quadratic error

gradient descent

Review: gradient descent

𝑤𝑘

𝐸
∆𝑤𝑘 = −𝛾

𝑑𝐸

𝑑𝑤𝑘

Batch rule:

one update after all patterns

(normal gradient descent)

Online rule:

one update after one pattern
(stochastic gradient descent)

Same applies to all

loss functions, e.g.,

Cross-entropy error

Previous slide.

And the weight vector is updated by gradient descent, using either a batch rule or an

online rule.

22/03/2019

7

𝑤𝑘

𝐸

- How does the error landscape (as a function of the weights)

look like?

- How can we quickly find a (good) minimum?

- Why do deep networks work well?

Three Big questions for today

Previous slide.

We address three important questions today.

1. What is the shape of the error function, as a function of the weights?

2. How can we quickly find a good minimum?

3. Why do deep networks work so well in practice?

22/03/2019

8

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 5

Error function and optimization methods for deep networks

Objectives for today:

- Error function: minima and saddle points

Previous slide.

We start with the first question and focus on the error function.

22/03/2019

9

1. Error function: minima

Image: Goodfellow et al. 2016

𝑑

𝑑𝑤𝑎

𝐸(𝑤𝑎) = 0

minima

𝑤𝑎

𝐸
𝐸(𝑤𝑎)

Previous slide.

Often we see hand-drawn sketches of one-dimensional plots like the one here, with

several local minima.

22/03/2019

10

1. Error function: minima

How many minima are there in a deep network?

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) > 0

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) < 0

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) = 0

Image: Goodfellow et al. 2016

𝑑

𝑑𝑤𝑎

𝐸(𝑤𝑎) = 0

minima

Previous slide.

Both minima and maxima are characterized by a zero derivate:

In one dimension, minima can be distinguished from maxima by their second derivative

(curvature).

For minima the curvature is positive (left):

Transient plateaus where both first and second derivative are zero are the exception

(right)

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) > 0

𝑑

𝑑𝑤𝑎

𝐸(𝑤𝑎) = 0

22/03/2019

11

1. Error function: minima and saddle points

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) > 0

𝑑2

𝑑𝑤𝑏
2 𝐸(𝑤𝑏) < 0

𝑤𝑏𝑤𝑎

𝑤𝑎

𝑤𝑏

minimum

2 minima, separated by

1 saddle point

Image: Goodfellow et al. 2016

Previous slide.

In two and more dimensions it is possible that in the curvature is positive in one

direction, yet negative in the other direction.

This is called a saddle point.

Lower right: contour lines connect points of the same error (niveau lines). The red

arrows indicate a path toward a minimum. The two minima are separated by a saddle.

22/03/2019

12

Quiz: Strengthen your intuitions in high dimensions

1. A deep neural network with 9 layers of 10 neurons each

[] has typically between 1 and 1000 minima (global or local)

[] has typically more than 1000 minima (global or local)

2. A deep neural network with 9 layers of 10 neurons each

[] has many minima and in addition a few saddle points

[] has many minima and about as many saddle points

[] has many minima and even many more saddle points

[]

[x]

[]

[]

[x]

Your notes.

22/03/2019

13

1. Error function

How many minima are there?

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Answer:

In a network with n hidden layers

and m neurons per hidden layer,

there are at least

equivalent minima

𝒎!𝒏

Previous slide.

Because of the permutation symmetry, there are many equivalent minima.

(See Exercises)

.

22/03/2019

14

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

xx xx

x

xx
x

4 hyperplanes for

4 neurons

x

xx
x

x

many assignments

of hyperplanes to neurons

1. Error function and weight space symmetry

1

2

3

4

many permutations

Previous slide.

For example, with 4 neurons in a given layer, we have 4! different ways to implement

the same 4 hyperplanes.

In total, in a network of n layers with m neurons each there are

equivalent solutions. Therefore there are many permutation symmetries in the weights

space.

𝒎!𝒏

22/03/2019

15

1. Error function and weight space symmetry

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

x

x

xx

x

x
x

x

6 hyperplanes for

6 hidden neurons

x

x

x x

x

many assignments

of hyperplanes to neurons

even more

permutations

Previous slide.

Suppose all the positive examples lie inside a the blue box.

We need 6 neurons in the first layer to define this box. Each neuron implements one

hyperplane. Therefore there are 6! = 240 different, but completely equivalent solutions.

22/03/2019

16

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

xx xx

x

xx
x

2 hyperplanes

x

xx
x

x

2 blue neurons

2 hyperplanes in input space

𝑥1
(0)

𝑥2
(0)

1. Minima and saddle points

‘input space’

Previous slide.

Suppose that the two blue neurons implement two hyperplanes in the input space.

We now make an important conceptual transition from hyperplanes in the input space

to weight vectors in the weight space.

22/03/2019

17

1. Error function and weight space symmetry

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤41
(1)

Blackboard 1

Solutions in weight space

𝑤31
(1)

Your notes.

22/03/2019

18

1. Minima and saddle points in weight space

A = (1,0,-.7); C = (1,-.7,0)

B = (0,1,-.7); D = (0,-.7,1)

E= (-.7,1,0); F = (-.7,0,1)

w21

w31

A

B

D

C

F

E

Algo for plot:
- Pick w11,w21,w31

- Adjust other parameters

to minimize E

Previous slide.

Imagine that in the input space you want to implement three hyperplanes,

two of these parallel to the axes,

and the third one diagonal.

the weight vectors are:

and threshold 1

and threshold 1

and threshold 0

If we now plot just the FIRST component of each weight vector (previous slide), we

have a first solution, labeled A.

But because of the perturbation symmetry, there are 5 other equivalent solutions,

labeled B – F.

In the slide we approximate 1/ 2 = 0.7

𝒘𝟑 = (−1,−1)/ 2
𝒘𝟐 = (0,1)
𝒘𝟏 = (1,0)

22/03/2019

19

1. Minima and saddle points in weight space

A = (1,0,-.7); C = (1,-.7,0)

B = (0,1,-.7); D = (0,-.7,1)

E= (-.7,1,0); F = (-.7,0,1)

w21

w31

A

B

D

C

F

E

Red (and white):

Minima

Green lines:

Run through saddles
Saddles:

6 minima but >6 saddle points

Previous slide.

If I perform pairwise permutations of the weight vectors, I move on paths linking for

example A with C, or A with F, etc.

On each of these paths, I expect a saddle point. Therefor I expect more than 6 saddle

points, just from the symmetries in the weights space!

I do not give a specific number, because some permutations paths might cross through

the same point close to the origin, so that they might actually be the ‘same’ saddle.

22/03/2019

20

1. Minima and saddle points: Example

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

= 1

𝑤𝑗1
(1)

Teacher Network:
Committee machine

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

=?

𝑤𝑗1
(1)

=?

Student Network:

𝑥1

𝑥2

0

0

4 hyperplanes

‘input space’

Previous slide.

Data is generated from a teacher network (left).

Neurons in the first hidden layer implement hyperplanes (e.g., blue neuron).

The green neuron in the second layer sums up all contributions with equal weight. Such

a configuration is called a committee machine (‘all votes count equally’).

The hyperplanes in input space are shown as blue lines on the right-hand side. They

are characterized by their weight vectors (black). The end point of the weight vector

indicates the location of the hyperplane.

The student network has the same architecture, but freely adaptable weights in both

layers.

22/03/2019

21

1. Minima and saddle points
4 hyperplanes

‘input space’
Student

Network:

Red

Teacher

Network:

Blue

𝑥1

𝑥2

0

0

Previous slide.

We want to explore the saddle between two equivalent permutation minima.

To do so, we initialize the student with weights perfectly aligned with those of the

teacher. Then we force the student to have two weight vectors approach each other. All

other weights remain free and are minimized (under the constraint that the two chosen

weight vectors have a certain distance (dist, horizontal axis; loss, vertical axis).

As the distance is reduced from the initial configuration, the loss increases. When the

distance is zero, the two weight vectors are identical (and implement the same

hyperplane). At this moment, the labels of the two vectors can be exchanged at not

cost. Thereafter we can relax back to the original position, but with exchanged labels of

the vector.

The point at dist=0 is a saddle because all other

weights have been minimized.

minimum

distance

constraint

weights

22/03/2019

22

1. Minima and saddle points

(i) Geometric argument and weight space symmetry

 number of saddle points increases

rapidly with dimension

(much more rapidly than the number of minima)

Two arguments

There are many more saddle points than minima

Previous.

Permutation minima are connected by saddles. There are many more saddles than

minima.

Some of the saddles are connected with each other. Once the distance between two

weight vectors is zero, I can remove one of them and shift its output weight to his

partner. I can then turn it and make it identical to any other weight vector in the same

layer, and exchange with that one, at no extra cost!

Thus the barrier of the saddle point between permutation minima is the lowest one of all

possible pairs.

22/03/2019

23

1. Minima and saddle points

(ii) Second derivative (Hessian matrix) at gradient zero

Two arguments

There are many more saddle points than minima

𝑤𝑎
𝑤𝑖𝑗

𝐸(𝑤𝑖𝑗
(𝑛)

, …) minimum maximum

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎

∗) > 0 𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎

∗) < 0
𝑤𝑎

∗

Previous slide.

There is also a completely different argument about the number and arrangement of

saddles. It focuses on the Hessian matrix of second derivatives evaluated at the

location where the first derivative vanishes.

22/03/2019

24

1. Minima and saddle points

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) > 0

In 1dim: at a point with vanishing gradient

Minimum in N dim: study Hessian

H =
𝑑

𝑑𝑤𝑎

𝑑

𝑑𝑤𝑏

𝐸(𝑤𝑎 , 𝑤𝑏)

Diagonalize: minimum if all eigenvalues positive.

But for N dimensions, this is a strong condition!

 minimum

Previous slide.

Since the Hessian matrix is symmetric, it is diagonalizable and has real Eigenvalues.

A point is stable only of ALL eigenvalues are positive.

22/03/2019

25

1. Minima and saddle points

in N dim: Hessian

H =
𝑑

𝑑𝑤𝑎

𝑑

𝑑𝑤𝑏

𝐸(𝑤𝑎 , 𝑤𝑏)

Diagonalize:

𝐻 =
1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝑁l

l

l1 >0

lN-1 >0
lN <0

...

In N-1 dimensions

surface goes up,

In 1 dimension it goes

down

Previous slide.

If N-1 Eigenvalues are positive, but one is negative, we have a first-order saddle.

22/03/2019

26

1. Minima and saddle points

in N dim: Hessian

H =
𝑑

𝑑𝑤𝑎

𝑑

𝑑𝑤𝑏

𝐸(𝑤𝑎 , 𝑤𝑏)

Diagonalize:

𝐻 =
1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝑁l

l

l1 >0

lN-2 >0

lN <0

...

In N-2 dimensions

surface goes up,

In 2 dimension it goes

down

lN-1 <0

In N-m dimensions

surface goes up,

In m dimension it goes down Kant!

Previous slide.

If N-2 Eigenvalues are positive, but two are negative, we have a second-order saddle.

Kant: humans necessarily think in 3 dimensions.

Therefore it is hard to imagine that I have 2 dimensions in which the error goes down

and N-2 orthogonal directions in which the error goes up. The drawing is very

schematic.

22/03/2019

27

1. General saddle point

in N dim: Hessian

H =
𝑑

𝑑𝑤𝑎

𝑑

𝑑𝑤𝑏

𝐸(𝑤𝑎 , 𝑤𝑏)

Diagonalize:

𝐻 =
1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝑁l

l

l1 >0

lN-m+1 >0

lN <0

...

In N-m dimensions

surface goes up,

In m dimension it goes

down

lN-m <0

General saddle:

In N-m dimensions surface goes up,

In m dimension it goes down

Previous slide.

Analogously, we define a general saddle.

22/03/2019

28

1. Minima and saddle points

It is rare that all eigenvalues of the Hessian have same sign

It is fairly rare that only one eigenvalue has a different sign

than the others

Most saddle points have multiple dimensions with surface

up and multiple with surface going down

Previous slide.

The argument is a statistical one. If you were to create Eigenvalues randomly with zero

mean, then it would be very rare that all eigenvalues are positive. Most likely is a mix of

positive and negative Eigenvalues. Therefore we expect to find more saddles than

maxima or minima.

22/03/2019

29

1. Minima and saddle points: modern view

General saddle points: In N-m dimensions surface goes up,

in m dimension it goes down

E

1st-order saddle points: In N-1 dimensions surface goes up,

in 1 dimension it goes down

many

good minima

many 1st order

saddle

many high order

saddle

maxima

weights

Previous slide.

Specific mathematical and physical models, linked to random matrix theory and spin

glasses, lead to a statistical picture where a few minima are at the lowest energies,

But most points with vanishing gradient are saddles of various order.

It is, however, not clear whether these models can be linked to deep neural networks

because the specific weight space symmetries of deep network (e.g., permutation of

neurons) are neglected.

22/03/2019

30

1. Minima and saddle points

(ii) For balance random systems, eigenvalues will be

randomly distributed with zero mean:

draw N random numbers

 rare to have all positive or all negative

Rare to have maxima or minima

Most points of vanishing gradient are saddle points

Most high-error saddle points have multiple

directions of escape

But what is the random system here?

The data is ‘random’ with respect to the design of the system!

Previous slide.

For these random matrix or spin glass arguments, the question arises where the

randomness stems from. The answer is that, when we design the neural network, we

did not yet look at the data. Therefore, the data points can be considered as random

constraints on the possible configuration of weights.

22/03/2019

31

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

xx xx

x

xx
x

4 neurons

4 hyperplanes

x

xx
x

x

2 blue neurons

2 hyperplanes in input space

𝑥1
(0)

𝑥2
(0)

1. Minima = good solutions

Previous slide.

So far we focused on the ‘best’ minima: in a teacher-student situation where the student

network has exactly the same architecture as the teacher, the best minima are those

where the student has the same weight vectors (apart from permutations).

22/03/2019

32

1. Many near-equivalent reasonably good solutions

xx x

x

x

xx
x

xx x

x

x

xx
x

2 near-equivalent good solutions with 4 neurons.

If you have 8 neurons many more possibilities to split the task

 many near-equivalent good solutions

Previous slide.

However, real data is not generated from a teacher network of known architecture.

Therefore all solutions are approximate solutions.

Then you will typically find many near-equivalent reasonably good solutions.

For an example, suppose that the data (positive examples) lie in the shaded area.

There are several near-equivalent solutions of modeling the boundaries of this shaded

area with 4 hyperplanes.

If you increase to 8 hyperplanes even more near-equivalent solutions appear.

22/03/2019

33

Quiz: Strengthen your intuitions in high dimensions

A deep neural network with many neurons

[] has many minima and a few saddle points

[] has many minima and about as many saddle points

[] has many minima and even many more saddle points

[] gradient descent is slow close to a saddle point

[] close to a saddle point there is only one direction to go down

[] has typically many equivalent ‘optimal’ solutions

[] has typically many near-optimal solutions

[]

[]

[x]

[x]

[]

[x]

[x]

Your notes.

22/03/2019

34

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 5

Error function and optimization methods for deep networks

Objectives for today:

- Error function: minima and saddle points

- Momentum

Previous slide.

The next question is: how do we find the minima?

22/03/2019

35

Review: Standard gradient descent:

𝐸(𝒘)𝒘(1)

∆𝒘 1

∆𝑤𝑖,𝑗
𝑛

1 = −𝛾
𝑑𝐸(𝒘(1))

𝑑𝑤𝑖,𝑗
𝑛

Previous slide.

The contour lines (niveau lines) of the error function 𝐸 𝒘 are shown as a function of

two arbitrarily chosen weights. Gradient descent corresponds (with standard Euclidian

metrics) to a movement downward perpendicular to the niveau lines, starting from the

weight vector 𝒘 1 at time t=1

If the step size (learning rate 𝛾) is too large, the movement shows oscillations.

22/03/2019

36

2. Momentum: keep previous information

∆𝑤𝑖,𝑗
𝑛

1 = −𝛾
𝑑𝐸(𝒘(1))

𝑑𝑤𝑖,𝑗
𝑛

∆𝑤𝑖,𝑗
𝑛 𝑚 = −𝛾

𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛

+ 𝛼 ∆𝑤𝑖,𝑗
𝑛 𝑚 − 1

In first time step: m=1

In later time step: m

Blackboard2

Previous slide.

A momentum term suppresses these oscillations while giving rise to a ‘speed-up’ in the

directions where the gradient does not change

22/03/2019

37

Blackboard2

Your notes.

22/03/2019

38

2. Momentum suppresses oscillations

𝐸(𝒘)𝒘(1)

∆𝒘 1

∆𝑤𝑖,𝑗
𝑛

2 = −𝛾
𝑑𝐸(𝒘 2)

𝑑𝑤𝑖,𝑗
𝑛

+ 𝛼 ∆𝑤𝑖,𝑗
𝑛

1

good values for 𝛼: 0.9 or 0.95 or 0.99 combined with small 𝛾

𝒘(2)

Previous slide.

Graphical illustration of how the momentum term suppresses oscillations.

The direction of changes of the weight vector in time step t=2 adds to the local gradient

(perpendicular to the contour lines)

in the direction of the update in time step t=1.

The factor a of the momentum term can be close to 1.

𝛼∆𝒘 1

22/03/2019

39

2. Nesterov Momentum (evaluate gradient at interim location)

𝐸(𝒘)𝒘(1)

∆𝒘 1

∆𝑤𝑖,𝑗
𝑛

2 = −𝛾
𝑑𝐸(𝒘 𝟐 + 𝛼∆𝑤𝑖,𝑗

𝑛
1)

𝑑𝑤𝑖,𝑗
𝑛

+ 𝛼 ∆𝑤𝑖,𝑗
𝑛

1

good values for 𝛼: 0.9 or 0.95 or 0.99 combined with small 𝛾

𝒘(2)

Previous slide.

The Nesterov momentum evaluates the gradient at time step t=n+1, not directly at the

momentary location 𝒘 𝒏 + 𝟏 , but at a hypothetical location

𝒘 𝒏 + 𝟏 + 𝛼∆𝑤𝑖,𝑗
𝑛 𝑛

that would be reached by using the momentum term from time step n.

It then combines the local gradient at this hypothetical location with the momentum

term, starting (just as in the simple momentum scheme) from the actual location

𝒘 𝒏 + 𝟏 .

22/03/2019

40

Quiz: Momentum

Momentum

[] momentum speeds up gradient descent in ‘boring’ directions

[] momentum suppresses oscillations

[] with a momentum parameter a=0.9 the maximal speed-up

is a factor 1.9

[] with a momentum parameter a=0.9 the maximal speed-up

is a factor 10

[] Nesterov momentum needs twice as many gradient

evaluations as standard momentum

[x]

[x]

[]

[x]

[]

Your notes.

22/03/2019

41

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 5

Error function and optimization methods for deep networks

Objectives for today:

- Error function: minima and saddle points

- Momentum

- RMSprop and ADAM

Previous slide.

RMSprop and ADAM are two widely used methods for minibatch updates that combine

momentum with further information.

22/03/2019

42

3. Error function: batch gradient descent

𝑤𝑏

minimum

𝑤𝑏𝑤𝑎

Image: Goodfellow et al. 2016

𝑤𝑎

𝒘(1)

Previous slide.

Let us consider downward movement on an error function with a saddle. For some

initial conditions, the trajectory is first attracted toward the saddle before it moves into

one of the two minima, depending on the initial condition.

22/03/2019

43

3. Error function: stochastic gradient descent

𝑤𝑎

old

minimum

𝑤𝑏

The error function for a small mini-batch

is not identical to the that of the true batch

Previous slide.

If the error function is evaluated on a minibatch (which means only on part of the data),

the exact location of the minima and the saddle is different.

22/03/2019

44

3. Error function: batch vs. stochastic gradient descent

𝑤𝑏

𝑤𝑎

The error function for a small mini-batch

is not identical to the that of the true batch

Previous slide.

Therefore, for the first minibatch the gradient would lead to the minimum with positive

𝑤𝑏 , and for the second minibatch toward the minimum with negative 𝑤𝑏 .

22/03/2019

45

𝐸(𝒘)𝒘(1)

∆𝒘 1

3. Stochastic gradient evaluation

∆𝑤𝑖,𝑗
𝑛

1 = −𝛾
𝑑𝐸(𝒘(1))

𝑑𝑤𝑖,𝑗
𝑛

real gradient: sum over all samples

stochastic gradient: one sample

Idea: estimate mean and variance from k=1/𝛼 samples

Previous slide.

The situation is even more extreme with stochastic gradient descent where a single

example is evaluated at each time step – whereas the ‘true’ gradient is the one

evaluated on all examples (batch update).

The main idea of RMSprop and ADAM is to estimate the ‘mean’ gradient and its

variance by a running average.

Note that a momentum term with weight a can be seen as a running average of the

gradient of roughly 1/a examples (see Exercises).

22/03/2019

46

Quiz: RMS and ADAM – what do we want?

A good optimization algorithm

[] should have different ‘effective learning rate’ for each weight

[] should have smaller update steps for noisy gradients

[] the weight change should be larger for small gradients and

smaller for large ones

[] the weight change should be smaller for small gradients and

larger for large ones

Previous slide.

Think about what YOU believe would be most useful. Make a commitment by ticking

one or several boxes. We will come back to these questions later, at the end of this

part.

22/03/2019

47

3. Stochastic gradient evaluation

∆𝑤𝑖,𝑗
𝑛

1 = −𝛾
𝑑𝐸(𝒘(1))

𝑑𝑤𝑖,𝑗
𝑛

real gradient: sum over all samples

stochastic gradient: one sample

Idea: estimate mean and variance from k=1/𝜌 samples

Running Mean: use momentum

𝑣𝑖,𝑗
𝑛

𝑚 =
𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛

+ 𝜌1𝑣𝑖,𝑗
𝑛

𝑚 − 1

Running second moment: average the squared gradient

𝑟𝑖,𝑗
𝑛

𝑚 = (1 − 𝜌2)
𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛

𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛

+ 𝜌2𝑟𝑖,𝑗
𝑛

𝑚 − 1

Previous slide.

Hence, the mean of the gradient is estimated using a momentum term (‘online

average’) with parameter

𝜌1

Similarly, the second moment of the gradient is estimated using an online average with

parameter

𝜌2

Note that the second moments form a matrix of correlations. Here we focus on the

‘diagonal terms’ only which are simply the square of one component of the gradient.

Attention: 1. do not confuse this with the Hessian matrix of second derivatives.

2. do not confuse the second moment with the covariance matrix.

22/03/2019

48

3. Stochastic gradient evaluation

𝑑𝐸(𝒘(1))

𝑑𝑤𝑖,𝑗
𝑛

Running Mean: use momentum

𝑣𝑖,𝑗
𝑛 𝑚 == (1 − 𝜌1)

𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛

+ 𝜌1𝑣𝑖,𝑗
𝑛 𝑚 − 1

Running estimate of 2nd moment: average the squared gradient

𝑟𝑖,𝑗
𝑛

𝑚 = (1 − 𝜌2)
𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛

𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛

+ 𝜌2𝑟𝑖,𝑗
𝑛

𝑚 − 1

Blackboard 3/Exerc. 1

Raw Gradient:

Example:

consider 3 weights w1,w2,w3
Time series of gradient

by sampling:

for w1 : 1.1; 0.9; 1.1; 0.9; …

for w2 : 0.1; 0.1; 0.1; 0.1; …

for w3 : 1.1; 0; -0.9; 0; 1.1; 0; -0.9; …

22/03/2019

49

3. Adam and variants

The above ideas are at the core of several algos

- RMSprop

- RMSprop with momentum

- ADAM

Your notes on the exercise.

22/03/2019

50

3. RMSProp

Goodfellow et al.

2016

Previous slide.

RMSprop algorithm.

The variables r estimate the diagonal elements of the second moment of the gradient.

The operator ‘circle-dot’ indicates elementwise multiplication.

The update step is scaled by the square-root of the second moment.

The delta is a small number to stabilize the division.

There is no smoothing of the gradient itself (no momentum term).

22/03/2019

51

2nd moment

Goodfellow et al.

2016

3. RMSProp with Nesterov Momentum

Previous slide.

This is the version with smoothing (the delta has been suppressed in the notation but

should always be kept in practice.)

Note that second moment and variance are not exactly the same (see also exercises).

For variance, you subtract the mean before you square.

22/03/2019

52

3. Adam

Goodfellow et al.

2016

Previous slide.

The first moment is the online average of the mean of the gradient, equivalent to the

momentum.

The second moment is similar to the variance. But in contrast to the variance, the mean

is not subtracted before squaring.

The bias correction terms are a bit arbitrary. The idea is that (as we have seen for the

momentum term earlier) evaluating a constant gradient using a momentum term with

parameter r gives effectively rise to a factor 1/[1-r] . However, since it takes some time

to build up this factor, one could artificially introduce this factor in the first few time steps

– and this is what is done in this algorithm. However, this argument makes sense only if

the gradient is indeed constant over many steps!

22/03/2019

53

3. Adam and variants

The above ideas are at the core of several algos

- RMSprop

- RMSprop with momentum

- ADAM

Result: parameter movement slower in uncertain directions

(see Exercise 1 above)

Your notes.

22/03/2019

54

Quiz (2nd vote): RMS and ADAM

A good optimization algorithm

[] should have different ‘effective learning rate’ for each

weight

[] should have a the same weight update step for small

gradients and for large ones

[] should have smaller update steps for noisy gradients

[x]

[x]

[x]

Your notes.

22/03/2019

55

Objectives for today:

- Momentum:

- suppresses oscillations (even in batch setting)

- implicitly yields a learning rate ‘per weight’

- smooths gradient estimate (in online setting)

- Adam and variants:

- adapt learning step size to certainty

- includes momentum

Previous slide.

We can distinguish three main features of momentum:

- it suppresses oscillations. Note that oscillations arise even in the batch setting if the

valley of the error function has steep slopes and the learning rate is chosen too big.

- in a narrow valley the effective step size of weight changes aligned with the valley

axis increases, whereas those point toward the steep walls of the valley decreases.

- in stochastic online gradient descent, momentum acts as an exponentially shaped

averaging filter.

In addition to momentum, Adam (and its variants) also estimate the second moment of

the gradient. This estimate can then be used to adapt the step size to the certainty:

smaller weight updates if the gradient estimate is noisy (has a large second moment).

22/03/2019

56

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 5

Error function and optimization methods for deep networks

Objectives for today:

- Error function: minima and saddle points

- Momentum

- RMSprop and ADAM

- Complements to Regularization: L1 and L2

- No Free Lunch Theorem

Previous slide.

No Free Lunch theorems (there are several variants) are foundational and

philosophically important to answer the question: why do deep neural networks work so

well?

22/03/2019

57

4. No Free Lunch Theorem

Which data set looks more noisy?

Which data set is easier to fit?

A B

Commitment:

Thumbs up
Commitment:

Thumbs down

Previous slide.

Let us start with two data sets.

22/03/2019

58

line
wave package

4. No Free Lunch Theorem

Previous slide.

And here a possible explanation (hidden behind the blue boxes).

22/03/2019

59

easy to fit

line
wave package

5. No Free Lunch Theorem

easy to fit

Your notes

22/03/2019

60

4. No Free Lunch Theorem

The NO FREE LUNCH THEOREM

states

“ that any two optimization

algorithms are equivalent when their

performance is averaged across all

possible problems"

•Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67.

•Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390.

See Wikipedia/wiki/No_free_lunch_theorem

Previous slide.

The conclusion is: there is no reason to believe that an algorithm that works well on one

data set will also work well on an arbitrarily chosen other data set.

https://en.wikipedia.org/wiki/Optimization_(mathematics)
http://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf

22/03/2019

61

“NFL theorems because they demonstrate

that if an algorithm performs well on a

certain class of problems

then it necessarily pays for that with

degraded performance on the set of all

remaining problems”

The mathematical statements are called

4. No Free Lunch (NFL) Theorems

•Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67.

•Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390.

See Wikipedia/wiki/No_free_lunch_theorem

Previous slide.

Even worse, if the algo works well on some problem, there must exist another problem

on which the algorithm works badly.

http://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf

22/03/2019

62

4. Quiz: No Free Lunch (NFL) Theorems

[] Deep learning performs better than most other algorithms

on real world problems.

[] Deep learning can fit everything.

[] Deep learning performs better than other algorithms on

all problems.

Take neural networks with many layers, optimized by

Backprop as an example of deep learning

[x]

[x]

[]

Your notes.

22/03/2019

63

4. No Free Lunch (NFL) Theorems

- Choosing a deep network and optimizing it with

gradient descent is an algorithm

- Deep learning works well on many real-world problems

- Somehow the prior structure of the deep network

matches the structure of the real-world problems

we are interested in.

Always use prior knowledge if you have some

Previous slide.

The reason that deep networks work well must be linked to the type of data on which

we test them.

22/03/2019

64

4. No Free Lunch (NFL) Theorems

Geometry of the information flow in neural network

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

xx x

x

x

xx
x

xx x

x
xx

x

Previous slide.

One possible explanation of why neural networks work well is the notion of

hyperplanes. Even though the data is local, you make a cut through the whole space.

This predefines additional ‘compartments’ that can be reused later for other data.

This argument might be applicable in the last few layers before the output.

22/03/2019

65

4. Reuse of featuers in Deep Networks (schematic)

xx x

x

x

xx
x

xx x

x
xx

x

animals

birds

4 legs
wings

snout

fur
eyes

tail

Previous slide.

A specific illustration of this idea is given here

22/03/2019

66

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 5

Error function and optimization methods for deep networks

Objectives for today:

- Error function: minima and saddle points

- Momentum

- RMSprop and ADAM

- Complements to Regularization: L1 and L2

- No Free Lunch Theorem

- Deep distributed nets versus shallow nets

Previous slide.

In the following we explore the idea of carving out regions in the space by hyperplanes.

22/03/2019

67

5. Distributed representation

In 1dim input space with:

0 hyperplanes

1 hyperplane

2 hyperplanes?

3 hyperplanes?

4 hyperplanes?

How many different regions are carved

Previous slide.

First we work in zero dimensions. There is only one dot, this is the smallest possible

region: d=0  1 region

We now work in one dimension (horizontal black axis).

The continuous axis is one connected region.

If we add a first hyperplane, we cut the axis into 2 separate regions. Therefore we have

added one extra region.

After adding the nth hyperplane, we have n+1 regions. Each hyperplane adds one

‘crossing’ of the horizontal axis.

d =1  n+1 regions (where n is the number of hyperplanes in 1d)

22/03/2019

68

5. Distributed representation

In 2dim input space with:

3 hyperplanes?

4 hyperplanes?

How many different regions are carved

Increase dimension

= turn hyperplane

= new crossing

= new regions

Previous slide.

Suppose we have n hyperplanes in 1 dimension.

This corresponds to n PARALLEL hyperplanes in 2 dimension. The number of separate

regions is still n+1, just as in 1 dimension.

Suppose now we slowly turn one of the hyperplanes into an ARBITRARY position.

Each time it crosses another hyperplane the tilting process creates a new region.

Hence n-1 new regions are created.

Repeat this with the next hyperplane. In this case n-2 new regions are created.

22/03/2019

69

5. Distributed multi-region representation

In 2dim input space by:

1 hyperplane

2 hyperplanes

3 hyperplanes?

4 hyperplanes?

How many different regions are carved

Previous slide.

In 2 dimension:

I have n lines. If I tilt one line  adds n-1 new crossings  adds n-1 new regions.

I can do this for each of the n existing lines: they were parallel in the 1d setting, I turn it

= add new crossings.

Total (n)(n-1)/2 new crossings (corrected for counting twice).

But in 1d, I had already n+1 regions. Therefore, total number of regions is given by the

formula 1 + n + n(n-1)/2

22/03/2019

70

x2

x3

5. Distributed representation

In 3d input space by:

1 hyperplane

2 hyperplanes

3 hyperplanes?

4 hyperplanes?

How many different regions are carved

Previous slide.

Let us extend the argument to three dimensions.

At the beginning it is easy, and the number of regions increases exponential.

But how do we treat 4 hyperplanes?

22/03/2019

71

5. Distributed multi-region representation

In 3 dim input space by:

3 hyperplanes?

4 hyperplanes?

we look at 4 vertical planes

from the top (birds-eye view)

Keep 3 fixed, but

then tilt 4th plane

How many different regions are carved

Previous slide.

In 3 dimension:

I have n vertical hyperplanes, I look on these from the top. Thus the third dimension is

not yet used. Now I tilt one of these hyperplanes.

 the tilting adds as many new regions as there were crossings in 2 dimensions of

the remaining n-1 hyperplanes  adds (n-1)(n-2)/2 new regions.

Again, this tilting argument can be repeated for each of the n vertical planes (but avoid

double counts!)

So we can build a proof by induction:

The number of NEW regions with n hyperplanes in d dimensions, is linked to the

number of crossings with n-1 hyperplanes in d-1 dimensions.

The total number of regions is the NEW regions plus the number of OLD regions with n

hyperplanes in d-1 dimensions.

22/03/2019

72

5. Distributed multi-region representation

Number of regions cut out by n hyperplanes

In d –dimensional input space:

𝑛𝑢𝑚𝑏𝑒𝑟~𝑂(𝑛𝑑)

But, we cannot learn arbitrary targets,

by assigning arbitrary class labels {+1,0} to each region,

unless exponentially many hidden neurons:

generalized XOR problem

𝑛𝑢𝑚𝑏𝑒𝑟 =

𝑗=0

𝑑
𝑛
𝑗

Your notes.

Conclusion:

1. MANY regions created by a n hyperplanes in d dimension.

2. However, this does not mean that all of these can be assigned to arbitrary classes.

For example, 2 hyperplanes carve 4 regions, but an XOR configuration cannot be

solved unless we add an extra layer.

3. The argument can then be repeated for all layers. The input dimension in layer n is

the number of neurons in layer n-1.

22/03/2019

73

5. Distributed multi-region representation

There are many, many regions!

But there is a strong prior that we do not need

(for real-world problems) arbitrary labeling of these regions.

With polynomial number of hidden neurons:

 classes are automatically assigned for many regions

where we have no labeled data

 generalization

Previous slide.

Intuitively speaking, hyperplanes can be re-used to assign labels, because the

configuration of XOR is rather uncommon in real-world problems.

An example is shown in the next slide

22/03/2019

74

5. Distributed representation vs local representation

Example: nearest neighbor representation

xx x

x

x

xx
x

o

Nearest neighbor

Does not create

A new region here

o

o

o

o
o

Previous slide.

Illustration of the re-use of regions, carved out by hyperplanes, for several classes.

An alternative method to hyperplanes would be nearest-neighbor classification. In this

case the assignment to the orange and red classes would be extended, without carving

out a new region.

22/03/2019

75

5. Deep networks versus shallow networks

Performance as a function of number of layers

on an address classification task

Image: Goodfellow et al. 2016

Previous slide.

Increasing the number of layers increases performance.

22/03/2019

76

5. Deep networks versus shallow networks

Performance as a function of number of parameters

on an address classification task

Image: Goodfellow et al. 2016

Previous slide.

For the same number of parameters (weights), a convolutional neural network with 11

layers performs better than a fully connected network with three layers.

For convolutional networks: see lecture ‘week 7’,

Conclusion: experimentally it was found that deep networks perform better than shallow

ones.

22/03/2019

77

5. Deep networks versus shallow networks

- Somehow the prior structure of the deep network

matches the structure of the real-world problems

we are interested in.

- The network reuses features learned in other contexts

Example: green car, red car, green bus, red bus,

tires, window, lights, house,

 generalize to red house with lights

Previous slide.

One potential (non-mathematical) explanation of the success of deep networks is the

fact that features in the real world in which we are interested extend over large regions

of the data space so that we have seen examples of green trees and green buses, but

also red cars, red buses and white houses, we can generalize to red houses.

22/03/2019

78

Wulfram Gerstner

EPFL, Lausanne, Switzerland
Artificial Neural Networks: Lecture 5

Error landscape and optimization methods for deep networks

Objectives for today:

- Error function landscape:

there are many good minima and even more saddle points

- Momentum

gives a faster effective learning rate in boring directions

- Adam

gives a faster effective learning rate in low-noise directions

- No Free Lunch: no algo is better than others

- Deep Networks: are better than shallow ones on

real-world problems due to feature sharing

Previous slide.

THE END

22/03/2019

79

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 5

Error function and optimization methods for deep networks

Objectives of this Appendix:

- Complements to Regularization: L1 and L2

L2 acts like a spring.

L1 pushes some weights exactly to zero.

L2 is related to early stopping (for quadratic error surface)

Previous slide.

This section provides a few complements to L2 and L1 regularization methods. It is

generic and not limited to deep networks.

This topic has been treated in the class ‘Machine Learning’ by Profs Jaggi and

Urbanke. Therefore it is not repeated during the lectures of the class ‘Artificial Neural

Networks’ but simply added as an appendix in the slides.

22/03/2019

80

Review: Regularization by a penalty term

 𝐸 𝒘 = 𝐸 𝒘

Minimize on training set a modified Error function

+ l penalty

assigns an ‘error’

to flexible solutionsLoss function

∆𝑤𝑖,𝑗
𝑛

1 = −𝛾
𝑑𝐸 𝒘 1

𝑑𝑤𝑖,𝑗
𝑛 - 𝛾 l

𝑑(𝑝𝑒𝑛𝑎𝑙𝑡𝑦)

𝑑𝑤𝑖,𝑗
𝑛

Gradient descent at location 𝒘 1 yields

Previous slide.

The penalty term acts like a smoothness constraint.

22/03/2019

81

4. Regularization by a weight decay (L2 regularization)

Minimize on training set a modified Error function

+ l

assigns an ‘error’ to solutions

with large pos. or neg. weights

𝑘

(𝑤𝑘)2 𝐸 𝒘 = 𝐸 𝒘

∆𝑤𝑖,𝑗
𝑛

1 = −𝛾
𝑑𝐸 𝒘 1

𝑑𝑤𝑖,𝑗
𝑛 -𝛾 l𝑤𝑖,𝑗

𝑛
(1)

Gradient descent yields

See also ML class of Jaggi-Urbanke

Previous slide.

L2 regularization refers to a penalty term that sums over all squared weights (but not

the threshold parameters).

If we take the derivative, we find that the penalty term transforms into a decay term,

hence the name weight decay.

22/03/2019

82

4. L2 Regularization

𝐸(𝒘)𝒘(1)

∆𝒘 1

∆𝑤𝑖,𝑗
𝑛

1 = −𝛾
𝑑𝐸 𝒘 1

𝑑𝑤𝑖,𝑗
𝑛 - 𝛾 l 𝑤𝑖,𝑗

𝑛
(1)

L2 penalty acts like a spring pulling toward origin

Previous slide.

We can interpret the weight decay term as a force that pulls toward the origin: it tries to

keep weights small. At the same time the standard error function gives rise to a gradient

term that pulls toward the minimum of the error. At equilibrium, the two forces balance

each other.

22/03/2019

83

4. L2 Regularization

𝐸(𝒘)𝒘(1)

∆𝒘 1

∆𝑤𝑖,𝑗
𝑛

1 = −𝛾
𝑑𝐸 𝒘 1

𝑑𝑤𝑖,𝑗
𝑛 - 𝛾 l 𝑤𝑖,𝑗

𝑛
(1)

L2 penalty acts like a spring pulling toward origin

Previous slide.

The balance condition means that the size and direction of the red arrows (spring) and

the green arrows (local gradient) cancel each other.

22/03/2019

84

4. L2 Regularization

𝐸(𝒘)𝒘(1)

∆𝒘 1

∆𝑤𝑖,𝑗
𝑛

1 = −𝛾
𝑑𝐸 𝒘 1

𝑑𝑤𝑖,𝑗
𝑛 - 𝛾 l 𝑤𝑖,𝑗

𝑛
(1)

L2 penalty acts like a spring pulling toward origin

Previous slide.

Balanced position.

22/03/2019

85

4. L1 Regularization

Minimize on training set a modified Error function

+ l

assigns an ‘error’ to solutions

with large pos. or neg. weights

𝑘

|𝑤𝑘 | 𝐸 𝒘 = 𝐸 𝒘

∆𝑤𝑖,𝑗
𝑛

1 = −𝛾
𝑑𝐸 𝒘 1

𝑑𝑤𝑖,𝑗
𝑛 -𝛾 l 𝑠𝑔𝑛(𝑤𝑖,𝑗

𝑛
)

See also ML class of Jaggi-Urbanke

Previous slide.

Instead of L2 regularization, we can also work with L1 regularization.

22/03/2019

86

4. L1 Regularization

𝐸(𝒘)𝒘(1)

∆𝑤𝑖,𝑗
𝑛

1 = −𝛾
𝑑𝐸 𝒘 1

𝑑𝑤𝑖,𝑗
𝑛 − 𝛾 l 𝑠𝑔𝑛[𝑤𝑖,𝑗

𝑛
(1)]

Blackboard4

Movement caused by penalty is always diagonal

(except if one compenent vanishes: wa=0

Previous slide.

If we take the derivative, we see that (for positive weights) the penalty cause a

movement along a diagonal direction.

22/03/2019

87

Blackboard44. L1 Regularization

Previous slide.

22/03/2019

88

4. L1 Regularization (quadratic function)

w

Small curvature b

OR big l :

Solution at w=0

Big curvature b

OR small l :

Solution at

w= w* - l/b

w* w*
w

See also ML class of Jaggi-Urbanke

Previous slide.

The exact location of the combined miminum is either slightly shifted toward smaller

weight values (left figure), or exactly at zero.

The L1 norm leads to a ‘sparse’ representation where many weights are zero.

22/03/2019

89

4. L1 Regularization (general)

w

slope of E at w=0< slope of penalty

solution at w=0

Big curvature b

OR small l :

Solution at

w= w* - l/b

w* w*
w

penalty = l w

See also ML class of Jaggi-Urbanke

Previous slide.

Sparsity is a generic result for L1 regularization.

22/03/2019

90

4. L1 Regularization and L2 Regularization

L1 regularization puts some weights to exactly zero

 connections ‘disappear’

 ‘sparse network’

L2 regularization shifts all weights a bit to zero

 full connectivity remains

Close to a minimum and without momentum:

L2 regularization = early stopping

(see exercises)

Previous slide.

In the exercises we will see that L2 regularization shares features with early stopping.

