

## Objectives for today:

- Error function landscape: minima and saddle points
- Momentum
- Adam
- No Free Lunch
- Shallow versus Deep Networks

Reading for this lecture:
Goodfellow et al., 2016 Deep Learning

- Ch. 8.2, Ch. 8.5
- Ch. 4.3
- Ch. 5.11, 6.4, Ch. 15.4, 15.5

Further Reading for this Lecture:

Aim of learning:
Adjust connections such that output is correct (for each input image, even new ones)


## 



## 






## Quadratic error

$$
E(\boldsymbol{w})=\frac{1}{2} \sum_{\mu=1}^{P}\left[t^{\mu}-\hat{y}^{\mu}\right]^{2}
$$

gradient descent

$$
\Delta w_{k}=-\gamma \frac{d E}{d w_{k}}
$$



## Batch rule:

one update after all patterns
(normal gradient descent)
Online rule:
one update after one pattern
(stochastic gradient descent)

Same applies to all loss functions, e.g.,
Cross-entropy error

- How does the error landscape (as a function of the weights) look like?
- How can we quickly find a (good) minimum?
- Why do deep networks work well?



## Objectives for today:

- Error function: minima and saddle points


## 



This local minimum performs nearly as well as the global one, so it is an acceptable halting point.
Ideally, we would like to arrive at the global minimum, but this might not be possible. might not be posible.


This local minimum performs poorly and should be avoided.

How many minima are there in a deep network?
$O: W$
$\frac{d}{d w_{a}} E\left(w_{a}\right)=0$

$\frac{d^{2}}{d w_{a}^{2}} E\left(w_{a}\right)>0$

Maximum

$\frac{d^{2}}{d w_{a}^{2}} E\left(w_{a}\right)<0$


$$
\frac{d^{2}}{d w_{a}^{2}} E\left(w_{a}\right)=0
$$

Image: Goodfellow et al. 2016


1. A deep neural network with 9 layers of 10 neurons each
[ ] has typically between 1 and 1000 minima (global or local)
[ ] has typically more than 1000 minima (global or local)
2. A deep neural network with 9 layers of 10 neurons each
[ ] has many minima and in addition a few saddle points
[ ] has many minima and about as many saddle points
[ ] has many minima and even many more saddle points


## व*


$\boldsymbol{x} \in R^{N+1}$
many assignments
of hyperplanes to neurons


4 hyperplanes for 4 neurons

many assignments
of hyperplanes to neurons

even more permutations

6 hyperplanes for 6 hidden neurons


2 blue neurons
2 hyperplanes in input space


2 hyperplanes

## Blackboard 1

## Solutions in weight space

$$
\boldsymbol{x} \in R^{N+1}
$$

## 



$$
\begin{aligned}
& A=(1,0,-.7) ; C=(1,-.7,0) \\
& B=(0,1,-.7) ; D=(0,-.7,1)
\end{aligned}
$$

Algo for plot:

- Pick w11,w21,w31
- Adjust other parameters to minimize $E$

$$
\mathrm{E}=(-.7,1,0) ; \mathrm{F}=(-.7,0,1)
$$



## 4 hyperplanes

Teacher Network: Student Network:
'input space'
Committee machine


co
Teacher Network: Blue

Student
Network: Red

## 4 hyperplanes

'input space'


## There are many more saddle points than minima

 Two arguments(i) Geometric argument and weight space symmetry
$\rightarrow$ number of saddle points increases
rapidly with dimension
(much more rapidly than the number of minima)

There are many more saddle points than minima Two arguments
(ii) Second derivative (Hessian matrix) at gradient zero


In 1dim: at a point with vanishing gradient

$$
\frac{d^{2}}{d w_{a}^{2}} E\left(w_{a}\right)>0 \quad \rightarrow \text { minimum }
$$

Minimum in N dim: study Hessian

$$
\mathrm{H}=\frac{d}{d w_{a}} \frac{d}{d w_{b}} E\left(w_{a}, w_{b}\right)
$$

Diagonalize: minimum if all eigenvalues positive. But for $N$ dimensions, this is a strong condition!

## in $N$ dim: Hessian

$$
\mathrm{H}=\frac{d}{d w_{a}} \frac{d}{d w_{b}} E\left(w_{a}, w_{b}\right)
$$

Diagonalize:

$$
H=\left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{N}
\end{array}\right)
$$

In N-1 dimensions surface goes up, In 1 dimension it goes down

$$
\begin{aligned}
& \lambda_{N-1}>0 \\
& \lambda_{N}<0
\end{aligned}
$$

in N dim: Hessian

$$
\mathrm{H}=\frac{d}{d w_{a}} \frac{d}{d w_{b}} E\left(w_{a}, w_{b}\right)
$$

Diagonalize:

$$
H=\left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{N}
\end{array}\right)
$$

$\lambda_{1}>0$

$$
\begin{aligned}
& \lambda_{N-2}>0 \\
& \lambda_{N-1}<0 \\
& \lambda_{N}<0
\end{aligned}
$$

In $N$-2 dimensions surface goes up, In 2 dimension it goes down

In $N$-m dimensions
surface goes up,
In $m$ dimension it goes down
in N dim: Hessian

$$
\mathrm{H}=\frac{d}{d w_{a}} \frac{d}{d w_{b}} E\left(w_{a}, w_{b}\right)
$$

Diagonalize:

$$
H=\left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{N}
\end{array}\right) \quad \begin{aligned}
& \lambda_{N-m+1}>0 \\
& \lambda_{N-m}<0 \\
& \lambda_{N}<0
\end{aligned}
$$

## General saddle:

In $N-m$ dimensions surface goes up,
In $m$ dimension it goes down

It is rare that all eigenvalues of the Hessian have same sign
It is fairly rare that only one eigenvalue has a different sign than the others
$\rightarrow$ Most saddle points have multiple dimensions with surface up and multiple with surface going down

General saddle points: In $N$ - $m$ dimensions surface goes up, in $m$ dimension it goes down
$1^{\text {st-order saddle points: In } N-1 \text { dimensions surface goes up, }}$
 in 1 dimension it goes down

(ii) For balance random systems, eigenvalues will be randomly distributed with zero mean:
draw N random numbers
$\rightarrow$ rare to have all positive or all negative
$\rightarrow$ Rare to have maxima or minima
$\rightarrow$ Most points of vanishing gradient are saddle points
$\rightarrow$ Most high-error saddle points have multiple directions of escape

But what is the random system here?
The data is 'random' with respect to the design of the system!


2 blue neurons
2 hyperplanes in input space


4 hyperplanes


2 near-equivalent good solutions with 4 neurons.
If you have 8 neurons many more possibilities to split the task $\rightarrow$ many near-equivalent good solutions

A deep neural network with many neurons
[ ] has many minima and a few saddle points
[] has many minima and about as many saddle points
[ ] has many minima and even many more saddle points
[ ] gradient descent is slow close to a saddle point
[ ] close to a saddle point there is only one direction to go down
[ ] has typically many equivalent 'optimal' solutions
[] has typically many near-optimal solutions

## Objectives for today:

- Error function: minima and saddle points
- Momentum


## 

$$
\Delta w_{i, j}^{(n)}(1)=-\gamma \frac{d E(\boldsymbol{w}(1))}{d w_{i, j}^{(n)}}
$$

$$
\stackrel{\boldsymbol{w}(1)}{\bullet} \quad E(\boldsymbol{w})
$$

$$
\Delta \boldsymbol{w}(1) \|
$$

## Blackboard2

In first time step: $m=1$

$$
\Delta w_{i, j}^{(n)}(1)=-\gamma \frac{d E(\boldsymbol{w}(1))}{d w_{i, j}^{(n)}}
$$

In later time step: $m$

$$
\Delta w_{i, j}^{(n)}(m)=-\gamma \frac{d E(\boldsymbol{w}(m))}{d w_{i, j}^{(n)}}+\alpha \Delta w_{i, j}^{(n)}(m-1)
$$



## Blackboard2

## -

$$
\Delta w_{i, j}^{(n)}(2)=-\gamma \frac{d E(\boldsymbol{w}(2))}{d w_{i, j}^{(n)}}+\alpha \quad \Delta w_{i, j}^{(n)}(1)
$$

$$
E(\boldsymbol{w})
$$

good values for $\alpha$ : 0.9 or 0.95 or 0.99 combined with small $\gamma$

good values for $\alpha$ : 0.9 or 0.95 or 0.99 combined with small $\gamma$

Momentum
[ ] momentum speeds up gradient descent in 'boring' directions
[] momentum suppresses oscillations
[ ] with a momentum parameter $\alpha=0.9$ the maximal speed-up is a factor 1.9
[ ] with a momentum parameter $\alpha=0.9$ the maximal speed-up is a factor 10
[ ] Nesterov momentum needs twice as many gradient evaluations as standard momentum

## Objectives for today:

- Error function: minima and saddle points
- Momentum
- RMSprop and ADAM


## 


minimum

Image: Goodfellow et al. 2016
$\boldsymbol{w}(1)$

## 

The error function for a small mini-batch is not identical to the that of the true batch


The error function for a small mini-batch is not identical to the that of the true batch


$$
\Delta w_{i, j}^{(n)}(1)=-\gamma \frac{d E(w(1))}{d w_{i, j}^{(n)}}
$$

real gradient: sum over all samples stochastic gradient: one sample


Idea: estimate mean and variance from $\mathrm{k}=1 / \alpha$ samples

A good optimization algorithm
[ ] should have different 'effective learning rate' for each weight
[ ] should have smaller update steps for noisy gradients
[ ] the weight change should be larger for small gradients and smaller for large ones
[] the weight change should be smaller for small gradients and larger for large ones

$$
\Delta w_{i, j}^{(n)}(1)=-\gamma \frac{d E(\boldsymbol{w}(1))}{d w_{i, j}^{(n)}}
$$

real gradient: sum over all samples stochastic gradient: one sample

Idea: estimate mean and variance from $\mathrm{k}=1 / \rho$ samples
Running Mean: use momentum

$$
v_{i, j}^{(n)}(m)=\frac{d E(\boldsymbol{w}(m))}{d w_{i, j}^{(n)}}+\rho_{1} v_{i, j}^{(n)}(m-1)
$$

Running second moment: average the squared gradient

$$
r_{i, j}^{(n)}(m)=\left(1-\rho_{2}\right)\left(\frac{d E(\boldsymbol{w}(m))}{d w_{i, j}^{(n)}}\right)\left(\frac{d E(\boldsymbol{w}(m))}{d w_{i, j}^{(n)}}\right)+\rho_{2} r_{i, j}^{(n)}(m-1)
$$

## Example:

consider 3 weights $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}$

Time series of gradient by sampling:
for $W_{1}: 1.1 ; 0.9 ; 1.1 ; 0.9 ; \ldots$ for $\mathrm{W}_{2}: 0.1 ; 0.1 ; 0.1 ; 0.1 ; \ldots$
for $w_{3}: 1.1 ; 0 ;-0.9 ; 0 ; 1.1 ; 0 ;-0.9$;

Running Mean: use momentum

$$
v_{i, j}^{(n)}(m)==\left(1-\rho_{1}\right) \frac{d E(\boldsymbol{w}(m))}{d w_{i, j}^{(n)}}+\rho_{1} v_{i, j}^{(n)}(m-1)
$$

Running estimate of $2^{\text {nd }}$ moment: average the squared gradient

$$
r_{i, j}^{(n)}(m)=\left(1-\rho_{2}\right)\left(\frac{d E(\boldsymbol{w}(m))}{d w_{i, j}^{(n)}}\right)\left(\frac{d E(\boldsymbol{w}(m))}{d w_{i, j}^{(n)}}\right)+\rho_{2} r_{i, j}^{(n)}(m-1)
$$

The above ideas are at the core of several algos

- RMSprop
- RMSprop with momentum
- ADAM


## -**

Algorithm 8.5 The RMSProp algorithm
Require: Global learning rate $\epsilon$, decay rate $\rho$.
Require: Initial parameter $\boldsymbol{\theta}$
Require: Small constant $\delta$, usually $10^{-6}$, used to stabilize division by small numbers.
Initialize accumulation variables $\boldsymbol{r}=0$
while stopping criterion not met do
Sample a minibatch of $m$ examples from the training set $\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\right\}$ with corresponding targets $\boldsymbol{y}^{(i)}$.
Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L\left(f\left(\boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right), \boldsymbol{y}^{(i)}\right)$
Accumulate squared gradient: $\boldsymbol{r} \leftarrow \rho \boldsymbol{r}+(1-\rho) \boldsymbol{g} \odot \boldsymbol{g}$
Compute parameter update: $\Delta \boldsymbol{\theta}=-\frac{\epsilon}{\sqrt{\delta+\boldsymbol{r}}} \odot \boldsymbol{g} . \quad\left(\frac{1}{\sqrt{\delta+\boldsymbol{r}}}\right.$ applied element-wise $)$
Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\Delta \boldsymbol{\theta}$
end while

## 「***

Algorithm 8.6 RMSProp algorithm with Nesterov momentum
Require: Global learning rate $\epsilon$, decay rate $\rho$, momentum coefficient $\alpha$.
Require: Initial parameter $\boldsymbol{\theta}$, initial velocity $\boldsymbol{v}$.
Initialize accumulation variable $\boldsymbol{r}=\mathbf{0}$
while stopping criterion not met do
Sample a minibatch of $m$ examples from the training set $\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\right\}$ with corresponding targets $\boldsymbol{y}^{(i)}$.
Compute interim update: $\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta}+\alpha \boldsymbol{v}$
Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L\left(f\left(\boldsymbol{x}^{(i)} ; \tilde{\boldsymbol{\theta}}\right), \boldsymbol{y} \boldsymbol{y}^{(i)}\right)$
Accumulate gradient: $\boldsymbol{r} \leftarrow \rho \boldsymbol{r}+(1-\rho) \boldsymbol{g} \odot \boldsymbol{g}$ $2^{\text {nd }}$ moment
Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v}-\frac{\epsilon}{\sqrt{r}} \odot \boldsymbol{g} . \quad\left(\frac{1}{\sqrt{r}}\right.$ applied element-wise $)$
Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\boldsymbol{v}$
end while

Require: Step size $\epsilon$ (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, $\rho_{1}$ and $\rho_{2}$ in $[0,1)$. (Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant $\delta$ used for numerical stabilization. (Suggested default: $10^{-8}$ )
Require: Initial parameters $\boldsymbol{\theta}$
Initialize 1st and 2nd moment variables $s=\mathbf{0}, \boldsymbol{r}=\mathbf{0}$
Initialize time step $t=0$
while stopping criterion not met do
Sample a minibatch of $m$ examples from the training set $\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\right\}$ with corresponding targets $\boldsymbol{y}^{(i)}$.
Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L\left(f\left(\boldsymbol{x}^{(i)} ; \boldsymbol{\theta}\right), \boldsymbol{y}^{(i)}\right)$
$t \leftarrow t+1$
Update biased first moment estimate: $\boldsymbol{s} \leftarrow \rho_{1} \boldsymbol{s}+\left(1-\rho_{1}\right) \boldsymbol{g}$
Update biased second moment estimate: $\boldsymbol{r} \leftarrow \rho_{2} \boldsymbol{r}+\left(1-\rho_{2}\right) \boldsymbol{g} \odot \boldsymbol{g}$
Correct bias in first moment: $\hat{\boldsymbol{s}} \leftarrow \frac{s}{1-\rho_{1}^{t}}$
Correct bias in second moment: $\hat{\boldsymbol{r}} \leftarrow \frac{r}{1-\rho_{2}^{t}}$
Compute update: $\Delta \boldsymbol{\theta}=-\epsilon \frac{\hat{s}}{\sqrt{\hat{r}}+\delta} \quad$ (operations applied element-wise)
Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\boldsymbol{\theta} \boldsymbol{\theta}$
Goodfellow et al.
end while

The above ideas are at the core of several algos

- RMSprop
- RMSprop with momentum
- ADAM

Result: parameter movement slower in uncertain directions
(see Exercise 1 above)

A good optimization algorithm
[] should have different 'effective learning rate' for each weight
[ ] should have a the same weight update step for small gradients and for large ones
[ ] should have smaller update steps for noisy gradients

## Objectives for today:

- Momentum:
- suppresses oscillations (even in batch setting)
- implicitly yields a learning rate 'per weight'
- smooths gradient estimate (in online setting)
- Adam and variants:
- adapt learning step size to certainty
- includes momentum


## Objectives for today:

- Error function: minima and saddle points
- Momentum
- RMSprop and ADAM
- Complements to Regularization: L1 and L2
- No Free Lunch Theorem


## Which data set looks more noisy?



## 



## X



## The NO FREE LUNCH THEOREM states <br> " that any two optimization algorithms are equivalent when their performance is averaged across all possible problems"

See Wikipedia/wiki/No_free_lunch_theorem
-Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67. -Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390.

## The mathematical statements are called <br> "NFL theorems because they demonstrate that if an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems"

See Wikipedia/wiki/No_free_lunch_theorem
-Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67. -Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390.

## Take neural networks with many layers, optimized by Backprop as an example of deep learning

[ ] Deep learning performs better than most other algorithms on real world problems.
[] Deep learning can fit everything.
[ ] Deep learning performs better than other algorithms on all problems.

- Choosing a deep network and optimizing it with gradient descent is an algorithm
- Deep learning works well on many real-world problems
- Somehow the prior structure of the deep network matches the structure of the real-world problems we are interested in.
$\longrightarrow$ Always use prior knowledge if you have some

Geometry of the information flow in neural network


$$
\boldsymbol{x} \in R^{N+1}
$$



## 人＊



## Objectives for today:

- Error function: minima and saddle points
- Momentum
- RMSprop and ADAM
- Complements to Regularization: L1 and L2
- No Free Lunch Theorem
- Deep distributed nets versus shallow nets

How many different regions are carved In 1dim input space with:

0 hyperplanes
1 hyperplane
2 hyperplanes?
3 hyperplanes?
4 hyperplanes?


How many different regions are carved In 2dim input space with:

3 hyperplanes?
4 hyperplanes?
Increase dimension
= turn hyperplane
= new crossing
= new regions


How many different regions are carved In 2dim input space by:

1 hyperplane 2 hyperplanes

3 hyperplanes?
4 hyperplanes?


How many different regions afe carved


In 3d input space by:
1 hyperplane
2 hyperplanes
3 hyperplanes?
4 hyperplanes?

How many different regions are carved In 3 dim input space by:

3 hyperplanes?
4 hyperplanes?
we look at 4 vertical planes from the top (birds-eye view)

Keep 3 fixed, but then tilt $4^{\text {th }}$ plane


Number of regions cut out by $n$ hyperplanes In $d$-dimensional input space:

$$
\begin{aligned}
& \text { number }=\sum_{j=0}^{d}\binom{n}{j} \\
& \text { number } \sim O\left(n^{d}\right)
\end{aligned}
$$

But, we cannot learn arbitrary targets, by assigning arbitrary class labels $\{+1,0\}$ to each region, unless exponentially many hidden neurons: generalized XOR problem

There are many, many regions!

But there is a strong prior that we do not need
(for real-world problems) arbitrary labeling of these regions.
With polynomial number of hidden neurons:
$\rightarrow$ classes are automatically assigned for many regions where we have no labeled data
$\rightarrow$ generalization

## 

Example: nearest neighbor representation


Nearest neighbor Does not create A new region here

Performance as a function of number of layers on an address classification task


Image: Goodfellow et al. 2016

Performance as a function of number of parameters on an address classification task

## Large, Shallow Models Overfit More



Image: Goodfellow et al. 2016

- Somehow the prior structure of the deep network matches the structure of the real-world problems we are interested in.
- The network reuses features learned in other contexts

Example: green car, red car, green bus, red bus, tires, window, lights, house,
$\rightarrow$ generalize to red house with lights

## Objectives for today:

- Error function landscape:
there are many good minima and even more saddle points
- Momentum
gives a faster effective learning rate in boring directions
- Adam
gives a faster effective learning rate in low-noise directions
- No Free Lunch: no algo is better than others
- Deep Networks: are better than shallow ones on real-world problems due to feature sharing


## Previous slide.

## THE END

Objectives of this Appendix:

- Complements to Regularization: L1 and L2

L2 acts like a spring.
L1 pushes some weights exactly to zero.
L2 is related to early stopping (for quadratic error surface)

Minimize on training set a modified Error function

$$
\tilde{E}(\boldsymbol{w})=E(\boldsymbol{w}) \quad+\lambda \text { penalty }
$$

Gradient descent at location $\boldsymbol{w}(1)$ yields

$$
\Delta w_{i, j}^{(n)}(1)=-\gamma \frac{d E(\boldsymbol{w}(1))}{d w_{i, j}^{(n)}}-\gamma \lambda \frac{d(\text { penalty })}{d w_{i, j}^{(n)}}
$$

Minimize on training set a modified Error function

$$
\widetilde{E}(\boldsymbol{w})=E(\boldsymbol{w})+\lambda \sum_{k}\left(w_{k}\right)^{2}
$$

assigns an 'error’ to solutions with large pos. or neg. weights

Gradient descent yields

$$
\Delta w_{i, j}^{(n)}(1)=-\gamma \frac{d E(\boldsymbol{w}(1))}{d w_{i, j}^{(n)}}-\gamma \lambda w_{i, j}^{(n)}(1)
$$

## $\checkmark$,

$$
\Delta w_{i, j}^{(n)}(1)=-\gamma \frac{d E(\boldsymbol{w}(1))}{d w_{i, j}^{(n)}}-\gamma \lambda w_{i, j}^{(n)}(1)
$$



L2 penalty acts like a spring pulling toward origin

## $\checkmark$,

$$
\Delta w_{i, j}^{(n)}(1)=-\gamma \frac{d E(\boldsymbol{w}(1))}{d w_{i, j}^{(n)}}-\gamma \lambda w_{i, j}^{(n)}(1)
$$



L2 penalty acts like a spring pulling toward origin

## $\checkmark$,

$$
\Delta w_{i, j}^{(n)}(1)=-\gamma \frac{d E(\boldsymbol{w}(1))}{d w_{i, j}^{(n)}}-\gamma \lambda w_{i, j}^{(n)}(1)
$$



L2 penalty acts like a spring pulling toward origin

Minimize on training set a modified Error function

$$
\begin{aligned}
\tilde{E}(\boldsymbol{w})=E(\boldsymbol{w})+ & \lambda \sum_{k}\left|w_{k}\right| \\
& \quad \text { assigns an 'error’ to solutions } \\
& \text { with large pos. or neg. weights }
\end{aligned} \quad \begin{aligned}
\Delta w_{i, j}^{(n)}(1)=-\gamma \frac{d E(\boldsymbol{w}(1))}{d w_{i, j}^{(n)}}-\gamma \lambda \operatorname{sgn}\left(w_{i, j}^{(n)}\right)
\end{aligned}
$$

$$
\Delta w_{i, j}^{(n)}(1)=-\gamma \frac{d E(w(1))}{d w_{i, j}^{(n)}}-\gamma \quad \lambda \operatorname{sgn}\left[w_{i, j}^{(n)}(1)\right]
$$



Movement caused by penalty is always diagonal (except if one compenent vanishes: $w_{a}=0$


Big curvature $\beta$
OR small $\lambda$ :
Solution at

$$
w=w^{*}-\lambda / \beta
$$



Small curvature $\beta$
OR big $\lambda$ :
Solution at w=0


Big curvature $\beta$
OR small $\lambda$ :
slope of $E$ at $w=0<$ slope of penalty
$\rightarrow$ solution at $\mathrm{w}=0$
Solution at

$$
w=w^{*}-\lambda / \beta
$$

L1 regularization puts some weights to exactly zero
$\rightarrow$ connections 'disappear'
$\rightarrow$ ‘sparse network'

L2 regularization shifts all weights a bit to zero
$\rightarrow$ full connectivity remains
$\rightarrow$ Close to a minimum and without momentum:
L2 regularization = early stopping
(see exercises)

