
Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 5

Error landscape and optimization methods for deep networks
Objectives for today:
- Error function landscape: minima and saddle points
- Momentum
- Adam
- No Free Lunch
- Shallow versus Deep Networks



Reading for this lecture:

Goodfellow et al.,2016  Deep Learning

- Ch. 8.2, Ch. 8.5 
- Ch. 4.3
- Ch. 5.11, 6.4, Ch. 15.4, 15.5

Further Reading for this Lecture:



review: Artificial Neural Networks for classification

input

output
car dog

Aim of learning:
Adjust connections such
that output is correct
(for each input image,
even new ones)



Review: Classification as a geometric problem
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Review: task of hidden neurons (blue)

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
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𝑤𝑤𝑗𝑗𝑗
(1)
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x

x

xx
x



𝑤𝑤𝑗𝑗,𝑘𝑘
(1)

𝒙𝒙𝝁𝝁 ∈ 𝑅𝑅𝑁𝑁+1

Review: Multilayer Perceptron – many parameters
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Quadratic error

gradient descent

Review: gradient descent 

𝑤𝑤𝑘𝑘

𝐸𝐸
∆𝑤𝑤𝑘𝑘 = −𝛾𝛾

𝑑𝑑𝑑𝑑
𝑑𝑑𝑤𝑤𝑘𝑘

Batch rule: 
one update after all patterns 

(normal gradient descent)

Online rule: 
one update after one pattern

(stochastic gradient descent)

Same applies to all
loss functions, e.g.,
Cross-entropy error



𝑤𝑤𝑘𝑘

𝐸𝐸

- How does the error landscape (as a function of the weights) 
look like?

- How can we quickly find a (good) minimum?

- Why do deep networks work well?

Three Big questions for today
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Error function and optimization methods for deep networks
Objectives for today:
- Error function: minima and saddle points



1. Error function: minima

Image: Goodfellow et al. 2016

𝑑𝑑
𝑑𝑑𝑤𝑤𝑎𝑎

𝐸𝐸(𝑤𝑤𝑎𝑎 ) = 0

minima

𝑤𝑤𝑎𝑎

𝐸𝐸 𝐸𝐸(𝑤𝑤𝑎𝑎 )



1. Error function: minima

How many minima are there in a deep network?

𝑑𝑑2

𝑑𝑑𝑤𝑤𝑎𝑎2
𝐸𝐸(𝑤𝑤𝑎𝑎 ) > 0

𝑑𝑑2

𝑑𝑑𝑤𝑤𝑎𝑎2
𝐸𝐸(𝑤𝑤𝑎𝑎 ) < 0

𝑑𝑑2

𝑑𝑑𝑤𝑤𝑎𝑎2
𝐸𝐸(𝑤𝑤𝑎𝑎 ) = 0

Image: Goodfellow et al. 2016

𝑑𝑑
𝑑𝑑𝑤𝑤𝑎𝑎

𝐸𝐸(𝑤𝑤𝑎𝑎 ) = 0

minima



1. Error function: minima and saddle points

𝑑𝑑2

𝑑𝑑𝑤𝑤𝑎𝑎2
𝐸𝐸(𝑤𝑤𝑎𝑎 ) > 0

𝑑𝑑2

𝑑𝑑𝑤𝑤𝑏𝑏2
𝐸𝐸(𝑤𝑤𝑏𝑏 ) < 0

𝑤𝑤𝑏𝑏𝑤𝑤𝑎𝑎

𝑤𝑤𝑎𝑎

𝑤𝑤𝑏𝑏

minimum

2 minima, separated by
1 saddle point

Image: Goodfellow et al. 2016



Quiz: Strengthen your intuitions in high dimensions
1. A deep neural network with 9 layers of 10 neurons each

[ ] has typically between 1 and 1000 minima (global or local)
[ ] has typically more than 1000  minima (global or local)

2. A deep neural network with 9 layers of 10 neurons each
[ ] has many minima and in addition a few saddle points
[ ] has many minima and about as many saddle points
[ ] has many minima and even many more saddle points

[  ]
[x]

[ ]
[ ]
[x]



1. Error function

How many minima are there?

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

Answer: 
In a network with n hidden layers 
and m neurons per hidden layer,
there are at least

equivalent minima
𝒎𝒎!𝒏𝒏



𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

xx xx

x

xx
x

4 hyperplanes for
4 neurons

x
xx

x

x

many assignments
of hyperplanes to neurons

1. Error function and weight space symmetry

1

2

3

4

many permutations



1. Error function and weight space symmetry

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

x

x

xx

x

x
x

x

6 hyperplanes for
6 hidden neurons

x
x

x x

x

many assignments
of hyperplanes to neurons

even more
permutations



𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

xx xx

x

xx
x

2 hyperplanes

x
xx

x

x

2 blue neurons
2 hyperplanes in input space

𝑥𝑥1
(0)

𝑥𝑥2
(0)

1. Minima and saddle points

‘input space’



1. Error function and weight space symmetry

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤41
(1)

Blackboard 1
Solutions in weight space

𝑤𝑤31
(1)



1. Minima and saddle points in weight space

A = (1,0,-.7); C = (1,-.7,0)

B = (0,1,-.7); D = (0,-.7,1)

E= (-.7,1,0); F = (-.7,0,1)

w21

w31

A
B

D

C

F

E

Algo for plot:
- Pick w11,w21,w31
- Adjust other parameters 

to minimize E



1. Minima and saddle points in weight space

A = (1,0,-.7); C = (1,-.7,0)

B = (0,1,-.7); D = (0,-.7,1)

E= (-.7,1,0); F = (-.7,0,1)

w21

w31

A
B

D

C

F

E

Red (and white):
Minima

Green lines:
Run through saddles

Saddles:

6 minima but >6 saddle points 



1. Minima and saddle points: Example

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2) = 1

𝑤𝑤𝑗𝑗𝑗
(1)

Teacher Network:
Committee machine

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2) =?

𝑤𝑤𝑗𝑗𝑗
(1) =?

Student Network:

𝑥𝑥1

𝑥𝑥2

0

0

4 hyperplanes
‘input space’



1. Minima and saddle points
4 hyperplanes

‘input space’
Student 
Network:
Red

Teacher  
Network:
Blue

𝑥𝑥1

𝑥𝑥2

0

0



1. Minima and saddle points

(i) Geometric argument and weight space symmetry
 number of saddle points increases

rapidly with dimension 
(much more rapidly than the number of minima)

Two arguments
There are many more saddle points than minima



1. Minima and saddle points

(ii) Second derivative (Hessian matrix) at gradient zero

Two arguments
There are many more saddle points than minima

𝑤𝑤𝑎𝑎 𝑤𝑤𝑖𝑖𝑖𝑖

𝐸𝐸(𝑤𝑤𝑖𝑖𝑖𝑖
(𝑛𝑛), … ) minimum maximum

𝑑𝑑2

𝑑𝑑𝑤𝑤𝑎𝑎2
𝐸𝐸(𝑤𝑤𝑎𝑎∗) > 0 𝑑𝑑2

𝑑𝑑𝑤𝑤𝑎𝑎2
𝐸𝐸(𝑤𝑤𝑎𝑎∗) < 0

𝑤𝑤𝑎𝑎∗



1. Minima and saddle points

𝑑𝑑2

𝑑𝑑𝑤𝑤𝑎𝑎2
𝐸𝐸(𝑤𝑤𝑎𝑎 ) > 0

In 1dim: at a point with vanishing gradient  

Minimum in N dim: study Hessian 

H =
𝑑𝑑
𝑑𝑑𝑤𝑤𝑎𝑎

𝑑𝑑
𝑑𝑑𝑤𝑤𝑏𝑏

𝐸𝐸(𝑤𝑤𝑎𝑎 ,𝑤𝑤𝑏𝑏 )

Diagonalize: minimum if all eigenvalues positive.
But for N dimensions, this is a strong condition!

 minimum



1. Minima and saddle points

in N dim: Hessian 

H = 𝑑𝑑
𝑑𝑑𝑤𝑤𝑎𝑎

𝑑𝑑
𝑑𝑑𝑤𝑤𝑏𝑏

𝐸𝐸(𝑤𝑤𝑎𝑎 ,𝑤𝑤𝑏𝑏 )

Diagonalize:

𝐻𝐻 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑁𝑁λ

λ

λ1    >0

λΝ−1 >0
λΝ <0

... 

In N-1 dimensions
surface goes up,

In 1 dimension it goes
down



1. Minima and saddle points

in N dim: Hessian 

H = 𝑑𝑑
𝑑𝑑𝑤𝑤𝑎𝑎

𝑑𝑑
𝑑𝑑𝑤𝑤𝑏𝑏

𝐸𝐸(𝑤𝑤𝑎𝑎 ,𝑤𝑤𝑏𝑏 )

Diagonalize:

𝐻𝐻 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑁𝑁λ

λ

λ1    >0

λΝ−2 >0

λΝ <0

... 

In N-2 dimensions
surface goes up,

In 2 dimension it goes
down

λΝ−1 <0

In N-m dimensions
surface goes up,

In m dimension it goes down Kant!



1. General saddle point

in N dim: Hessian 

H = 𝑑𝑑
𝑑𝑑𝑤𝑤𝑎𝑎

𝑑𝑑
𝑑𝑑𝑤𝑤𝑏𝑏

𝐸𝐸(𝑤𝑤𝑎𝑎 ,𝑤𝑤𝑏𝑏 )

Diagonalize:

𝐻𝐻 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑁𝑁λ

λ

λ1    >0

λΝ−m+1 >0

λΝ <0

... 

In N-m dimensions
surface goes up,

In m dimension it goes
down

λΝ−m <0

General saddle: 
In N-m dimensions  surface goes up,
In m dimension it goes down



1. Minima and saddle points

It is rare that all eigenvalues of the Hessian have same sign

It is fairly rare that only one eigenvalue has a different sign
than the others

Most saddle points have multiple dimensions with surface
up and multiple with surface going down



1. Minima and saddle points: modern view 
General saddle points: In N-m dimensions surface goes up,

in m dimension it goes down

E

1st-order saddle points: In N-1 dimensions surface goes up,
in 1 dimension it goes down

many
good minima

many 1st order
saddle

many high order
saddle

maxima

weights



1. Minima and saddle points

(ii) For balance random systems, eigenvalues will be 
randomly distributed with zero mean: 
draw N random numbers
 rare to have all positive or all negative
Rare to have maxima or minima
Most points of vanishing gradient are saddle points
Most high-error saddle points have multiple 

directions of escape

But what is the random system here? 
The data is ‘random’ with respect to the design of the system!



𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

xx xx

x

xx
x

4 neurons
4 hyperplanes

x
xx

x

x

2 blue neurons
2 hyperplanes in input space

𝑥𝑥1
(0)

𝑥𝑥2
(0)

1. Minima = good solutions



1. Many near-equivalent reasonably good solutions

xx x
x

x

xx
x

xx x
x

x

xx
x

2 near-equivalent good solutions with 4 neurons.
If you have 8 neurons many more possibilities to split the task
 many near-equivalent good solutions



Quiz: Strengthen your intuitions in high dimensions
A deep neural network with many neurons

[ ] has many minima and a few saddle points
[ ] has many minima and about as many saddle points
[ ] has many minima and even many more saddle points
[ ] gradient descent is slow close to a saddle point
[ ] close to a saddle point there is only one direction to go down
[ ] has typically many equivalent ‘optimal’ solutions
[ ] has typically many near-optimal solutions

[  ]
[  ]
[x]
[x]
[ ]
[x]
[x]
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Error function and optimization methods for deep networks
Objectives for today:
- Error function: minima and saddle points
- Momentum



Review: Standard gradient descent:

𝐸𝐸(𝒘𝒘)𝒘𝒘(1)

∆𝒘𝒘 1

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 1 = −𝛾𝛾

𝑑𝑑𝑑𝑑(𝒘𝒘(1))

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛



2. Momentum: keep previous information

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 1 = −𝛾𝛾

𝑑𝑑𝑑𝑑(𝒘𝒘(1))

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 𝑚𝑚 = −𝛾𝛾

𝑑𝑑𝑑𝑑(𝒘𝒘 𝑚𝑚 )

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 + 𝛼𝛼 ∆𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛 𝑚𝑚 − 1

In first time step: m=1

In later time step: m

Blackboard2



Blackboard2



2. Momentum suppresses oscillations

𝐸𝐸(𝒘𝒘)𝒘𝒘(1)

∆𝒘𝒘 1

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 2 = −𝛾𝛾

𝑑𝑑𝑑𝑑(𝒘𝒘 2 )

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 + 𝛼𝛼 ∆𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛 1

good values for 𝛼𝛼:  0.9 or 0.95 or 0.99 combined with small 𝛾𝛾

𝒘𝒘(2)



2. Nesterov Momentum (evaluate gradient at interim location)

𝐸𝐸(𝒘𝒘)𝒘𝒘(1)

∆𝒘𝒘 1

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 2 = −𝛾𝛾

𝑑𝑑𝑑𝑑(𝒘𝒘 𝟐𝟐 + 𝛼𝛼∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 1 )

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 + 𝛼𝛼 ∆𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛 1

good values for 𝛼𝛼:  0.9 or 0.95 or 0.99 combined with small 𝛾𝛾

𝒘𝒘(2)



Quiz: Momentum
Momentum
[ ] momentum speeds up gradient descent in ‘boring’ directions 
[ ] momentum suppresses oscillations
[ ] with a momentum parameter α=0.9 the maximal speed-up

is a factor 1.9
[ ] with a momentum parameter α=0.9 the maximal speed-up

is a factor 10
[ ] Nesterov momentum needs twice as many gradient 

evaluations as standard momentum

[x]
[x]
[ ]

[x]

[  ]
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Error function and optimization methods for deep networks
Objectives for today:
- Error function: minima and saddle points
- Momentum
- RMSprop and ADAM



3. Error function: batch gradient descent

𝑤𝑤𝑏𝑏

minimum

𝑤𝑤𝑏𝑏𝑤𝑤𝑎𝑎
Image: Goodfellow et al. 2016

𝑤𝑤𝑎𝑎

𝒘𝒘(1)



3. Error function: stochastic gradient descent

𝑤𝑤𝑎𝑎

old
minimum

𝑤𝑤𝑏𝑏

The error function for a small mini-batch
is not identical to the that of  the true batch



3. Error function: batch vs. stochastic gradient descent

𝑤𝑤𝑏𝑏

𝑤𝑤𝑎𝑎

The error function for a small mini-batch
is not identical to the that of  the true batch



𝐸𝐸(𝒘𝒘)𝒘𝒘(1)

∆𝒘𝒘 1

3. Stochastic gradient evaluation

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 1 = −𝛾𝛾

𝑑𝑑𝐸𝐸(𝒘𝒘(1))

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛

real gradient: sum over all samples
stochastic gradient: one sample

Idea: estimate mean and variance from k=1/𝛼𝛼 samples



Quiz: RMS and ADAM – what do we want?
A good optimization algorithm

[ ] should have different ‘effective learning rate’ for each weight

[ ] should have smaller update steps for noisy gradients

[ ] the weight change should be larger  for small gradients and 
smaller for large ones

[ ] the weight change should be smaller  for small gradients and 
larger  for large ones



3. Stochastic gradient evaluation

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 1 = −𝛾𝛾

𝑑𝑑𝑑𝑑(𝒘𝒘(1))

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛

real gradient: sum over all samples
stochastic gradient: one sample

Idea: estimate mean and variance from k=1/𝜌𝜌 samples

Running Mean: use momentum
𝑣𝑣𝑖𝑖,𝑗𝑗
𝑛𝑛 𝑚𝑚 =

𝑑𝑑𝑑𝑑(𝒘𝒘 𝑚𝑚 )

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 + 𝜌𝜌1𝑣𝑣𝑖𝑖,𝑗𝑗

𝑛𝑛 𝑚𝑚 − 1

Running second moment: average the squared gradient

𝑟𝑟𝑖𝑖,𝑗𝑗
𝑛𝑛 𝑚𝑚 = (1 − 𝜌𝜌2)

𝑑𝑑𝑑𝑑(𝒘𝒘 𝑚𝑚 )

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛

𝑑𝑑𝑑𝑑(𝒘𝒘 𝑚𝑚 )

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 + 𝜌𝜌2𝑟𝑟𝑖𝑖,𝑗𝑗

𝑛𝑛 𝑚𝑚 − 1



3. Stochastic gradient evaluation

𝑑𝑑𝑑𝑑(𝒘𝒘(1))

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛

Running Mean: use momentum
𝑣𝑣𝑖𝑖,𝑗𝑗
𝑛𝑛 𝑚𝑚 == (1 − 𝜌𝜌1) 𝑑𝑑𝑑𝑑(𝒘𝒘 𝑚𝑚 )

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 + 𝜌𝜌1𝑣𝑣𝑖𝑖,𝑗𝑗𝑛𝑛 𝑚𝑚 − 1

Running estimate of 2nd moment: average the squared gradient

𝑟𝑟𝑖𝑖,𝑗𝑗
𝑛𝑛 𝑚𝑚 = (1 − 𝜌𝜌2)

𝑑𝑑𝑑𝑑(𝒘𝒘 𝑚𝑚 )

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛

𝑑𝑑𝑑𝑑(𝒘𝒘 𝑚𝑚 )

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 + 𝜌𝜌2𝑟𝑟𝑖𝑖,𝑗𝑗

𝑛𝑛 𝑚𝑚 − 1

Blackboard 3/Exerc. 1

Raw Gradient:

Example: 
consider 3 weights w1,w2,w3 Time series of gradient

by sampling:
for w1 : 1.1; 0.9; 1.1; 0.9; …
for w2 : 0.1; 0.1; 0.1; 0.1; …
for w3 : 1.1; 0; -0.9; 0; 1.1; 0; -0.9; …



3. Adam and variants

The above ideas are at the core of several algos
- RMSprop
- RMSprop with momentum
- ADAM



3. RMSProp

Goodfellow et al.
2016 



2nd moment

Goodfellow et al.
2016 

3. RMSProp with Nesterov Momentum



3. Adam

Goodfellow et al.
2016 



3. Adam and variants

The above ideas are at the core of several algos
- RMSprop
- RMSprop with momentum
- ADAM

Result: parameter movement slower in uncertain directions

(see Exercise 1 above)



Quiz (2nd vote): RMS and ADAM
A good optimization algorithm
[ ] should have different ‘effective learning rate’ for each 
weight

[ ] should have a the same weight update step for small 
gradients and for large ones

[ ] should have smaller update steps for noisy gradients

[x]

[x]

[x]



Objectives for today:
- Momentum: 

- suppresses oscillations (even in batch setting)
- implicitly yields a learning rate ‘per weight’
- smooths gradient estimate (in online setting)

- Adam and variants: 
- adapt learning step size to certainty
- includes momentum



Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 5

Error function and optimization methods for deep networks
Objectives for today:
- Error function: minima and saddle points
- Momentum
- RMSprop and ADAM
- Complements to Regularization: L1 and L2
- No Free Lunch Theorem



4.  No Free Lunch Theorem

Which data set looks more noisy?

Which data set is easier to fit?

A B

Commitment:
Thumbs up

Commitment:
Thumbs down



line wave package

4.  No Free Lunch Theorem



easy to fit

line wave package

5.  No Free Lunch Theorem

easy to fit



4.  No Free Lunch Theorem

The NO FREE LUNCH THEOREM 
states
“ that any two optimization
algorithms are equivalent when their 
performance is averaged across all 
possible problems"

•Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67. 
•Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390. 

See Wikipedia/wiki/No_free_lunch_theorem

https://en.wikipedia.org/wiki/Optimization_(mathematics)
http://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf


“NFL theorems because they demonstrate 
that if an algorithm performs well on a 
certain class of problems
then it necessarily pays for that with 

degraded performance on the set of all 
remaining problems”

The mathematical statements are called

4.  No Free Lunch (NFL) Theorems

•Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67. 
•Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390. 

See Wikipedia/wiki/No_free_lunch_theorem

http://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf


4.  Quiz: No Free Lunch (NFL) Theorems

[ ] Deep learning performs better than most other algorithms
on real world problems.

[ ] Deep learning can fit everything.

[ ] Deep learning performs better than other algorithms on
all problems.

Take neural networks with many layers, optimized by
Backprop as an example of deep learning

[x]

[x]

[ ]



4.  No Free Lunch (NFL) Theorems

- Choosing a deep network and optimizing it with
gradient descent is an algorithm

- Deep learning works well on many real-world problems

- Somehow the prior structure of the deep network
matches the structure of the real-world problems 
we are interested in.

Always use prior knowledge if you have some



4.  No Free Lunch (NFL) Theorems
Geometry of the information flow in neural network 

𝒙𝒙 ∈ 𝑅𝑅𝑁𝑁+1

𝑥𝑥𝑗𝑗
(1)

𝑤𝑤1𝑗𝑗
(2)

𝑤𝑤𝑗𝑗𝑗
(1)

xx x
x

x

xx
x

xx x
x xx

x



4.  Reuse of featuers in Deep Networks (schematic)

xx x
x

x

xx
x

xx x
x xx

x

animals
birds

4 legs
wings

snout

fur
eyes

tail



Wulfram Gerstner
EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 5

Error function and optimization methods for deep networks
Objectives for today:
- Error function: minima and saddle points
- Momentum
- RMSprop and ADAM
- Complements to Regularization: L1 and L2
- No Free Lunch Theorem
- Deep distributed nets versus shallow nets



5.  Distributed representation

In 1dim input space with:

0 hyperplanes
1 hyperplane
2 hyperplanes?
3 hyperplanes?
4 hyperplanes?

How many different regions are carved



5.  Distributed representation

In 2dim input space with:

3 hyperplanes?
4 hyperplanes?

How many different regions are carved

Increase dimension
= turn hyperplane
= new crossing
= new regions



5.  Distributed multi-region representation

In 2dim input space by:

1 hyperplane
2 hyperplanes

3 hyperplanes?
4 hyperplanes? 

How many different regions are carved



x2

x3

5.  Distributed representation

In 3d input space by:

1 hyperplane
2 hyperplanes

3 hyperplanes? 

4 hyperplanes? 

How many different regions are carved



5.  Distributed multi-region representation

In 3 dim input space by:

3 hyperplanes?
4 hyperplanes?

we look at 4 vertical planes
from the top (birds-eye view)

Keep 3 fixed, but
then tilt 4th plane 

How many different regions are carved



5.  Distributed multi-region representation
Number of regions cut out by n hyperplanes
In d –dimensional input space:

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛~𝑂𝑂(𝑛𝑛𝑑𝑑 )

But, we cannot learn arbitrary targets, 
by assigning arbitrary class labels {+1,0} to each region,
unless exponentially many hidden neurons:

generalized XOR problem 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �
𝑗𝑗=0

𝑑𝑑
𝑛𝑛
𝑗𝑗



5.  Distributed multi-region representation

There are many, many regions!

But there is a strong prior that we do not need
(for real-world problems) arbitrary labeling of these regions.

With polynomial number of hidden neurons:
 classes are automatically assigned for many regions

where we have no labeled data
 generalization



5.  Distributed representation vs local representation
Example: nearest neighbor representation

xx x
x

x

xx
x

o

Nearest neighbor
Does not create
A new region here

o

o

o

o o



5.  Deep networks versus shallow networks
Performance as a function of number of layers
on an address  classification task

Image: Goodfellow et al. 2016



5.  Deep networks versus shallow networks
Performance as a function of number of parameters 
on an address  classification task

Image: Goodfellow et al. 2016



5.  Deep networks versus shallow networks

- Somehow the prior structure of the deep network
matches the structure of the real-world problems 
we are interested in.

- The network reuses features learned in other contexts

Example:  green car, red car, green bus, red bus,
tires, window, lights, house,
 generalize to red house with lights



Wulfram Gerstner
EPFL, Lausanne, Switzerland

Artificial Neural Networks: Lecture 5
Error landscape and optimization methods for deep networks
Objectives for today:
- Error function landscape: 

there are many good minima and even more saddle points
- Momentum

gives a faster effective learning rate in boring directions
- Adam

gives a faster effective learning rate in low-noise directions 
- No Free Lunch: no algo is better than others
- Deep Networks:  are better than shallow ones on                                     

real-world problems due to feature sharing



Previous slide.

THE END



Wulfram Gerstner
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Error function and optimization methods for deep networks
Objectives of this Appendix:
- Complements to Regularization: L1 and L2

L2 acts like a spring.
L1 pushes some weights exactly to zero.
L2 is related to early stopping (for quadratic error surface)



Review: Regularization by a penalty term

�𝐸𝐸 𝒘𝒘 = 𝐸𝐸 𝒘𝒘

Minimize  on training set a modified Error function

+  λ penalty

assigns an ‘error’ 
to flexible solutionsLoss function

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 1 = −𝛾𝛾 𝑑𝑑𝑑𝑑 𝒘𝒘 1

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 − 𝛾𝛾 λ 

𝑑𝑑(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛

Gradient descent at location 𝒘𝒘 1 yields



4. Regularization by a weight decay (L2 regularization) 

Minimize  on training set a modified Error function

+  λ

assigns an ‘error’  to solutions 
with large pos. or neg. weights

�
𝑘𝑘

(𝑤𝑤𝑘𝑘 )2�𝐸𝐸 𝒘𝒘 = 𝐸𝐸 𝒘𝒘

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 1 = −𝛾𝛾 𝑑𝑑𝑑𝑑 𝒘𝒘 1

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 −𝛾𝛾 λ𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛 (1)

Gradient descent yields

See also ML class of Jaggi-Urbanke



4.  L2 Regularization

𝐸𝐸(𝒘𝒘)𝒘𝒘(1)

∆𝒘𝒘 1

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 1 = −𝛾𝛾 𝑑𝑑𝑑𝑑 𝒘𝒘 1

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 − 𝛾𝛾 λ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛 (1)

L2 penalty acts like a spring pulling toward origin



4.  L2 Regularization

𝐸𝐸(𝒘𝒘)𝒘𝒘(1)

∆𝒘𝒘 1

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 1 = −𝛾𝛾 𝑑𝑑𝑑𝑑 𝒘𝒘 1

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 − 𝛾𝛾 λ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛 (1)

L2 penalty acts like a spring pulling toward origin



4.  L2 Regularization

𝐸𝐸(𝒘𝒘)𝒘𝒘(1)

∆𝒘𝒘 1

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 1 = −𝛾𝛾 𝑑𝑑𝑑𝑑 𝒘𝒘 1

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 − 𝛾𝛾 λ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛 (1)

L2 penalty acts like a spring pulling toward origin



4. L1 Regularization

Minimize  on training set a modified Error function

+  λ

assigns an ‘error’  to solutions 
with large pos. or neg. weights

�
𝑘𝑘

|𝑤𝑤𝑘𝑘 |�𝐸𝐸 𝒘𝒘 = 𝐸𝐸 𝒘𝒘

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 1 = −𝛾𝛾 𝑑𝑑𝑑𝑑 𝒘𝒘 1

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 −𝛾𝛾 λ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛 )

See also ML class of Jaggi-Urbanke



4.  L1 Regularization

𝐸𝐸(𝒘𝒘)𝒘𝒘(1)

∆𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 1 = −𝛾𝛾 𝑑𝑑𝑑𝑑 𝒘𝒘 1

𝑑𝑑𝑤𝑤𝑖𝑖,𝑗𝑗
𝑛𝑛 − 𝛾𝛾 λ 𝑠𝑠𝑠𝑠𝑠𝑠[𝑤𝑤𝑖𝑖,𝑗𝑗

𝑛𝑛 (1)]

Blackboard4

Movement caused by penalty is always diagonal 
(except if one compenent vanishes: wa=0



Blackboard44.  L1 Regularization



4.  L1 Regularization (quadratic function)

w

Small curvature β
OR big λ :
Solution at w=0

Big curvature β
OR small λ :
Solution at 

w= w* - λ/β

w* w*w

See also ML class of Jaggi-Urbanke



4.  L1 Regularization (general)

w

slope of E at w=0< slope of penalty
solution at w=0

Big curvature β
OR small λ :
Solution at 

w= w* - λ/β

w* w*w

penalty = λ w

See also ML class of Jaggi-Urbanke



4.  L1 Regularization and L2 Regularization

L1 regularization puts some weights to exactly zero 
 connections ‘disappear’
 ‘sparse network’

L2 regularization shifts all weights a bit to zero
 full connectivity remains
Close to a minimum and without momentum:

L2 regularization = early stopping
(see exercises) 
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