Wulfram Gerstner **Artificial Neural Networks: Lecture 5** EPFL, Lausanne, Switzerland **Error landscape and optimization methods for deep networks**

- **Objectives for today:**
- Error function landscape: minima and saddle points
- Momentum
- Adam
- No Free Lunch
- Shallow versus Deep Networks

Reading for this lecture:

Goodfellow et al.,2016 Deep Learning

- Ch. 8.2, Ch. 8.5
- Ch. 4.3
- Ch. 5.11, 6.4, Ch. 15.4, 15.5

Further Reading for this Lecture:

review: Artificial Neural Networks for classification

Aim of learning: Adjust connections such that output is correct input (for each input image, even new ones)

Review: Classification as a geometric problem

Review: task of hidden neurons (blue)

Review: gradient descent Quadratic **error** $E(w) = \frac{1}{2} \sum_{\mu=1}^{P} [t^{\mu} - \hat{y}^{\mu}]^{2}$

Batch rule: one update after all patterns (normal gradient descent) Online rule: one update after one pattern (stochastic gradient descent)

Same applies to all loss functions, e.g., **Cross-entropy error**

Three Big questions for today

- How does the error landscape look like?
- How can we quickly find a (good) minimum?
- Why do deep networks work well?

How does the error landscape (as a function of the weights)

Wulfram Gerstner **Artificial Neural Networks: Lecture 5** EPFL, Lausanne, Switzerland **Error function and optimization methods for deep networks**

- **Objectives for today:**
- Error function: minima and saddle points

Error function: minima

Image: Goodfellow et al. 2016

performs nearly as well as

This local minimum performs poorly and should be avoided.

 $E(w_a)$

Error function: minima 1.

How many minima are there in a deep network?

minima $\frac{d}{dw_a}E(w_a)=0$

Error function: minima and saddle points 1.

Image: Goodfellow et al. 2016

Quiz: Strengthen your intuitions in high dimensions

1. A deep neural network with 9 layers of 10 neurons each

[] has typically between 1 and 1000 minima (global or local)[] has typically more than 1000 minima (global or local)

2. A deep neural network with 9 layers of 10 neurons each[] has many minima and in addition a few saddle points[] has many minima and about as many saddle points[] has many minima and even many more saddle points

Error function 1.

Answer:

How many minima are there?

In a network with *n* hidden layers and *m* neurons per hidden layer,

1. Error function and weight space symmetry

many assignments of hyperplanes to neurons

1. Error function and weight space symmetry

many assignments of hyperplanes to neurons

even more permutations

6 hyperplanes for6 hidden neurons

X

X

Х

X

1. Error function and weight space symmetry Blackboard 1

Solutions in weight space

1. Minima and saddle points in weight space

E = (-.7, 1, 0); F = (-.7, 0, 1)

Algo for plot:

- Pick w11,w21,w31
- Adjust other parameters to minimize E

1. Minima and saddle points in weight space

Red (and white): Minima

Green lines: Run through saddles

6 minima but >6 saddle points

1. Minima and saddle points: Example

 $x_{i}^{(1)}$

Student Network:

 $\in R^{N+1}$

X

4 hyperplanes 'input space'

Teacher Network: Blue

There are many more saddle points than minima Two arguments

(i) Geometric argument and weight space symmetry \rightarrow number of saddle points increases rapidly with dimension (much more rapidly than the number of minima)

There are many more saddle points than minima Two arguments

(ii) Second derivative (Hessian matrix) at gradient zero

1. Minima and saddle points In 1dim: at a point with vanishing gradient $\frac{d^2}{dw_a^2} E(w_a) > 0 \qquad \rightarrow \text{minimum}$

Minimum in N dim: study Hessian

$$H = \frac{d}{dw_a} \frac{d}{dw_b} E(w_a, w_b)$$

Diagonalize: minimum if all eigenvalues positive. But for *N* dimensions, this is a strong condition!

in N dim: Hessian

$$\mathsf{H} = \frac{d}{dw_a} \frac{d}{dw_b} E(w_a, w_b)$$

Diagonalize:

In *N-1* dimensions surface goes up, In 1 dimension it goes down

 $\lambda_{N-1} > 0$ $\lambda_N < 0$

 $\lambda_1 > 0$

• • •

in N dim: Hessian

$$\mathsf{H} = \frac{d}{dw_a} \frac{d}{dw_b} E(w_a, w_b)$$

Diagonalize:

$$H = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_N \end{pmatrix}$$

In *N-m* dimensions surface goes up, In *m* dimension it goes down

 $\lambda_{N-2} > 0$ $\lambda_{N-1} < 0$ $\lambda_N < 0$

Kant!

1. General saddle point

in N dim: Hessian

$$\mathsf{H} = \frac{d}{dw_a} \frac{d}{dw_b} E(w_a, w_b)$$

Diagonalize:

$$H = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_N \end{pmatrix}$$

General saddle: In *N*-*m* dimensions surface goes up, In *m* dimension it goes down

. . . $\lambda_{N-m+1} > 0$ $\lambda_{N-m} < 0$ $\lambda_{N} < 0$

It is rare that all eigenvalues of the Hessian have same sign

It is fairly rare that only one eigenvalue has a different sign than the others

 \rightarrow Most saddle points have multiple dimensions with surface up and multiple with surface going down

in *m* dimension it goes down in 1 dimension it goes down

(ii) For balance random systems, eigenvalues will be randomly distributed with zero mean: draw N random numbers

- \rightarrow rare to have all positive or all negative
- \rightarrow Rare to have maxima or minima
- \rightarrow Most points of vanishing gradient are saddle points \rightarrow Most high-error saddle points have multiple
- directions of escape

But what is the random system here? The data is 'random' with respect to the design of the system!

1. Minima = good solutions

1. Many near-equivalent reasonably good solutions

2 near-equivalent good solutions with 4 neurons. If you have 8 neurons many more possibilities to split the task many near-equivalent good solutions

Quiz: Strengthen your intuitions in high dimensions

A deep neural network with many neurons

[] has many minima and a few saddle points [] has many minima and about as many saddle points [] has many minima and even many more saddle points [] gradient descent is slow close to a saddle point [] close to a saddle point there is only one direction to go down [] has typically many equivalent 'optimal' solutions [] has typically many near-optimal solutions

Wulfram Gerstner **Artificial Neural Networks: Lecture 5** EPFL, Lausanne, Switzerland **Error function and optimization methods for deep networks**

- **Objectives for today:**
- Error function: minima and saddle points
- Momentum

Review: Standard gradient descent:

2. Momentum: keep previous information

In first time step:
$$m=1$$

$$\Delta w_{i,j}^{(n)}(1) = -\gamma \frac{dE(w(1))}{dw_{i,j}^{(n)}}$$

In later time step: m

 $\Delta w_{i,j}^{(n)}(m) = -\gamma \frac{dE(w(m))}{dw_{i,j}^{(n)}} + \alpha \ \Delta w_{i,j}^{(n)}(m-1)$

Blackboard2

Blackboard2

2. Momentum suppresses oscillations

good values for α : 0.9 or 0.95 or 0.99 combined with small γ

2. Nesterov Momentum (evaluate gradient at interim location)

good values for α : 0.9 or 0.95 or 0.99 combined with small γ

Quiz: Momentum

Momentum [] momentum speeds up gradient descent in 'boring' directions [] momentum suppresses oscillations [] with a momentum parameter α =0.9 the maximal speed-up is a factor 1.9 [] with a momentum parameter α =0.9 the maximal speed-up is a factor 10 [] Nesterov momentum needs twice as many gradient evaluations as standard momentum

Wulfram Gerstner **Artificial Neural Networks: Lecture 5** EPFL, Lausanne, Switzerland **Error function and optimization methods for deep networks**

- **Objectives for today:**
- Error function: minima and saddle points
- Momentum
- **RMSprop and ADAM**

3. Error function: batch gradient descent

Image: Goodfellow et al. 2016

3. Error function: stochastic gradient descent

The error function for a small mini-batch is not identical to the that of the true batch

3. Error function: batch vs. stochastic gradient descent

The error function for a small mini-batch is not identical to the that of the true batch

Idea: estimate mean and variance from $k=1/\alpha$ samples

real gradient: sum over all samples stochastic gradient: one sample

Ouiz: RMS and ADAM – what do we want?

A good optimization algorithm

[] should have different 'effective learning rate' for each weight

[] should have smaller update steps for noisy gradients

[] the weight change should be larger for small gradients and smaller for large ones

[] the weight change should be smaller for small gradients and larger for large ones

3. Stochastic gradient evaluation $\Delta w_{i,j}^{(n)}(1) = -\gamma \frac{dE(W(1))}{dw_{i,j}^{(n)}}$

Idea: estimate mean and variance from $k=1/\rho$ samples

Running Mean: use momentum $v_{i,j}^{(n)}(m) = \frac{dE(w(m))}{dw_{i,j}^{(n)}} + \rho_1 v_{i,j}^{(n)}(m-1)$

Running second moment: average the squared gradient $r_{i,j}^{(n)}(m) = (1 - \rho_2) \left(\frac{dE(w(m))}{dw_{i,j}^{(n)}} \right) \left(\frac{dE(w(m))}{dw_{i,j}^{(n)}} \right) + \rho_2 r_{i,j}^{(n)}(m-1)$

real gradient: sum over all samples stochastic gradient: one sample

3. Stochastic gradient evaluation Example: consider 3 weights w₁,w₂,w₃ Raw Gradient: $\frac{dE(w(1))}{dw_{i}^{(n)}}$

Running Mean: use momentum $v_{i,j}^{(n)}(m) == (1 - \rho_1) \frac{dE(w(m))}{dw_{i,j}^{(n)}} + \rho_1 v_{i,j}^{(n)}(m-1)$

Running estimate of 2nd moment: average the squared gradient $\frac{dE(w(m))}{dw_{i,i}^{(n)}} + \rho_2 r_{i,j}^{(n)}(m-1)$

$$r_{i,j}^{(n)}(m) = (1 - \rho_2) \left(\frac{dE(w(m))}{dw_{i,j}^{(n)}} \right) \left(\frac{dE(w(m))}{dw_{i,j}^{(n)}} \right)$$

Blackboard 3/Exerc. 1

Time series of gradient by sampling:

for W1: 1.1; 0.9; 1.1; 0.9; ... for W₂: 0.1; 0.1; 0.1; 0.1; ... for W₃: 1.1; 0; -0.9; 0; 1.1; 0; -0.9; .

3. Adam and variants

The above ideas are at the core of several algos

- RMSprop
- RMSprop with momentum
- ADAM

3. RMSProp

Algorithm 8.5 The RMSProp algorithm

- **Require:** Global learning rate ϵ , decay rate ρ . **Require:** Initial parameter $\boldsymbol{\theta}$
- **Require:** Small constant δ , usually 10^{-6} , used to stabilize division by small numbers.
 - Initialize accumulation variables r = 0
 - while stopping criterion not met do
 - Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.
 - Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}))$ Accumulate squared gradient: $\boldsymbol{r} \leftarrow \rho \boldsymbol{r}$ -
 - Compute parameter update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\delta}}$
 - Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$ end while

$$oldsymbol{r}^{(i)};oldsymbol{ heta}),oldsymbol{y}^{(i)}) + (1-
ho)oldsymbol{g} \odot oldsymbol{g}$$

 $rac{\epsilon}{\delta+oldsymbol{r}} \odot oldsymbol{g}$. $(rac{1}{\sqrt{\delta+oldsymbol{r}}}$ applied element-wise)

Goodfellow et al. 2016

3. RMSProp with Nesterov Momentum

Algorithm 8.6 RMSProp algorithm with Nesterov momentum

Require: Global learning rate ϵ , decay rate ρ , momentum coefficient α . **Require:** Initial parameter $\boldsymbol{\theta}$, initial velocity \boldsymbol{v} . Initialize accumulation variable r = 0while stopping criterion not met do Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$ Compute interim update: $\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$ Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}$ Accumulate gradient: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho) \mathbf{g}$ Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \frac{\epsilon}{\sqrt{r}}$ Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}$ end while

$$\begin{array}{c} \overset{(i)}{\boldsymbol{\theta}}; \tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)}) \\ \boldsymbol{g} \odot \boldsymbol{g} \end{array} \begin{array}{c} 2^{\text{nd}} \text{ moment} \\ \odot \boldsymbol{g}. \quad \left(\frac{1}{\sqrt{r}} \text{ applied element-wise}\right) \end{array}$$

Goodfellow et al. 2016

3. Adam_{Algorithm} 8.7 The Adam algorithm

Require: Step size ϵ (Suggested default: 0.001) **Require:** Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1). (Suggested defaults: 0.9 and 0.999 respectively) **Require:** Small constant δ used for numerical stabilization. (Suggested default: 10^{-8})

Require: Initial parameters $\boldsymbol{\theta}$

Initialize 1st and 2nd moment variables s = 0, r = 0Initialize time step t = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ $t \leftarrow t + 1$

Update biased first moment estimate: $s \leftarrow$ Update biased second moment estimate: rCorrect bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$ Correct bias in second moment: $\hat{r} \leftarrow \frac{r}{1-\rho_2^t}$ Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ (operations applied element-wise) Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$ end while

$$\rho_1 \boldsymbol{s} + (1 - \rho_1) \boldsymbol{g} \\ \leftarrow \rho_2 \boldsymbol{r} + (1 - \rho_2) \boldsymbol{g} \odot \boldsymbol{g}$$

Goodfellow et al. 2016

3. Adam and variants

The above ideas are at the core of several algos

- RMSprop
- RMSprop with momentum
- ADAM

Result: parameter movement slower in uncertain directions

(see Exercise 1 above)

Quiz (2nd vote): RMS and ADAM

A good optimization algorithm [] should have different 'effective learning rate' for each weight

[] should have a the same weight update step for small gradients and for large ones

[] should have smaller update steps for noisy gradients

Objectives for today: Momentum: -

- suppresses oscillations (even in batch setting)
- implicitly yields a learning rate 'per weight'
- smooths gradient estimate (in online setting)
- Adam and variants:
 - adapt learning step size to certainty
 - includes momentum

Artificial Neural Networks: Lecture 5 Error function and optimization methods for deep networks

- **Objectives for today:**
- Error function: minima and saddle points
- Momentum
- **RMSprop and ADAM**
- Complements to Regularization: L1 and L2
- **No Free Lunch Theorem**

Wulfram Gerstner EPFL, Lausanne, Switzerland

Which data set looks more noisy?

Commitment: Thumbs up

Which data set is easier to fit?

Commitment: Thumbs down

The NO FREE LUNCH THEOREM states " that any two <u>optimization</u> algorithms are equivalent when their performance is averaged across all possible problems"

See Wikipedia/wiki/No_free_lunch_theorem

•Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67. •Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390.

4. No Free Lunch (NFL) Theorems

certain class of problems remaining problems"

See Wikipedia/wiki/No_free_lunch_theorem

•Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67. •Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390.

The mathematical statements are called

"NFL theorems because they demonstrate

- that if an algorithm performs well on a
- then it necessarily pays for that with degraded performance on the set of all

4. Quiz: No Free Lunch (NFL) Theorems

Take neural networks with many layers, optimized by Backprop as an example of deep learning

[] Deep learning performs better than most other algorithms on real world problems.

[] Deep learning can fit everything.

[] Deep learning performs better than other algorithms on all problems.

4. No Free Lunch (NFL) Theorems

- Choosing a deep network and optimizing it with gradient descent is an algorithm
- Somehow the prior structure of the deep network we are interested in.

Always use prior knowledge if you have some

Deep learning works well on many real-world problems

matches the structure of the real-world problems

4. No Free Lunch (NFL) Theorems Geometry of the information flow in neural network

4. Reuse of featuers in Deep Networks (schematic)

animals birds

4 legs

wings

snout

fur

eyes

tail

Artificial Neural Networks: Lecture 5 Error function and optimization methods for deep networks

- **Objectives for today:**
- Error function: minima and saddle points
- Momentum
- **RMSprop and ADAM**
- Complements to Regularization: L1 and L2
- **No Free Lunch Theorem**
- Deep distributed nets versus shallow nets

Wulfram Gerstner EPFL, Lausanne, Switzerland

5. Distributed representation

How many different regions are carved In 1dim input space with:

- 0 hyperplanes
- 1 hyperplane
- 2 hyperplanes?
- 3 hyperplanes?
- 4 hyperplanes?

5. Distributed representation

How many different regions are carved In 2dim input space with:

3 hyperplanes? 4 hyperplanes?

Increase dimension = turn hyperplane = new crossing = new regions

5. Distributed multi-region representation

How many different regions are carved In 2dim input space by:

1 hyperplane
 2 hyperplanes

3 hyperplanes?
4 hyperplanes?

5. Distributed representation How many different regions are carved

In 3d input space by:

1 hyperplane 2 hyperplanes

3 hyperplanes?

4 hyperplanes?

5. Distributed multi-region representation

How many different regions are carved In 3 dim input space by:

3 hyperplanes?
4 hyperplanes?

we look at 4 vertical planes from the top (birds-eye view)

Keep 3 fixed, but then tilt 4th plane

5. Distributed multi-region representation Number of regions cut out by *n* hyperplanes In *d* –dimensional input space:

number $\sim O(n^d)$

But, we cannot learn arbitrary targets, by assigning arbitrary class labels {+1,0} to each region, unless exponentially many hidden neurons: generalized XOR problem

5. Distributed multi-region representation

There are many, many regions!

But there is a strong prior that we do not need (for real-world problems) arbitrary labeling of these regions.

With polynomial number of hidden neurons: \rightarrow classes are automatically assigned for many regions where we have no labeled data \rightarrow generalization

5. Distributed representation vs local representation

Example: nearest neighbor representation

5. Deep networks versus shallow networks

5. Deep networks versus shallow networks

Performance as a function of number of parameters on an address classification task

Large, Shallow Models Overfit More 97Test accuracy (percent) 96 959493 9291

0.2

0.0

Number of parameters

0.4

5. Deep networks versus shallow networks

- Somehow the prior structure of the deep network matches the structure of the real-world problems we are interested in.
- The network reuses features learned in other contexts

Example: green car, red car, green bus, red bus, tires, window, lights, house, \rightarrow generalize to red house with lights

- **Artificial Neural Networks: Lecture 5 Error landscape and optimization methods for deep networks Objectives for today:** - Error function landscape: there are many good minima and even more saddle points - Momentum gives a faster effective learning rate in boring directions - Adam gives a faster effective learning rate in low-noise directions - No Free Lunch: no algo is better than others
 - Deep Networks: are better than shallow ones on real-world problems due to feature sharing

Wulfram Gerstner EPFL, Lausanne, Switzerland

Previous slide.

THE END

Wulfram Gerstner **Artificial Neural Networks: Lecture 5** EPFL, Lausanne, Switzerland **Error function and optimization methods for deep networks**

- **Objectives of this Appendix: Complements to Regularization: L1 and L2**
 - L2 acts like a spring.
 - L1 pushes some weights exactly to zero.
 - L2 is related to early stopping (for quadratic error surface)

Review: Regularization by a penalty term

Minimize on training set a modified Error function

$$\tilde{E}(\boldsymbol{w}) = E(\boldsymbol{w}) + \lambda \text{ pena}$$

 \uparrow
 \uparrow
 \downarrow
Loss function to f

Gradient descent at location w(1) yields

$$\Delta w_{i,j}^{(n)}(1) = -\gamma \frac{dE(w(1))}{dw_{i,j}^{(n)}} - \gamma \lambda \frac{d}{dw_{i,j}^{(n)}}$$

alty

signs an 'error' lexible solutions

 $\frac{d(penalty)}{dw_{i\,i}^{(n)}}$

4. Regularization by a weight decay (L2 regularization)

Minimize on training set a modified Error function

$$\tilde{E}(\boldsymbol{w}) = E(\boldsymbol{w}) + \lambda \sum_{k}^{k} (\boldsymbol{w})$$

Gradient descent yields

$$\Delta w_{i,j}^{(n)}(1) = -\gamma \frac{dE(w(1))}{dw_{i,j}^{(n)}} -\gamma \lambda^{n}$$

 $\sum (w_k)^2$ assigns an 'error' to solutions with large pos. or neg. weights

$$w_{i,j}^{(n)}(1)$$

4. L2 Regularization

L2 penalty acts like a spring pulling toward origin

4. L2 Regularization

L2 penalty acts like a spring pulling toward origin

4. L2 Regularization

L2 penalty acts like a spring pulling toward origin

4. L1 Regularization

Minimize on training set a modified Error function

$$\tilde{E}(\boldsymbol{w}) = E(\boldsymbol{w}) + \lambda \sum_{k}^{k}$$

$$\Delta w_{i,j}^{(n)}(1) = -\gamma \frac{dE(w(1))}{dw_{i,j}^{(n)}} -\gamma \lambda sgn(w_{i,j}^{(n)})$$

 $|W_k|$ assigns an 'error' to solutions with large pos. or neg. weights

4. L1 Regularization

Movement caused by penalty is always diagonal (except if one compenent vanishes: $w_a = 0$

Blackboard4

4. L1 Regularization

Blackboard4

4. L1 Regularization (quadratic function)

Big curvature β OR small λ : Solution at $w = w^* - \lambda/\beta$

4. L1 Regularization (general)

Big curvature β **OR** small λ : Solution at $W = w^* - \lambda/\beta$

slope of E at w=0< slope of penalty \rightarrow solution at w=0

4. L1 Regularization and L2 Regularization

- L1 regularization puts some weights to exactly zero → connections 'disappear'
- \rightarrow 'sparse network'

L2 regularization shifts all weights a bit to zero \rightarrow full connectivity remains \rightarrow Close to a minimum and without momentum: L2 regularization = early stopping (see exercises)