Objectives for today:

- Why are sequences important?
- Long-term dependencies in sequence data
- Sequence processing with feedforward models
- Sequence processing with recurrent models
- Vanishing Gradient Problem
- Long-Short-Term Memory (LSTM)
- Application: Music generation

Reading for this lecture:

Goodfellow et al.,2016 Deep Learning

- Ch. 10 (except 10.6 and 10.8)

Further Reading for this Lecture:

Paper:

- F.A. Gers and J. Schmidhuber and F. Cummins (2000)

Learning to Forget: Continual Prediction with LSTM Neural Computation, 12, 2451-2471

- Xu et al. (2015),

Show, attend and tell: Neural image caption generation..., ICML

0.9

$$
\text { output }=\cdots=0.05
$$

Given: Training data set
$\left\{\quad\left(\boldsymbol{x}^{\mu}, \boldsymbol{t}^{\mu}\right), \quad 1 \leq \mu \leq P \quad\right.$;
Aim of learning:
Adjust connections such
that output \boldsymbol{y}^{μ} is correct

$$
\boldsymbol{y}^{\mu}=\boldsymbol{t}^{\mu}
$$

(for each static input image, \boldsymbol{x}^{μ})
input

$$
\mu^{\mu}=t^{\mu}
$$

Question:
 is this really the most frequent situation in practice?

No, for several reasons:

- difficult to get the labeled data!
- data is rarely static!

c***** * *

You have seen the past n frames, what is the next frame?

'video frame prediction'

Bouncing Billiard Ball

Bouncing Billiard Ball

Predict position in next frame

Bouncing Billiard Ball

Bouncing Billiard Ball

Bouncing Billiard Ball

$1^{\text {st }}$ example: video frame prediction

- Target of training is the next frame \rightarrow lots of training data!!!
- Data consists of a temporal sequence, prediction needs more than 1 frame in the past \rightarrow not the standard static input scenario
- Output is high-dimensional (pixels in one frame)
- $1^{\text {st }}$ example: video frame prediction

Analogous: - move your arm while watching

- observe movements of your neighbor and predict next move
- $2^{\text {nd }}$ example: text prediction

Similar to Caltech, MIT, and GeorgiaTech which are considered top-level technical universities in the US, TUMunich, ETHZurich and ...

2nd example: Text prediction

- Target of training is the next word \rightarrow lots of training data!!!
- Data consists of a temporal sequence, prediction needs more than 1 word in the past \rightarrow not the standard static input-output scenario
- Output is high-dimensional
(ten-thousands of potential words)
- $1^{\text {st }}$ example: video frame prediction
- $2^{\text {nd }}$ example: text prediction

$$
\begin{aligned}
& \text { analogous: - text translation } \\
& \text { - speech (or phoneme) prediction } \\
& \text { - music prediction }
\end{aligned}
$$

- $3^{\text {rd }}$ example: action planning
- Close your eyes
- Imagine how you would go to the library in the 'learning center'

Summary:

- Sequences are everywhere
films, text, speech, body movement, action planning, navigation
- more common in reality than static input-output paradigms

We don't look at static photos in normal live

- target data (needed for supervised learning) is often cheap
e.g., target is next frame in video / next word in text/ next action in movement:
- all easy to observe

First Question for today

how can we model and learn sequences in artificial neural networks?

predict next output

take n frames as input
output

input $x^{\mu-n}$
0
$\boldsymbol{x}^{\mu-1} \boldsymbol{x}^{\mu}$
predict next output

take n frames as input

output

imput
BUT - dimensionality increases!

- what is best n ?

$\boldsymbol{x}^{\mu-1} \boldsymbol{x}^{\mu}$

The naïve solution corresponds to implementing n-grams with a neural network, but

- dimensionality increases!
 - what is best n ?

\rightarrow What is the relevant time scale?
(number of frames necessary for good prediction)

c．粎口粗䊅

Bouncing Billiard Ball

Bouncing Billiard Ball

ノ * * * *

Bouncing Billiard Ball

Bouncing Billiard Ball

Bouncing Billiard Ball

Bouncing Billiard Ball

time $=4$

Bouncing Billiard Ball

Bouncing Billiard Ball

Bouncing Billiard Ball

ノ * * * *

Bouncing Billiard Ball

•***

Bouncing Billiard Ball

time $=1$
time $=8$

$1^{\text {st }}$ example: video frame prediction -

you potentially need a memory over MANY frames!
Extreme example:

- memory over a whole story, since entrance scene turns out to be important to predict the end
\rightarrow long time scale!!!
- but movements within one scene are on a fast time scale

Example: Actor with red shoes
\rightarrow You never know in advance how many frames you need
\rightarrow There might be several relevant time scales!
$1^{\text {st }}$ example: video frame prediction
$2^{\text {nd }}$ example: text prediction and text translation

We are in 2013 and hear on the radio:
The international press writes that Mr. Obama who is starting today his second term as president of the United States is praised as one of the most influential world leaders.

We are in 2019 and remember:
In 2013 many international journals wrote that Mr. Obama who was then starting his second term as president of the United States was praised as one of the most influential world leaders.

Grammar rules create long-term dependencies

The international press writes that Mr. Obama who is starting today his second term as president of the United States is praised by the World Economic Forum as one of the most influential world leaders.

In 2013 many international journals wrote that Mr. Obama who was then starting his second term as president of the United States was praised by World Economic forum as one of the most influential world leaders.

Grammar rules create long-term dependencies \rightarrow important for text translation

Ambiguities:
Tank as army vehicle
Tank as liquid container

Question: how can we disambiguate?

There are a hundred liter of water in the tank.

Grammar rules create long-term dependencies \rightarrow important for text translation

Context resolves ambiguities
\rightarrow creates long-term dependencies
\rightarrow important for text translation

Depuis le mois de mars le nombre de vols à
l'aèroport de Genève a augmenté par 20 pourcent.
$1^{\text {st }}$ example: video frame prediction
$2^{\text {nd }}$ example: text prediction and text translation
\rightarrow You never know in advance how many words you need \rightarrow There might be several relevant time scales!
$1^{\text {st }}$ example: video frame prediction
$2^{\text {nd }}$ example: text prediction and text translation
$3^{\text {rd }}$ example: action planning and navigation

start on floor 2, room 202
meeting on floor 8 , room 837

meeting on floor 8, room 837
$1^{\text {st }}$ example: video frame prediction
$2^{\text {nd }}$ example: text prediction and text translation
$3^{\text {rd }}$ example: action planning and navigation
Symmetries create ambiguities in space Whether you should turn left or right depends on which elevator you took
\rightarrow Long-term dependencies
\rightarrow You do not know the time scale of dependency a priori
[] In texts, the longest temporal dependence is about 10-20 words.
[] Training data for text sequences is scarce and costly because it needs labeling.
[] Training data for video frame prediction is cheap, because there are thousands of videos on the internet and no labeling is needed
[] Target values in sequence tasks are always high-dimensional.
[] In video frame prediction, if I take the last 1000 frames as input, I am sure to be on the safe side (I am sure to cover all potential temporal dependencies)

Summary:

- Sequences are everywhere
- more common in reality than static input-output paradigms
- sequences contain dependencies on several time scales
(fast as well as slow)
- Maximum time scale is hard to know at the beginning (or even impossible)
\rightarrow We need a memory in the model

Second Question for Today

how can we keep a memory of past events in artificial neural networks?

$$
x_{j}^{(n)}=g\left(\sum_{k} w_{j k} x_{k}^{(n-1)} \quad>\vartheta\right)
$$

circle

$$
\bigcirc=g(.)
$$

neurons in hidden layer have lateral connections

$$
x_{j}^{(1)} \leftarrow g\left(\sum_{k} w_{j k}^{(1)} x_{k}^{(0)}+\sum_{i} w_{j i}^{(l a t)} x_{i}^{(1)}\right)
$$

(formula can be read off from graph)

Blackboard 1

Include timing information:

Discrete big time steps $t=1,2, \ldots$
$\hat{y}_{1}^{\mu} \quad \hat{y}_{2}^{\mu}$ Update rule for state of neuron

$$
x_{j}^{(j)}(t)=g\left(\sum_{k} w_{k j}^{(j)} x_{k}^{(0)}(t)+\sum_{i} w_{i}^{(a t a)} x_{i}^{(1)}(t-1)\right.
$$

Input at time t :

$$
x^{\mu} \text { with index } \mu=t
$$

component

$$
x_{k}^{(0)}(t)=x_{k}^{t}
$$

$$
\boldsymbol{x}^{\mu} \in R^{N}
$$

input

$$
\left\{\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \boldsymbol{x}^{3} \ldots, \boldsymbol{x}^{T}\right\} \quad \text { single sequence of length } \mathrm{T}
$$

target vector for output

$$
\left\{\boldsymbol{t}^{1}, \boldsymbol{t}^{2}, \boldsymbol{t}^{3} \ldots, \boldsymbol{t}^{T-1}\right\}
$$

one example is: predict next input (e.g. video frame)

$$
\begin{aligned}
& \boldsymbol{t}^{1}=\boldsymbol{x}^{2} \\
& \boldsymbol{t}^{2}=\boldsymbol{x}^{3} \\
& \boldsymbol{t}^{3}=\boldsymbol{x}^{4} \quad \text { target at time step } 3 \text { is the input at time step 4' }
\end{aligned}
$$

'The grammar book of my friend. The first sentence often begins with a threeletter word, because the word 'the' is quite common. However much longer words are also possible as a first word of a sentence. Therefore this is just a rule of thumb. ...,
$x^{1}=$ character T in 1-hot coding
input

$$
\left\{x^{1}, x^{2}, x^{3} \ldots, x^{T}\right\}
$$

target vector for output

$$
\left\{\boldsymbol{t}^{1}, \boldsymbol{t}^{2}, \boldsymbol{t}^{3} \ldots, \boldsymbol{t}^{T-1}\right\}
$$

aim is: predict end of word symbol (text processing)

$$
\begin{aligned}
& \boldsymbol{t}^{1}=0 \\
& \boldsymbol{t}^{2}=0 \\
& \boldsymbol{t}^{3}=1
\end{aligned}
$$

'target at time step 3 is the 'blank' at time step 4'

Discrete big time steps $t=1,2, \ldots$

$$
\hat{y}_{i}^{\hat{y}_{i}^{t}=\hat{y}_{i}(t)=g\left(\sum w_{i j}^{(2)} x_{j}^{(1)}(t)\right)}
$$ within the same time step (feedforward pass)

$$
\boldsymbol{x}^{t} \in R^{N}
$$

Update scheme looks complicated.
Question:
How does this work in practice?

Discrete big time steps $t=1,2, \ldots$

Exercise 1
In Class (8min)

Feedforward processing Lateral input within one big time step from previous step

$$
\boldsymbol{x}^{t} \in R^{N}
$$

Blackboard 2

Discrete big time steps $t=1,2, \ldots$

$$
\begin{aligned}
& \hat{y}_{i}^{t}=\hat{y}_{i}(t)=g\left(\sum w_{i j}^{(2)} x_{j}^{(1)}(t)-\vartheta\right) \\
& x_{j}^{(1)}(t)=g\left(\sum_{k} w_{j k}^{(1)} x_{k}^{(0)}(t)+\sum_{i} w_{j i}^{(l a t)} x_{i}^{(1)}(t-1)-\vartheta_{j}\right) \\
& \text { Feedforward processing Lateral input } \\
& \text { within one big time step from previous step }
\end{aligned}
$$

$$
x_{j}^{(n)}(t)=g\left(\sum_{k} w_{j k} x_{k}^{(n-1)}(t)+\sum_{i} w_{j i} x_{i}^{(n)}(t-1)\right)
$$

circle

$$
\bigcirc=g(.)
$$

converging arrows

$$
\begin{aligned}
& x_{j}^{(n)} \\
& w_{j, k}^{(n)} \\
& x_{k}^{(n-1)}
\end{aligned} \bigcirc x_{i}^{(n)}(t-1)
$$

X

Discrete big time steps $t=1,2,3,4,5$
equivalent
feedforward network for 5 time steps
output $\hat{y}_{i}^{t=5}$
vector

$x_{j}^{(1)}(4)$
$w_{j n}^{(l a t)}$ $x_{j}^{(1)}(3)$ $w_{\text {jn }}{ }^{(l a t)}$
$x_{j}^{(1)}(2)$
$w_{j n}^{(l a t)}$
$x_{j}^{(1)}(1)$
input vector
$x^{t=2}$
$x^{t=3}$
$x^{t=4}$
$x^{t=5}$

Discrete big time steps
$t=1,2,3,4,5, \ldots, n$

equivalent

 feedforward network for n time steps $\rightarrow$$n$ hidden layers with identical feedforward weights

$$
\boldsymbol{x}^{t=n-1} \quad \boldsymbol{x}^{t=n}
$$

input vector

We process a sequence of length T.

[] When processing a sequence of length T,
a recurrent network with one hidden layer can always be reformulated as a deep feedforward network.
[] A recurrent network with one hidden layer of n neurons leads to an unfolded feedforward network with n layers of n neurons each.
[] A recurrent network with one hidden layer of n neurons leads to an unfolded feedforward network with T hidden layers
[] The unfolded network corresponds to a feedforward network with weight sharing.
[] The unfolded network corresponds to a feedforward network where inputs have direct short-cut connections to all hidden layers.


```
c) 粬口**䊅\
```


Discrete big time steps

0 . Initialization of weights
BackProp

1. Choose pattern x^{μ}

$$
\text { input } x_{k}^{(0)}=x_{k}^{\mu}
$$

2. Forward propagation of signals $x_{k}^{(n-1)} \longrightarrow x_{j}^{(n)}$

$$
\begin{align*}
& x_{j}^{(n)}=g^{(n)}\left(a_{j}^{(n)}\right)=g^{(n)}\left(\sum w_{j k}^{(n)} x_{k}^{(n-1)}\right) \tag{1}\\
& \text { output } \hat{y}_{i}^{\mu}=x_{i}^{\left(n_{\max }\right)}
\end{align*}
$$

3. Computation of errors in output

$$
\begin{equation*}
\delta_{i}^{\left(n_{\max }\right)}=g^{\prime}\left(a_{i}^{\left(n_{\max }\right)}\right)\left[t_{i}^{\mu}-\hat{y}^{\mu}\right] \tag{2}
\end{equation*}
$$

4. Backward propagation of errors $\delta_{i}^{(n)} \longrightarrow \delta_{j}^{(n-1)}$

$$
\begin{equation*}
\delta_{j}^{(n-1)}=g^{\prime(n-1)}\left(a^{(n-1)}\right) \sum_{i} w_{i j} \delta_{i}^{(n)} \tag{3}
\end{equation*}
$$

5. Update weights (for each (i, j) and all layers (n))

$$
\begin{equation*}
\Delta w_{i j}^{(n)}=\eta \delta_{i}^{(n)} x_{j}^{(n-1)} \tag{4}
\end{equation*}
$$

6. Return to step 1.

output

 activity

input

0. Initialization of weights
1. Choose pattern x^{μ}

$$
\text { input } x_{k}^{(0)}=x_{k}^{\mu}
$$

2. Forward propagation of signals $x_{k}^{(n-1)} \longrightarrow x_{j}^{(n)}$

$$
\begin{equation*}
x_{j}^{(n)}=g^{(n)}\left(a_{j}^{(n)}\right)=g^{(n)}\left(\sum w_{j k}^{(n)} x_{k}^{(n-1)}\right) \tag{1}
\end{equation*}
$$

output $\hat{y}_{i}^{\mu}=x_{i}^{\left(n_{\text {max }}\right)}$
3. Computation of errors in output

$$
\begin{equation*}
\delta_{i}^{\left(n_{\max }\right)}=g^{\prime}\left(a_{i}^{\left(n_{\max }\right)}\right)\left[t_{i}^{\mu}-\hat{y}^{\mu}\right] \tag{2}
\end{equation*}
$$

4. Backward propagation of errors $\delta_{i}^{(n)} \longrightarrow \delta_{j}^{(n-1)}$

$$
\delta_{j}^{(n-1)}=g^{\prime(n-1)}\left(a^{(n-1)}\right) \sum_{i} w_{i j} \delta_{i}^{(n)}
$$

5. Update weights (for each (i, j) and all layers (n))

$$
\begin{equation*}
\Delta w_{i j}^{(n)}=\eta \delta_{i}^{(n)} x_{j}^{(n-1)} \tag{4}
\end{equation*}
$$

6. Return to step 1.

Calculate output error

0. Initialization of weights

BackProp

1. Choose pattern x^{μ}

$$
\text { input } x_{k}^{(0)}=x_{k}^{\mu}
$$

2. Forward propagation of signals $x_{k}^{(n-1)} \longrightarrow x_{j}^{(n)}$

$$
\begin{equation*}
x_{j}^{(n)}=g^{(n)}\left(a_{j}^{(n)}\right)=g^{(n)}\left(\sum w_{j k}^{(n)} x_{k}^{(n-1)}\right) \tag{1}
\end{equation*}
$$

output $\hat{y}_{i}^{\mu}=x_{i}^{\left(n_{\max }\right)}$
3. Computation of errors in output

$$
\begin{equation*}
\delta_{i}^{\left(n_{\max }\right)}=g^{\prime}\left(a_{i}^{\left(n_{\max }\right)}\right)\left[t_{i}^{\mu}-\hat{y}^{\mu}\right] \tag{2}
\end{equation*}
$$

4. Backward propagation of errors $\delta_{i}^{(n)} \longrightarrow \delta_{j}^{(n-1)}$

$$
\begin{equation*}
\delta_{j}^{(n-1)}=g^{\prime(n-1)}\left(a^{(n-1)}\right) \sum_{i} w_{i j} \delta_{i}^{(n)} \tag{3}
\end{equation*}
$$

5. Update weights (for each (i, j) and all layers (n))

$$
\begin{equation*}
\Delta w_{i j}^{(n)}=\eta \delta_{i}^{(n)} x_{j}^{(n-1)} \tag{4}
\end{equation*}
$$

6. Return to step 1.
update all weights

$$
\Delta w_{i, j}^{(n)}=\delta_{i}^{(n)} x_{j}^{(n-1)}
$$

- Assume strong input at time $t=1$
- Assume no further input up to time $t=N$
- Calculate error in output
- Backpropagate over N layers to find the effect of earlier input on the output now

0. Initialization of weights
1. Choose pattern x^{μ}

$$
\text { input } x_{k}^{(0)}=x_{k}^{\mu}
$$

2. Forward propagation of signals $x_{k}^{(n-1)} \longrightarrow x_{j}^{(n)}$

$$
\begin{equation*}
x_{j}^{(n)}=g^{(n)}\left(a_{j}^{(n)}\right)=g^{(n)}\left(\sum w_{j k}^{(n)} x_{k}^{(n-1)}\right) \tag{1}
\end{equation*}
$$

$$
\text { output } \hat{y}_{i}^{\mu}=x_{i}^{\left(n_{\max }\right)}
$$

output $\hat{y}_{i}^{\mu}=x_{i}^{\left(n_{\max }\right)}$
3. Computation of errors in output

$$
\begin{equation*}
\delta_{i}^{\left(n_{\max }\right)}=g^{\prime}\left(a_{i}^{\left(n_{\max }\right)}\right)\left[t_{i}^{\mu}-\hat{y}^{\mu}\right] \tag{2}
\end{equation*}
$$

4. Backward propagation of errors $\delta_{i}^{(n)} \longrightarrow \delta_{j}^{(n-1)}$

$$
\delta_{j}^{(n-1)}=g^{\prime(n-1)}\left(a^{(n-1)}\right) \sum_{i} w_{i j} \delta_{i}^{(n)}
$$

5. Update weights (for each (i, j) and all layers (n))

$$
\begin{equation*}
\Delta w_{i j}^{(n)}=\eta \delta_{i}^{(n)} x_{j}^{(n-1)} \tag{4}
\end{equation*}
$$

6. Return to step 1.

Calculate output error

- Assume strong input at time $t-N$,
- Assume no further input up to time t
- Calculate error in output
- Backpropagate over N layers to find the effect of input

$$
\delta_{i}^{(n-1)}=\sum_{j} w_{j i}^{(l a t)} g^{\prime(n-1)}\left(a_{i}^{(n-1)}\right) \delta_{j}^{(n)}
$$

$$
\delta_{i}^{(n-1)}=\sum_{j} w_{j i}^{(l a t)} g^{\prime(n-1)}\left(a_{i}^{(n-1)}\right) \delta_{j}^{(n)}
$$

After N layers: each path contributes

$$
\delta_{i}^{(t-N)} \sim g^{\prime(1)} w_{j i}^{(l a t)} g^{\prime(2)} w_{j i}^{(l a t)} \ldots g^{(N-1)} w_{j i}^{(l a t)} \delta_{j}^{(N)}
$$

Many terms to be summed, but most terms vanish if $\left|g^{\prime} w\right|<1$

The vanishing gradient problem of recurrent network means that
[] the derivative of the gain function vanishes: $g^{\prime}=0$
[] that the output error at time t contains only very little information about input at an earlier time step $t-k$ if $k>10$
[] that $\left|g^{\prime} w_{j i}^{(l a t)}\right|^{k} \approx 0$ for $k>10$

It is hard to learn long-term dependencies of sequence data with a (normal) recurrent neural network using backpropagation.


```
c* 米䊅*粗粩\
```


x

Two basic ideas

(i) Hard to keep memory in a recurrent network \rightarrow define explicit memory units
(ii) Avoid the vanishing gradient problem
\rightarrow make sure that $g^{\prime(1)} w_{j i}^{(l a t)}=1$

x

Replace neurons in hidden layer by memory units

= 1 memory unit
= 1 LSTM unit

Replace neurons in hidden layer by LSTM units

x * *

Internal state s of memory

$$
s_{j}^{(1)}(t)=1 \cdot s_{j}^{(1)}(t-1)
$$

Compare: $x_{j}^{(1)}(t)=g\left[w \cdot s_{j}^{(1)}(t-1)\right]$
set $g(a)=a$ and $w=1$

‘write in memory when useful for the task’

Internal state s of memory

$$
s_{j}^{(1)}(t)=1 \cdot s_{j}^{(1)}(t-1)+(\text { gated }) \text { input }
$$

$x_{j}^{(1)}(t)$ LSTM

feedforward $x_{k}^{(0)}(t) x_{i}^{(1)}(t-1)$ |ateral

Internal state s of memory

input

$s_{j}^{(1)}(t)=1 \cdot s_{j}^{(1)}(t-1)+($ gated $) g^{i n}\left[\sum_{k} w_{j k}^{(1)} x_{k}^{(0)}(t)+\sum_{i} w_{j i}^{(l a t)} x_{i}^{(1)}(t-1)-\vartheta_{j}\right]$
$s_{j}^{(1)}(t)=1 \cdot s_{j}^{(1)}(t-1)+Y_{j}^{(1)} g^{i n}\left[\sum_{k} w_{j k}^{(1)} x_{k}^{(0)}(t)+\sum_{i} w_{j i}^{(l a t)} x_{i}^{(1)}(t-1)-\vartheta_{j}\right]$
Gating variable Y of input

$$
Y_{j}^{(1)}(t)=g\left(\sum_{k} w_{j k}^{(1, t)} x_{k}^{(0)}(t)+\sum_{i} w_{j i}^{(1 a t, r)} x_{i}^{(1)}(t-1)-\vartheta_{j}^{(1, y)}-1\right)
$$

$\uparrow_{x_{k}^{(0)}(t)} \uparrow_{\text {input }}$
feedforward
$x_{i}^{(1)}(t-1)$
lateral

feedforward $x_{k}^{(0)}(t) \quad x_{i}^{(1)}(t-1)$ lateral

$$
s_{j}^{(1)}(t)=1 \cdot s_{j}^{(1)}(t-1)+Y_{j}^{(1)} g\left[\sum_{k} w_{j k}^{(1)} x_{k}^{(0)}(t)+\sum_{i} w_{j i}^{(l a t)} x_{i}^{(1)}(t-1)-\vartheta_{j}\right]
$$

$$
s_{j}^{(1)}(t)=f \cdot s_{j}^{(1)}(t-1)+Y_{j}^{(1)} g\left[\sum_{k} w_{j k}^{(1)} x_{k}^{(0)}(t)+\sum_{i} w_{j i}^{(l a t)} x_{i}^{(1)}(t-1)-\vartheta_{j}\right]
$$

Gating variable f for forgetting

$$
f_{j}^{(1)}(t)=g\left(\sum_{k} w_{j k}^{(1, f)} x_{k}^{(0)}(t)+\sum_{i} w_{j i}^{(l a t, f)} x_{i}^{(1)}(t-1)-\vartheta_{j}^{(1, f)}+1\right.
$$

$$
g(a)
$$

$a \quad x_{k}^{(0)}(t)$ input
feedforward
$x_{i}^{(1)}(t-1)$
lateral
x * *

feedforward $x_{k}^{(0)}(t) \quad x_{i}^{(1)}(t-1)$ |ateral

X

$x_{j}^{(1)}(t)=q_{j}^{(1)} \tanh \left[s_{j}^{(1)}(t)\right]$

Gating variable q for output $g(a)=0.5[1+\tanh (a)]$

$$
q_{q_{j}^{(1)}(t)=g\left(\sum_{k}^{w_{k j}^{(1, q)} x_{k}^{(0)}(t)}+\sum_{i} w_{j i}^{(a t a, q)} x_{i}^{(1)}(t-1)-\vartheta_{j}^{(1, f)}-1\right)}^{1} a
$$

Remark (memory block): 1 LSTM unit can have several state variables, controlled by a shared gates

$\square=1$ memory unit
= 1 LSTM unit

Trained with BackProp
State of the art for

- text translation by machines
- handwriting recognition
- speech recognition
- image captioning
e.g. Xu et al. 2015
'a man sitting on a couch with a dog'

Network desribes the image with the words:
'a man sitting on a couch with a dog'
(Fang et al. 2015)

Figure 1. Our model learns a words/image alignment. The visualized attentional maps (3) are explained in Sections $3.1 \& 5.4$

Xu et al. (2015), Show, attend and tell: Neural image caption generation..., ICML

Objectives for today:

- Why are sequences important?
they are everywhere; labeling is (mostly) for free
- Long-term dependencies in sequence data
unknown time scales, fast and slow
- Sequence processing with feedforward models corresponds to n-gram=finite memory
- Sequence processing with recurrent models potentially unlimited memory, but:
- Vanishing Gradient Problem
error information does not travel back beyond a few steps
- Long-Short-Term Memory (LSTM)
explicit memory units keep information beyond a few steps
- Application: Music generation

The end

