
29/03/2019

1

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 6

Sequences and Recurrent Networks

Objectives for today:

- Why are sequences important?

- Long-term dependencies in sequence data

- Sequence processing with feedforward models

- Sequence processing with recurrent models

- Vanishing Gradient Problem

- Long-Short-Term Memory (LSTM)

- Application: Music generation

Reading for this lecture:

Goodfellow et al.,2016 Deep Learning

- Ch. 10 (except 10.6 and 10.8)

Paper:
- F.A. Gers and J. Schmidhuber and F. Cummins (2000)

Learning to Forget: Continual Prediction with LSTM

Neural Computation, 12, 2451–2471

Further Reading for this Lecture:

- Xu et al. (2015),

Show, attend and tell: Neural image caption generation…, ICML

29/03/2019

2

review: Artificial Neural Networks for classification

input

output
0.05

0.9

Aim of learning:

Adjust connections such

that output 𝒚𝜇 is correct

𝒚𝜇=𝒕𝜇

(for each static input image,

𝒙𝜇)

Given: Training data set

 𝒙𝜇, 𝒕𝜇 , 1 ≤ 𝜇 ≤ 𝑃 ;

Previous slide.

So far we considered classification using supervised learning. An input pattern was

present and the network output was compared with a target class label.

29/03/2019

3

Given: Training data set 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃 ;

review: Artificial Neural Networks for classification

Question:

is this really the most frequent situation

in practice ?

No, for several reasons:

- difficult to get the labeled data!

- data is rarely static!

Previous slide.

But in practice, it is rare that we have such data because (i) most data is unlabeled and

(ii) most data is dynamic rather than static.

29/03/2019

4

1. Sequences

Artificial Neural Networks: Lecture 6

Sequences and Recurrent Networks

Previous slide.

Let us look as sequences as an example of ‘non-static’ data.

29/03/2019

5

1. Sequences: first example = video sequence

You have seen the past n frames, what is the next frame?

Screenshot from ‘Casablanca’

‘video frame prediction’

...

Previous slide.

The task of video frame prediction is to predict the next frame of a video sequence,

given earlier images of the same sequence.

29/03/2019

6

1. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

1. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

29/03/2019

7

1. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

1. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

29/03/2019

8

1. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

1. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

29/03/2019

9

1. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball
Predict position in next frame

A B C

Previous slide.

Given the 5 earlier images, what is the position of the billiard ball in the next frame?

29/03/2019

10

1. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

1. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

29/03/2019

11

1. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

Previous slide.

A good model of bouncing billiard balls will have understood that balls move on straight

lines unless they touch the border or another ball.

29/03/2019

12

1. Sequences: video frame prediction

1st example: video frame prediction

- Target of training is the next frame

 lots of training data!!!

- Data consists of a temporal sequence,

prediction needs more than 1 frame in the past

 not the standard static input scenario

- Output is high-dimensional (pixels in one frame)

Previous slide.

Video frame prediction is interesting because

(i) There is lots of training data. The data is not a class label but simply the next

image.

(ii) Data consists of a temporal sequences. Prediction requires to ‘understand’ the

temporal structure.

(iii) The output is high-dimension: not 10 or 20 different classes, but THOUSANDS of

real-valued PIXELs!

29/03/2019

13

1. Sequences

- 1st example: video frame prediction

- 2nd example: text prediction

Analogous: - move your arm while watching

- observe movements of your neighbor

and predict next move

Previous slide.

Try the following. You move your arm in various directions while watching your own

arm. Looks easy to predict the movement.

Now try to predict the movements of your neighbor’s arm.

29/03/2019

14

1. Sequences: 2nd example - text prediction

Similar to Caltech, MIT, and GeorgiaTech which are

considered top-level technical universities in the US,

TUMunich, ETHZurich and … EPFL are

considered top-level technical universities in Europe

Previous slide.

Sometimes text prediction looks easy, sometimes not.

29/03/2019

15

1. Sequences: text prediction

2nd example: Text prediction

- Target of training is the next word

 lots of training data!!!

- Data consists of a temporal sequence,

prediction needs more than 1 word in the past

 not the standard static input-output scenario

- Output is high-dimensional

(ten-thousands of potential words)

Previous slide.

Same comments apply to text prediction as to video frame prediction.

29/03/2019

16

1. Sequences

- 1st example: video frame prediction

- 2nd example: text prediction

analogous: - text translation

- speech (or phoneme) prediction

- music prediction

- 3rd example: action planning

Previous slide.

Let us now turn to the third example.

29/03/2019

17

1. Sequences: 3rd example – action planning and navigation

- Close your eyes

- Imagine how you would go

to the library in the ‘learning center’

Previous slide.

Your imagination

29/03/2019

18

1. Sequences

Summary:

- Sequences are everywhere

- more common in reality than static input-output paradigms

- target data (needed for supervised learning) is often cheap

films, text, speech, body movement, action planning, navigation

We don’t look at static photos in normal live

e.g., target is next frame in video / next word in text/

next action in movement:

– all easy to observe

Previous slide.

Conclusion: in the real world, sequences are abundant, convenient, and much more

‘normal’ than classification of static patterns.

29/03/2019

19

1. Sequences: Aim

First Question for today

how can we model and learn sequences

in artificial neural networks?

Previous slide.

… and therefore we should develop neural networks that can deal with sequences.

29/03/2019

20

1. Sequences

2. Naïve Neural Network implementation:

increase number of inputs

Artificial Neural Networks: Lecture 6

Sequences and Recurrent Networks

Previous slide.

Let us first look at a naïve approach and treat sequences as high-dimensional input.

29/03/2019

21

2. Naïve solution: increase number of inputs

input

output

𝒙𝜇+1

𝒙𝜇−𝑛 𝒙𝜇−1 𝒙𝜇

take n frames as input

predict next output

Previous slide.

Instead of one image, we now take n frames of the video as input and train the network

to predict the next image in the output. This way, the sequence problem has been

transformed into a high-dimensional, but static problem.

29/03/2019

22

2. Naïve solution: Problems

input

output

𝒕 = 𝒙𝜇+1

take n frames as input

predict next output

BUT - dimensionality increases!

- what is best n ?

𝒙𝜇−𝑛 𝒙𝜇−1 𝒙𝜇

Previous slide.

The two drawbacks are, first, that input dimension increases linearly with n; and second

that we do not know the best n – but the input dimension is an important design

parameter of the static network architecture.

29/03/2019

23

- dimensionality increases!

- what is best n ?

2. Naïve solution: Problems

What is the relevant time scale?

(number of frames necessary for good prediction)

The naïve solution corresponds to implementing

n-grams with a neural network, but

Previous slide.

The question of the best number of frames can be reformulated as a question of

‘relevant time scale’.

29/03/2019

24

1. Sequences

2. Naïve solution: increase number of inputs

3. Long-term Dependencies

Artificial Neural Networks: Lecture 6

Sequences and Recurrent Networks

Previous slide.

As we will see, the problem is that there is most often not a single time scale, but many

potentially relevant time scales.

29/03/2019

25

3. Dependencies in Video

Bouncing Billiard Ball

time = 1

Previous slide.

Let reconsider the bouncing billiard ball.

This time it can disappear behind a screen. Try to predict when it reappears.

29/03/2019

26

3. Dependencies in Video

Bouncing Billiard Ball

Ball disappears behind blue screen.

Predict moment when ball reappears!time = 1

3. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

time = 1

29/03/2019

27

3. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

time = 2

3. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

time = 3

29/03/2019

28

3. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

time = 4

3. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

time = 5

29/03/2019

29

3. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

time = 6

3. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

time = 7

29/03/2019

30

3. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

time = 8

Previous slide.

Did you succeed?

29/03/2019

31

3. Video Sequences/Video Frame Prediction

Bouncing Billiard Ball

time = 8

time = 1

Previous slide.

Despite the fact that the movement is continuous and local (because it is given by

Differential equation of physics, or, the discrete version by a Markov Process as often

in Computer Science/Signal Processing), the screen transforms it into a problem with

memory (a hidden Markov Process).

Worse, we don’t know how long it remains behind the screen, therefore we do not know

the length of the memory buffer that we should allocate.

29/03/2019

32

3. Long-term dependencies in sequences

1st example: video frame prediction -

you potentially need a memory over MANY frames!

Extreme example:

- memory over a whole story, since entrance scene

turns out to be important to predict the end

 long time scale!!!

- but movements within one scene are on a fast time scale

 You never know in advance how many frames you need

 There might be several relevant time scales!

Example: Actor with red shoes

Previous slide.

Think of a movie where the actor goes out with red shoes, goes on a long walk, meets

friends, gets into the rain, walks back home, and arrives with black shoes.

That would be a ‘film mistake’ that (some) people would notice.

29/03/2019

33

3. Long-term dependencies in sequences

1st example: video frame prediction

2nd example: text prediction and text translation

Previous slide.

So far we have seen that video prediction can be hard.

Let us now turn to text prediction.

29/03/2019

34

3. Long-term dependencies in text sequences

We are in 2013 and hear on the radio:

The international press writes that Mr. Obama who is

starting today his second term as president of the United

States is praised as one of the most influential world

leaders.

We are in 2019 and remember:

In 2013 many international journals wrote that Mr. Obama

who was then starting his second term as president of the

United States was praised as one of the most influential

world leaders.

Previous slide.

Past tense versus present tense.

29/03/2019

35

3. Long-term dependencies in text sequences

The international press writes that Mr. Obama who is

starting today his second term as president of the United

States is praised by the World Economic Forum as one of

the most influential world leaders.

In 2013 many international journals wrote that Mr. Obama

who was then starting his second term as president of the

United States was praised by World Economic forum as

one of the most influential world leaders.

Grammar rules create long-term dependencies

Previous slide.

Because the second sentence is in past tense a few words (red) change.

29/03/2019

36

3. Long-term dependencies in text sequences

Grammar rules create long-term dependencies

 important for text translation

Previous slide.

Grammar rules induce long-term dependencies that can span more than 10 words. In

other languages (such as German), the span can go over a full paragraph.

29/03/2019

37

3. Long-term dependencies in text sequences

Ambiguities:

Tank as army vehicle

Tank as liquid container

Question: how can we disambiguate?

Previous slide.

Similarly, ambiguities of word meanings can only be dissolved in a given context.

What would be a good key word to disambiguate the context?

29/03/2019

38

3. Long-term dependencies in text sequences

There are a hundred liter of water in the tank.

The tank drives through water.

There are two bottles of water in the tank,

one for driver and one for the gun-man.

army vehicle / liquid container

Previous slide.

An example.

29/03/2019

39

3. Long-term dependencies in text sequences

Grammar rules create long-term dependencies

 important for text translation

Context resolves ambiguities

 creates long-term dependencies

 important for text translation

Previous slide.

These kind of long-term dependencies influence meaning. The challenges become

obvious if you attempt to do ‘translate’ while somebody is speaking, a challenge that a

simultaneous interpreter has to take up during international conferences in Geneva.

29/03/2019

40

3. Long-term dependencies in text sequences

Depuis le mois de mars le nombre de vols à

l’aèroport de Genève a augmenté par 20 pourcent.
Mais maintenant la police est renforcée pour mieux gérer

le problème des pickpocket.

Le directeur de l’aèroport se réjouit de ce

développement.

Previous slide.

Similar problems also arise in French.

29/03/2019

41

3. Long-term dependencies in sequences

1st example: video frame prediction

2nd example: text prediction and text translation

 You never know in advance how many words you need

 There might be several relevant time scales!

Previous slide.

The long-term dependencies in video and text pose challenges, because you never

know in advance whether 12 frames (or 12 words) are enough. Even if you design your

computer program for 20 frames or words, you may run in a situation where this is not

sufficient. In that sense, the time scale of dependencies is arbitrary.

29/03/2019

42

3. Long-term dependencies in sequences

1st example: video frame prediction

2nd example: text prediction and text translation

3rd example: action planning and navigation

Previous slide.

A similar problem also occurs during action planning and navigation through a city or a

building.

29/03/2019

43

3. Long-term dependencies in action sequences

offices officeselevators

Previous slide.

Suppose we have a 10-floor building with two wings of offices and elevators in the

middle.

29/03/2019

44

3. Long-term dependencies in action sequences

offices officeselevators

start on floor 2, room 202

meeting on floor 8, room 837

202

237

Previous slide.

We start on floor 2 in room 202 and want to go to meet somebody on the 8th floor in

room 837 – which is located right above room 237.

You take the elevator …

29/03/2019

45

3. Long-term dependencies in action sequences

level 3

3. Long-term dependencies in action sequences

level 4

29/03/2019

46

3. Long-term dependencies in action sequences

level 5

3. Long-term dependencies in action sequences

level 6

29/03/2019

47

3. Long-term dependencies in action sequences

level 7

3. Long-term dependencies in action sequences

level 8

https://www.google.ch/imgres?imgurl=http://ak7.picdn.net/shutterstock/videos/9205457/thumb/1.jpg&imgrefurl=https://www.shutterstock.com/video/clip-9205457-stock-footage-long-hallway-with-closed-doors.html&docid=dtdl-ROJNzk2nM&tbnid=uWsWso07OKAbQM:&vet=10ahUKEwj40Zj78rHaAhWGaxQKHeQYA6EQMwizAigFMAU..i&w=852&h=480&client=firefox-b&bih=762&biw=1101&q=long hallway&ved=0ahUKEwj40Zj78rHaAhWGaxQKHeQYA6EQMwizAigFMAU&iact=mrc&uact=8
https://www.google.ch/imgres?imgurl=http://ak7.picdn.net/shutterstock/videos/9205457/thumb/1.jpg&imgrefurl=https://www.shutterstock.com/video/clip-9205457-stock-footage-long-hallway-with-closed-doors.html&docid=dtdl-ROJNzk2nM&tbnid=uWsWso07OKAbQM:&vet=10ahUKEwj40Zj78rHaAhWGaxQKHeQYA6EQMwizAigFMAU..i&w=852&h=480&client=firefox-b&bih=762&biw=1101&q=long hallway&ved=0ahUKEwj40Zj78rHaAhWGaxQKHeQYA6EQMwizAigFMAU&iact=mrc&uact=8

29/03/2019

48

3. Long-term dependencies in action sequences

Previous slide.

And go up … and look around the floor.

At the end of the corridor you will have to turn (right or left????)

29/03/2019

49

3. Long-term dependencies in action sequences

offices officeselevators

meeting on floor 8, room 837

807

837

Previous slide.

The building has a high symmetry. The only way to arrive at the correct office is to

remember where you came from.

29/03/2019

50

3. Long-term dependencies in sequences

1st example: video frame prediction

2nd example: text prediction and text translation

3rd example: action planning and navigation

Symmetries create ambiguities in space

Whether you should turn left or right depends on

which elevator you took

 Long-term dependencies

 You do not know the time scale of dependency a priori

Previous slide.

The problem is the same as in the two earlier examples: you do not know the time scale

of the temporal dependencies beforehand.

29/03/2019

51

Quiz: Sequences

[] In texts, the longest temporal dependence is about 10-20 words.

[] Training data for text sequences is scarce and costly

because it needs labeling.

[] Training data for video frame prediction is cheap, because there

are thousands of videos on the internet and no labeling is needed

[] Target values in sequence tasks are always high-dimensional.

[] In video frame prediction, if I take the last 1000 frames as input,

I am sure to be on the safe side

(I am sure to cover all potential temporal dependencies)

[]

[]

[x]

[]

[]

Your notes.

29/03/2019

52

3. Long-term dependencies in Sequences

Summary:

- Sequences are everywhere

- more common in reality than static input-output paradigms

- sequences contain dependencies on several time scales

(fast as well as slow)

- Maximum time scale is hard to know at the beginning

(or even impossible)

 We need a memory in the model

Previous slide.

Since it is hard to know how long the relevant time scale in a sequence is, we need to

build a model that learns to shift items into memory whenever necessary. And this is

hard.

29/03/2019

53

2. Long-term dependencies in sequences: Aim

Second Question for Today

how can we keep a memory of past events

in artificial neural networks?

Previous slide.

The solution we discuss makes use of recurrent neural networks.

29/03/2019

54

1. Sequences

2. Naïve solution: increase number of inputs

3. Long-term Dependencies

4. Recurrent Neural Networks

Artificial Neural Networks: Lecture 6

Sequences and Recurrent Networks

Previous slide.

So far our discussion has been limited to feedforward networks

29/03/2019

55

𝑤𝑗,𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁

Review: Multilayer Perceptron

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝑎

1

0

𝑔(𝑎)

Previous slide.

… where input passes from the input layer to the output. Before we introduce recurrent

neural networks we have to define a useful graphical notation.

29/03/2019

56

𝑤𝑗,𝑘
(𝑛)

𝑥𝑗
(𝑛)

𝑥𝑘
(𝑛−1)

Review: graphical representation

𝑥𝑗
(𝑛)

= 𝑔
𝑘

𝑤𝑗𝑘 𝑥𝑘
(𝑛−1)

− 𝜗

= 𝑔(.)

𝑘

threshold can be removed

circle

converging

arrows

Previous slide.

In the following, a circle means a nonlinearity (e.g., rectified linear or sigmoidal).

Converging arrows mean summation of values across the input lines. We do not note

the threshold explicitly.

29/03/2019

57

4. Recurrent Neural Networks

𝑤𝑗𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁

 𝑦1
𝜇 𝑦2

𝜇

𝑤1𝑗
(2)

𝑥𝑗
(1)

neurons in hidden layer

have lateral connections

(formula can be read off from graph)

𝑥𝑗
1 ← 𝑔

𝑘

𝑤𝑗𝑘
1 𝑥𝑘

0 +
𝑖

𝑤𝑗𝑖
𝑙𝑎𝑡 𝑥𝑖

1

Blackboard 1

Previous slide.

With this graphical notation the formula of a simple graphical network can be read off

from the graph. The value on the left-hand side is set to the value resulting from the

calculation of the right-hand side.

29/03/2019

58

4. Update in Recurrent Neural Network

𝑤𝑗,𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

Include timing information:

Discrete big time steps t=1,2, …

Update rule for state of neuron

Input at time t:

𝒙𝜇 with index 𝜇 = 𝑡

𝑥𝑘
0

𝑡 = 𝑥𝑘
𝑡

𝑥𝑗
1 𝑡 = 𝑔

𝑘

𝑤𝑗𝑘
1 𝑥𝑘

0 (𝑡) +
𝑖

𝑤𝑗𝑖
𝑙𝑎𝑡 𝑥𝑖

1 𝑡 − 1

component

Previous slide.

The update can also be written by an explicit time index. We work in discrete time with

time steps of 1.

By convention, the complete forward propagation pass is assigned to a SINGLE time

step. Therefore, the feedforward input at time t influences the variable x in the SAME

time step. This may looks strange at first sight, but arises quite natural when you

program a feedforward network where one time step = processing of one input pattern.

However, lateral input from time step t arrives only at time step t=1. Again, this arises

naturally because you cannot update neuron 𝑥𝑖
𝑛

of neuron i with the value 𝑥𝑗
𝑛

of

neuron j and vice versa, if they are both in the same layer n.

Note that (just as in feedforward networks) we apply in each time step one pattern.

However, the order of patterns is not random but fixed by the sequence.

29/03/2019

59

4. Training data for Recurrent Neural Network

𝒙1, 𝒙2, 𝒙3 … , 𝒙𝑇
single sequence of length T

input

target vector for output

𝒕1, 𝒕2, 𝒕3 … , 𝒕𝑇−1

one example is: predict next input (e.g. video frame)

𝒕1 = 𝒙2

𝒕2 = 𝒙3

𝒕3 = 𝒙4 ‘target at time step 3 is the input at time step 4’

Previous slide.

The data that we use for supervised learning has a strict temporal order - as opposed to

the case of static classification, where we randomly draw patterns from the data base,

one at a time (as seen so far in class).

For the case of video frame prediction, the input image at time step m+1 is the label 𝒕𝑚

for time step m.

29/03/2019

60

4. Training data for Recurrent Neural Network (text example)

𝒙1, 𝒙2, 𝒙3 … , 𝒙𝑇
input

target vector for output

𝒕1, 𝒕2, 𝒕3 … , 𝒕𝑇−1

aim is: predict end of word symbol (text processing)

𝒕1 = 0

‘target at time step 3 is the ‘blank’ at time step 4’

𝒕2 = 0
𝒕3 = 1

‘The grammar book of my friend. The

first sentence often begins with a three-

letter word, because the word ‘the’ is

quite common. However much longer

words are also possible as a first word

of a sentence. Therefore this is just a

rule of thumb. … ’

𝒙1 = character T in 1-hot coding

Previous slide.

Example:

Suppose that the labels are one-dimensional (t = 0 or 1). The task is to predict in a

written text, whether the current word has finished, i.e., predict that the next character is

the ‘blank-character’.

29/03/2019

61

4. Update in Recurrent Neural Network (details)

Discrete big time steps t=1,2, …

𝑤𝑗,𝑘
(1)

𝒙𝑡 ∈ 𝑅𝑁

 𝑦1
𝑡 𝑦2

𝑡

𝑤1,𝑗
(2)

𝑥𝑗
(1)

Feedforward processing

within the same time step

(feedforward pass)

Lateral input

from previous step

 𝑦𝑖
𝑡 = 𝑦𝑖 (𝑡) = 𝑔 𝑤𝑖𝑗

2 𝑥𝑗
1 (𝑡)

𝑥𝑗
1 𝑡 = 𝑔

𝑘

𝑤𝑗𝑘
1 𝑥𝑘

0 (𝑡) +
𝑖

𝑤𝑗𝑖
𝑙𝑎𝑡 𝑥𝑖

1 𝑡 − 1

Previous slide.

Let us now study a recurrent network with one hidden layer in more detail.

29/03/2019

62

4. Update in Recurrent Neural Network (details)

𝑤𝑗,𝑘
(1)

𝒙𝑡 ∈ 𝑅𝑁

 𝑦1
𝑡 𝑦2

𝑡

𝑤1,𝑗
(2)

𝑥𝑗
(1)

Update scheme looks complicated.

Question:

How does this work in practice?

Previous slide.

When we look more closely at the update rule of the network we find a process called

‘unfolding in time’ – which is the topic of the next section.

29/03/2019

63

1. Sequences

2. Naïve solution: increase number of inputs

3. Long-term Dependencies

4. Recurrent Neural Networks

5. Unfolding the network in time

Artificial Neural Networks: Lecture 6

Sequences and Recurrent Networks

Previous slide.

To discover unfolding in time, you start with exercise 1.

29/03/2019

64

5. Update in Recurrent Neural Network

𝑥𝑗
1

𝑡 = 𝑔
𝑘

𝑤𝑗𝑘
1

𝑥𝑘
0
(𝑡) +

𝑖

𝑤𝑗𝑖
𝑙𝑎𝑡

𝑥𝑖
1

𝑡 − 1 − 𝜗𝑗

Discrete big time steps t=1,2, …

𝑤𝑗,𝑘
(1)

𝒙𝑡 ∈ 𝑅𝑁

 𝑦𝑖
𝑡

𝑤1,𝑗
(2)

𝑥𝑗
(1)

Feedforward processing

within one big time step

Lateral input

from previous step

 𝑦𝑖
𝑡 = 𝑦𝑖 (𝑡) = 𝑔 𝑤𝑖𝑗

2 𝑥𝑗
1 (𝑡) − 𝜗

Exercise 1
In Class (8min)

Previous slide.

29/03/2019

65

Blackboard 2
5. Unfolding in time

Your notes.

29/03/2019

66

5. Compact graphics for Recurrent Neural Network

𝑥𝑗
1

𝑡 = 𝑔
𝑘

𝑤𝑗𝑘
1

𝑥𝑘
0
(𝑡) +

𝑖

𝑤𝑗𝑖
𝑙𝑎𝑡

𝑥𝑖
1

𝑡 − 1 − 𝜗𝑗

Discrete big time steps t=1,2, …

Feedforward processing

within one big time step

Lateral input

from previous step

 𝑦𝑖
𝑡 = 𝑦𝑖 (𝑡) = 𝑔 𝑤𝑖𝑗

2 𝑥𝑗
1 (𝑡) − 𝜗

𝑤𝑗,𝑘
(1)

𝒙𝑡 ∈ 𝑅𝑁

 𝑦𝑖
𝑡

𝑤1,𝑗
(2)

𝑥𝑗
(1)

Previous slide.

Since the graphical representation of our recurrent network still looks complicated, we

simplify it further.

29/03/2019

67

𝑤𝑗,𝑘
(𝑛)

𝑥𝑗
(𝑛)

𝑥𝑘
(𝑛−1)

Review: graphical representation

𝑥𝑗
𝑛

(𝑡) = 𝑔

𝑘

𝑤𝑗𝑘 𝑥𝑘
𝑛−1

(𝑡) +

𝑖

𝑤𝑗𝑖 𝑥𝑖
𝑛

(𝑡 − 1)

= 𝑔(.)

circle

converging

arrows

𝑥𝑖
𝑛

(𝑡 − 1)

Previous slide.

To do so, we reuse the same graphical elements that were introduced earlier.

29/03/2019

68

5. unfolded graphics for Recurrent Neural Network

Discrete big time steps

t=1,2,3,4,5

 𝑦𝑖
𝑡=5

𝑤1,𝑗
(2)

𝑥𝑗
1 (5)

𝑤𝑗𝑛
(𝑙𝑎𝑡)

𝑥𝑗
1 (4)

𝑤𝑗𝑛
(𝑙𝑎𝑡)

𝑥𝑗
1 (3)

𝑤𝑗𝑛
(𝑙𝑎𝑡)

𝑥𝑗
1 (2)

𝑤𝑗𝑛
(𝑙𝑎𝑡)

𝑥𝑗
1 (1)

𝑤𝑗𝑘
(1)

𝒙𝑡=1input vector 𝒙𝑡=2 𝒙𝑡=3 𝒙𝑡=4 𝒙𝑡=𝟓

𝑤𝑗𝑘
(1)

equivalent

feedforward network

for 5 time steps

output

vector

Previous slide.

With this representation we find that the recurrent network (in time step 5) is equivalent

to a feedforward network where input pattern 𝒙𝑡=𝟓 is injected in the last hidden layer,

input pattern 𝒙𝑡=𝟒 in the previous one, and input pattern 𝒙𝑡=𝟏 in the first layer.

29/03/2019

69

5. unfolded graphics for Recurrent Neural Network

Discrete big time steps

t=1,2,3,4,5, … , n

 𝑦𝑖
𝑡=𝑛

𝑤1,𝑗
(2)

𝑥𝑗
1 (𝑛)

𝑤𝑗𝑛
(𝑙𝑎𝑡)

𝑥𝑗
1 (𝑛 − 1)

𝑥𝑗
1 (2)

𝑤𝑗𝑛
(𝑙𝑎𝑡)

𝑥𝑗
1 (1)

𝑤𝑗𝑘
(1)

𝒙𝑡=1input vector 𝒙𝑡=2 𝒙𝑡=𝑛−1 𝒙𝑡=𝑛

𝑤𝑗𝑘
(1)

equivalent

feedforward network

for n time steps



n hidden layers with

identical feedforward

weights

…

… …

…

Previous slide.

Moreover, the matrix of feedforward weights from layer n-1 to layer n is identical to that

from layer n to n+1.

29/03/2019

70

Quiz: Unfolding of Recurrent Networks

We process a sequence of length T.

[] When processing a sequence of length T,

a recurrent network with one hidden layer can always be reformulated

as a deep feedforward network.

[] A recurrent network with one hidden layer of n neurons leads

to an unfolded feedforward network with n layers of n neurons each.

[] A recurrent network with one hidden layer of n neurons leads

to an unfolded feedforward network with T hidden layers

[] The unfolded network corresponds to a feedforward network with

weight sharing.

[] The unfolded network corresponds to a feedforward network where

inputs have direct short-cut connections to all hidden layers.

[x]

[]

[x]

[x]

[x]

Your notes.

29/03/2019

71

1. Sequences

2. Naïve solution: increase number of inputs

3. Long-term Dependencies

4. Recurrent Neural Networks

5. Unfolding the network in time

6. Backpropagation through time

Artificial Neural Networks: Lecture 6

Sequences and Recurrent Networks

Previous slide.

How can we update the weights?

The solution is called backpropagation through time.

29/03/2019

72

6. Backpropogation through time

Discrete big time steps

t=1,2,3,4,5, … , n

 𝑦𝑖
𝑡=𝑛

𝑤1,𝑗
(2)

𝑥𝑗
1 (𝑛)

𝑤𝑗𝑛
(𝑙𝑎𝑡)

𝑥𝑗
1 (𝑛 − 1)

𝑥𝑗
1 (2)

𝑤𝑗𝑛
(𝑙𝑎𝑡)

𝑥𝑗
1 (1)

𝑤𝑗𝑘
(1)

𝒙𝑡=1input vector 𝒙𝑡=2 𝒙𝑡=𝑛−1 𝒙𝑡=𝑛

𝑤𝑗𝑘
(1)

- take the unfolded

equivalent network

- apply backprop after

each time step

- cut backward path if

signal gets too weak

…

… …

…

Previous slide.

In order to understand Backpropagation through time, we start with the unfolded

equivalent feedforward network. For the feedforward network, we apply standard

Backpropagation.

The name Backpropagation through time stems from the fact that the different layers of

the equivalent feedforward network correspond to discrete time steps.

29/03/2019

73

BackProp
output

activity

input

pattern

 𝑦𝑖
𝑡=𝑛

… …

BackProp Calculate output error

𝛿
 𝑦𝑖
𝑡=𝑛

… …

29/03/2019

74

BackProp update all weights

∆𝑤𝑖,𝑗
(𝑛)

= 𝛿𝑖
(𝑛)

𝑥𝑗
(𝑛−1)

Previous slide.

Therefore BackProp through time is just the standard BackProp algorithm – but applied

to the equivalent feedforward network.

29/03/2019

75

1. Sequences

2. Naïve solution: increase number of inputs

3. Long-term Dependencies

4. Recurrent Neural Networks

5. Unfolding the network in time

6. Backpropagation through time

7. The vanishing Gradient Problem

Artificial Neural Networks: Lecture 6

Sequences and Recurrent Networks

Previous slide.

The vanishing gradient problem that we have seen in one of the previous lectures is

also a problem for recurrent networks.

29/03/2019

76

Calculate output error

𝛿
 𝑦𝑖
𝑡=𝑁

… …

- Assume strong input at time t=1

- Assume no further input up to

time t=N

- Calculate error in output

- Backpropagate over N layers

to find the effect of earlier input

on the output now

7. Vanishing gradient problem

𝒙1 = 1
𝒙𝑘 = 0

Previous slide.

Suppose we are in time step t= N and observe a mismatch between our network output

and the target value.

The last non-zero input occurred in time step t=1.

Question: can BackProp learn to connect the output at time step N with the input at time

step 1?

In the backward pass, the

29/03/2019

77

BackProp Calculate output error

𝛿
 𝑦𝑖
𝑡=𝑁

… …

Previous slide.

For each layer of the backward pass, we get a derivative g’ and a sum of weights. But

the weights in layer n are copies of those in layer n+1. Therefore the delta-error

information will either blow up or decay. The latter is the reason for the name ‘vanishing

gradient problem’. See also exercises this week.

29/03/2019

78

7. Vanishing gradient problem

𝛿𝑖
(𝑛−1)

=

𝑗

𝑤𝑗𝑖
(𝑙𝑎𝑡)

𝑔
′(𝑛−1)

(𝑎𝑖
(𝑛−1)

)𝛿𝑗
(𝑛)

- Assume strong input at time t-N,

- Assume no further input up to time t

- Calculate error in output

- Backpropagate over N layers

to find the effect of input

 𝑦𝑖
𝑡

… …

Previous slide.

This slide is just a copy of the vanishing gradient argument from an earlier lecture (only

the image has been changed.

29/03/2019

79

7. Vanishing gradient problem

𝛿𝑖
(𝑛−1)

=

𝑗

𝑤𝑗𝑖
(𝑙𝑎𝑡)

𝑔
′(𝑛−1)

(𝑎𝑖
(𝑛−1)

)𝛿𝑗
(𝑛)

𝛿𝑖
(𝑡−𝑁)

~𝑔
′(1)

𝑤𝑗𝑖
(𝑙𝑎𝑡)

𝑔
′(2)

𝑤𝑗𝑖
(𝑙𝑎𝑡)

…𝑔
′(𝑁−1)𝑤𝑗𝑖

(𝑙𝑎𝑡)
𝛿𝑗

(𝑁)

After N layers: each path contributes

Many terms to be summed,

but most terms vanish if |g’w| < 1

𝜀

a

𝛼−𝛼−𝜀

 𝑦𝑖
𝑡

… …

Previous slide.

The sum can be decomposed in many different paths, but the contributions of most

paths is very, very small.

29/03/2019

80

Quiz: Vanishing Gradient Problem

The vanishing gradient problem of recurrent network means that

[] the derivative of the gain function vanishes: g’ = 0
[] that the output error at time t contains only very little information

about input at an earlier time step t-k if k>10

[] that for k>10|𝑔′ 𝑤𝑗𝑖
(𝑙𝑎𝑡)|𝑘 ≈ 0

[]

[x]

[x]

Your notes. The value k>10 is somewhat arbitrary. I could also have written k>>1.

29/03/2019

81

7. Summary: Vanishing Gradient Problem

It is hard to learn long-term dependencies of sequence data

with a (normal) recurrent neural network

using backpropagation.

Your notes.

29/03/2019

82

1. Sequences

2. Naïve solution: increase number of inputs

3. Long-term Dependencies

4. Recurrent Neural Networks

5. Unfolding the network in time

6. Backpropagation through time

7. The vanishing Gradient Problem

8. Long Short-Term Memory (LSTM)

Artificial Neural Networks: Lecture 6

Sequences and Recurrent Networks

Previous slide.

We now consider a variant of a recurrent network that avoids the vanishing gradient

problem. It has been called the Long Short-term Memory (LSTM) and invented by Sepp

Hochreiter and Jurgen Schmidhuber. The LSTM or modern variants of it are the basis

of modern networks for speech recognition or text translation. The ‘Neural Turing

Machines’ can be seen also seen as modifications of the same basic ideas.

29/03/2019

83

8. Long short-term memory (LSTM)

Two basic ideas

(i) Hard to keep memory in a recurrent network

 define explicit memory units

(ii) Avoid the vanishing gradient problem

 make sure that 𝑔
′(1)

𝑤𝑗𝑖
(𝑙𝑎𝑡)

= 1

Previous slide.

The are two different motivations for the introduction of LSTMs.

The first motivation is a functional one: recurrent neural networks are used to link

events at time step t with earlier events several time steps before. The most natural

way to do this would be explicit memory units.

The second one is related to the vanishing gradient problem. To avoid the vanishing

gradient problem we have to make sure that 𝑔
′(1)

𝑤𝑗𝑖
(𝑙𝑎𝑡)

= 1

29/03/2019

84

8. Long short-term memory (LSTM)

𝑤𝑗𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁

 𝑦1
𝜇 𝑦2

𝜇

𝑤1𝑗
(2)

𝑥𝑗
(1)

Replace neurons in hidden layer

by memory units

= 1 memory unit

= 1 LSTM unit

Previous slide.

To introduce explicit memory, we replace each neuron in the hidden layer by a ‘memory

unit’ also called LSTM unit.

29/03/2019

85

8. Long short-term memory (LSTM)

𝑤𝑗𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁

 𝑦1
𝜇 𝑦2

𝜇

𝑤1𝑗
(2)

𝑥𝑗
(1)

Replace neurons in hidden layer

by LSTM units

=

output gate

input gate

forget gate

Previous slide.

If we zoom in and look a little bit more closely, we see that each LSTM has three gates:

An input gate that controls when some input is added to the memory (‘write to

memory’)

An output gate that controls when the current value is read out form the memory (‘read

memory)

And a forget gate that controls when the current value is suppressed (‘reset memory’)

29/03/2019

86

8. Memory unit in LSTM

LSTM

unit

𝑥𝑗
1
(𝑡)

𝑥𝑘
0 𝑡feedforward 𝑥𝑖

1 𝑡 − 1
lateral

Previous slide.

An even closer look shows that the gates are themselves controlled by feedforward

(red) and lateral (green) inputs.

The input gate multiplies the input with the value of the gate and adds the result to the

memory.

The output gate multiplies the current value of the memory with the value of the gate

and conveys the result further on along the links to other units.

The forget gate multiples the current value of the memory with the value of the gate and

sends the result back to the memory unit (and overwrites its old value).

Black square: delay of one time step.

In the next few slides we will work our way, step by step, through this image.

Image adapted from Gers et al. 2000 (Neural Computation) and Goodfellow et al (Deep

Learning, MIT Press).

29/03/2019

87

1

8. Memory unit in LSTM

𝑠𝑗
1

𝑡 = 1 ∙ 𝑠𝑗
1

𝑡 − 1

Internal state s of memory

Compare: 𝑥𝑗
1

𝑡 = 𝑔[𝑤 ∙ 𝑠𝑗
1

𝑡 − 1] set g(a)=a
and w=1

Previous slide.

Let us focus on the core of the memory unit.

(For the moment we disregard the forget gate and set the multiplication factor to 1).

The memory unit keeps its value from one time step to the next, by circling it around.

This is equivalent to saying that we work with a small recurrent network consisting of a

single neuron with a linear gain function of slope one and recurrent weight one. Hence

there is no vanishing gradient problem.

29/03/2019

88

1

8. Memory unit in LSTM: writing into memory

𝑠𝑗
1 𝑡 = 1 ∙ 𝑠𝑗

1 𝑡 − 1 + (gated) input

Internal state s of memory

𝑠𝑗
1 𝑡 = 1 ∙ 𝑠𝑗

1 𝑡 − 1 + (gated) 𝑔𝑖𝑛[𝑘 𝑤𝑗𝑘
1

𝑥𝑘
0
(𝑡) + 𝑖 𝑤𝑗𝑖

𝑙𝑎𝑡
𝑥𝑖

1
𝑡 − 1 − 𝜗𝑗]

𝑥𝑘
0 𝑡

feedforward

𝑥𝑖
1 𝑡 − 1

lateral

‘write in memory when useful for the task’

input 𝑎

2

2tanh(𝑎)-2 𝑔𝑖𝑛 𝑎 =

Previous slide.

If the input gate is open (value = +1), then g(a) is added to the value s of the meory

unit. Here a is the weighted sum over feedforward input and lateral input.

Gers and Schmidhuber use in the input pathway a gain function 𝑔𝑖𝑛 𝑎
which ranges from -2 to +2.

The next slide shows where this gain function sits in the input pathway.

29/03/2019

89

8. Memory unit in LSTM:

INPUT GATE

LSTM

unit

𝑥𝑗
1
(𝑡)

𝑥𝑘
0 𝑡feedforward 𝑥𝑖

1 𝑡 − 1 lateral

input

gated

input

(gate)

𝑔𝑖𝑛 𝑎

Previous slide.

Let us now focus on the input gate (orange box).

The value of the input pathway is multiplied with the gating value:

(gate) = Y = g(a)

Whether the gating value Y is nonzero depends on its activation value a.

The function g(a) is a standard sigmoidal between zero and 1.

The details of the equation Y=g(a) = … are given on the next slide.

29/03/2019

90

𝑌𝑗
1

𝑡 = 𝑔
𝑘

𝑤𝑗𝑘
1,𝑌

𝑥𝑘
0
(𝑡) +

𝑖

𝑤𝑗𝑖
𝑙𝑎𝑡,𝑌

𝑥𝑖
1

𝑡 − 1 − 𝜗𝑗
1,𝑌

− 𝟏

𝑠𝑗
1 𝑡 = 1 ∙ 𝑠𝑗

1 𝑡 − 1 + (gated) 𝑔𝑖𝑛[𝑘 𝑤𝑗𝑘
1

𝑥𝑘
0
(𝑡) + 𝑖 𝑤𝑗𝑖

𝑙𝑎𝑡
𝑥𝑖

1
𝑡 − 1 − 𝜗𝑗]

𝑠𝑗
1

𝑡 = 1 ∙ 𝑠𝑗
1

𝑡 − 1 + 𝑌𝑗
1 𝑔𝑖𝑛[𝑘 𝑤𝑗𝑘

1
𝑥𝑘

0
(𝑡) + 𝑖 𝑤𝑗𝑖

𝑙𝑎𝑡
𝑥𝑖

1
𝑡 − 1 − 𝜗𝑗]

8. LSTM – input gate

Internal state s of memory

𝑥𝑘
0 𝑡

feedforward

𝑥𝑖
1 𝑡 − 1

lateral

input

input

Gating variable Y of input

𝑎

1

-1

Previous slide.

The input gate is characterized by a gating variable Y = g(a).

where a depends on weights which are learnable.

The parameters of the input gate are initialized with negative bias (highlighted by red

color of the bias value -1): therefore the gate has to learn WHEN to write into the cell.

Default is that the memory is idling and not changed.

29/03/2019

91

8. Memory unit in LSTM:

FORGET GATE

LSTM

unit

𝑥𝑗
1
(𝑡)

𝑥𝑘
0 𝑡feedforward 𝑥𝑖

1 𝑡 − 1 lateral

forget

gate
Y

Previous slide.

Let us now focus on the forget gate (orange box, diagonal).

29/03/2019

92

8. LSTM – Forgetting gate (initialize at 1 or close to 1)

𝑠𝑗
1

𝑡 = 𝑓 ∙ 𝑠𝑗
1

𝑡 − 1 + 𝑌𝑗
1 𝑔[𝑘 𝑤𝑗𝑘

1 𝑥𝑘
0 (𝑡) + 𝑖 𝑤𝑗𝑖

𝑙𝑎𝑡 𝑥𝑖
1 𝑡 − 1 − 𝜗𝑗]

𝑓𝑗
1

𝑡 = 𝑔
𝑘

𝑤𝑗𝑘
1,𝑓

𝑥𝑘
0
(𝑡) +

𝑖

𝑤𝑗𝑖
𝑙𝑎𝑡,𝑓

𝑥𝑖
1

𝑡 − 1 − 𝜗𝑗
1,𝑓

+ 𝟏

𝑥𝑘
0 𝑡

feedforward

𝑥𝑖
1 𝑡 − 1

lateral
input

Gating variable f for forgetting

𝑠𝑗
1

𝑡 = 1 ∙ 𝑠𝑗
1

𝑡 − 1 + 𝑌𝑗
1 𝑔[𝑘 𝑤𝑗𝑘

1 𝑥𝑘
0 (𝑡) + 𝑖 𝑤𝑗𝑖

𝑙𝑎𝑡 𝑥𝑖
1 𝑡 − 1 − 𝜗𝑗]

𝑎

1

0

𝑔(𝑎)

Previous slide.

The forget unit is described by the variable f.

Its bias is initialized at 1 or close to 1. The idea is that normally the memory unit should

keep the memory. However, thanks to the weights, the forget unit can learn, WHEN the

memory should be forgotten. Forgetting occurs if the value of f is close to zero.

29/03/2019

93

8. Memory unit in LSTM

LSTM

unit

𝑥𝑗
1
(𝑡)

𝑥𝑘
0 𝑡feedforward 𝑥𝑖

1 𝑡 − 1 lateral

outputt

gate

Previous slide.

Let us now focus on the output gate (pink box).

29/03/2019

94

8. LSTM –output gate

𝑞𝑗
1

𝑡 = 𝑔
𝑘

𝑤𝑗𝑘
1,𝑞

𝑥𝑘
0

(𝑡) +
𝑖

𝑤𝑗𝑖
𝑙𝑎𝑡,𝑞

𝑥𝑖
1

𝑡 − 1 − 𝜗𝑗
1,𝑓

− 1

𝑥𝑘
0 𝑡

feedforward

𝑥𝑖
1 𝑡 − 1

lateral

input

Gating variable q for output

𝑥𝑗
1

𝑡 = 𝑞𝑗
1

tanh[𝑠𝑗
1

𝑡]

𝑎

1

0

𝑔(𝑎)

𝑔(𝑎) = 0.5[1 + 𝑡𝑎𝑛ℎ 𝑎]

𝑠

1
tanh(𝑠)

-1

Previous slide.

The value of the output gate is denoted by a variable q.

Similar to the two other gates, it is controlled by feedforward and lateral inputs.

29/03/2019

95

8. Memory unit in LSTM

LSTM

unit

Remark (memory block):

1 LSTM unit can have

several state variables,

controlled by a shared

gates

Previous slide.

The state variable s of one LSTM can be a vector (i.e., several variables, connected to

several inputs). As long as all components are controlled by the same input and output

gates, we call it a SINGLE LSTM unit. Gers and Schmidhuber call it an LSTM block.

29/03/2019

96

8. LSTM networks

𝑤𝑗𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁

 𝑦1
𝜇 𝑦2

𝜇

𝑤1𝑗
(2)

𝑥𝑗
(1)

= 1 memory unit

= 1 LSTM unit

State of the art for

- text translation by machines

- handwriting recognition

- speech recognition

- image captioning

e.g. Xu et al. 2015

Trained with BackProp

Previous slide.

And now we take many of these LSTM units and build networks. LSTM networks are

the state-of-the-art approach for all applications that involve sequences.

29/03/2019

97

Deep networks with recurrent connections (Lecture 1)

Network desribes the

image with the words:

‘a man sitting on a couch with a dog’

‘a man sitting on a couch with a dog’

(Fang et al. 2015)

Previous slide.

For example the caption-generating network presented at the beginning of lecture 1

used a recurrent network of LSTM units to generate the text of the caption.

29/03/2019

98

8. LSTM in Deep networks with recurrent connections

Xu et al. (2015), Show, attend and tell: Neural image caption generation…, ICML

Previous slide.

Some of the applications used a slightly simplified variant of LSTM units, but the ideas

are the same.

29/03/2019

99

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Artificial Neural Networks: Lecture 6

Sequences and Recurrent Networks
Objectives for today:

- Why are sequences important?

they are everywhere; labeling is (mostly) for free

- Long-term dependencies in sequence data

unknown time scales, fast and slow

- Sequence processing with feedforward models

corresponds to n-gram=finite memory

- Sequence processing with recurrent models

potentially unlimited memory, but:

- Vanishing Gradient Problem

error information does not travel back beyond a few steps

- Long-Short-Term Memory (LSTM)

explicit memory units keep information beyond a few steps

- Application: Music generation

The end

