Correction Serie 4/5

April 1, 2019

Exercise 2. Soit $\Gamma=\mathbb{Z} u+\mathbb{Z} v$ un reseau avec une base donnee.

1. In order to show that the set $\operatorname{End}_{\mathcal{L}^{2}}(\Gamma)$ of endomorphisms of the lattice can be identified with $M_{2}(\mathbb{Z})$, we define the following bijective map

$$
\Psi: \operatorname{End}_{\mathcal{L}^{2}}(\Gamma) \rightarrow M_{2}(\mathbb{Z})
$$

as follows. Let $\phi \in \operatorname{End}_{\mathcal{L}^{2}}(\Gamma)$. The action of ϕ is defined by its action on the two basis vectors of the lattice, u and v. Let $\phi(u)=a u+c v$ and $\phi(b)=b u+d v$. Then define

$$
\Psi(\phi)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

This map is clearly injective, by construction. If $\Psi(\phi)=\Psi(\varphi)$ for two lattice endomorphisms, then ϕ and φ coincide on the basis vectors, hence $\phi=\varphi$. In order to show surjectivity, let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2}(\mathbb{Z})$. The endomorphism ϕ defined on the basis vectors by $\phi(u)=a u+c v$ and $\phi(b)=b u+d v$ satisfies $\Psi(\phi)=M$ by construction. Hence Ψ is surjective.
2. We already know that $\mathrm{GL}_{2}(\mathbb{R})$ is a group. So in order to show that $\mathrm{GL}_{2}(\mathbb{Z})$ is a group, we can show that it is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$. Let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $a, b, c, d \in \mathbb{Z}$. Its inverse is $M^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -a & a\end{array}\right]$, and hence since $a d-b c= \pm 1$, $M^{-1} \in \mathrm{GL}_{2}(\mathbb{Z})$. In order to show that $\mathrm{GL}_{2}(\mathbb{Z})$ is closed under multiplication, take $M, N \in \mathrm{GL}_{2}(\mathbb{Z})$. It holds that $M * N \in \mathrm{GL}_{2}(\mathbb{Z})$, since clearly the entries are integers, and furthermore $\operatorname{det}(M * N)=\operatorname{det} M \operatorname{det} N= \pm 1$.
3. We want to show that

$$
\Psi\left(\operatorname{Aut}_{\mathcal{L}^{2}}(\Gamma)\right)=\mathrm{GL}_{2}(\mathbb{Z})
$$

holds. First, let $\phi \in \operatorname{Aut}_{\mathcal{L}^{2}}(\Gamma)$. Since ϕ is bijective, there exists $\varphi \in \operatorname{Aut}_{\mathcal{L}^{2}}(\Gamma)$ such that $\phi \circ \varphi=\varphi \circ \phi=\mathrm{Id}$. But since $\Psi(\phi) * \Psi(\varphi)=\Psi(\phi \circ \varphi)=\mathrm{Id}_{2}$, the 2×2 identitiy
matrix, we get, passing to the determinant,

$$
\begin{aligned}
\operatorname{det}(\Psi(\phi) * \Psi(\varphi)) & =\operatorname{det}\left(\operatorname{Id}_{2}\right) \\
\Leftrightarrow \operatorname{det}(\Psi(\phi) * \Psi(\varphi)) & =1
\end{aligned}
$$

Since the determinants are integers, it follws that $\operatorname{det}(\Psi(\phi))= \pm 1$, and hence $\Psi(\phi) \in \mathrm{GL}_{2}(\mathbb{Z})$.

In order to show the other direction, let $M \in \mathrm{GL}_{2}(\mathbb{Z})$. We want to show that $\Psi^{-1}(M) \in \operatorname{Aut}_{\mathcal{L}^{2}}(\Gamma)$, i.e. that $\Psi^{-1}(M)$ is bijective. Since $M \in \mathrm{GL}_{2}(\mathbb{Z})$, there exists an inverse matrix $M^{-1} \in \mathrm{GL}_{2}(\mathbb{Z})$. It holds that $\Psi^{-1}(M) \circ \Psi^{-1}\left(M^{-1}\right)=$ $\Psi^{-1}\left(M * M^{-1}\right)=\Psi^{-1}\left(\mathrm{Id}_{2}\right)=\mathrm{Id}$, which shows that $\Psi^{-1}(M)$ is bijective.
4. Let u^{\prime}, v^{\prime} be a basis of Γ. We can write $u^{\prime}=a u+c v, v^{\prime}=b u+d v$. Let $\phi \in \operatorname{End}_{\mathcal{L}^{2}}(\Gamma)$ be defined by $\phi(u)=u^{\prime}$ and $\phi(v)=v^{\prime}$. This is a bijective morphism, and therefore $\phi \in \operatorname{Aut}_{\mathcal{L}^{2}}(\Gamma)$. By 3. it follows that the matrix $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{GL}_{2}(\mathbb{Z})$, and so $a d-b c= \pm 1$.
On the other hand, if we have

$$
u^{\prime}=a u+c v, \quad v^{\prime}=b u+d v
$$

with $a d-b c= \pm 1$, then by 3 ., this corresponds to an automorphism ϕ defined by $u^{\prime}=\phi(u)=a u+c v, v^{\prime}=\phi(v)=b u+d v$. It follows that $\left(u^{\prime}, v^{\prime}\right)$ is a basis of Γ.
5. Let $\mathbf{P}_{u, v}$ be the parallelogram spanned by the two vectors u, v. The surface area is equal to the length of the cross product $u \times v$,

$$
\operatorname{Aire}\left(\mathbf{P}_{u, v}\right)=|u \times v|=\left|u_{x} v_{y}-u_{y} v_{x}\right|=|\operatorname{det} \underbrace{\left[\begin{array}{ll}
u_{x} & v_{x} \\
u_{y} & v_{y}
\end{array}\right]}_{:=M_{u, v}}|,
$$

where $u=\left[\begin{array}{l}u_{x} \\ u_{y}\end{array}\right]$, and equivalently for v.
Let $\left(u^{\prime}, v^{\prime}\right)$ be an other basis of the lattice Γ. Let $M_{u, v}$ respecitvely $M_{u^{\prime}, v^{\prime}}$ be the matrices corresponding to (u, v), repsectivley $\left(u^{\prime}, v^{\prime}\right)$. Denote by $B \in \mathrm{GL}_{2}(\mathbb{Z})$ the matrix of the base change, as defined in 4., with $M_{u, v} * B=M_{u^{\prime}, v^{\prime}}$. It follows that
$\operatorname{Aire}\left(\mathbf{P}_{u^{\prime}, v^{\prime}}\right)=\left|\operatorname{det} M_{u^{\prime}, v^{\prime}}\right|=\left|\operatorname{det}\left(M_{u, v} * B\right)\right|=\left|\operatorname{det} M_{u, v}\right||\operatorname{det} B|=\left|\operatorname{det} M_{u, v}\right|=\operatorname{Aire}\left(\mathbf{P}_{u, v}\right)$
Exercise 3. 1. Let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{GL}_{2}(\mathbb{R})$ and $L=\mathbb{Z} u+\mathbb{Z} v=\mathbb{Z}\left[\begin{array}{l}u_{x} \\ u_{y}\end{array}\right]+\mathbb{Z}\left[\begin{array}{l}v_{x} \\ v_{y}\end{array}\right] \in \mathcal{L}_{2}$.
We define the action of $\mathrm{GL}_{2}(\mathbb{R})$ on \mathcal{L}_{2} as follows

$$
M . L=\mathbb{Z} M \cdot u+\mathbb{Z} M . v=\mathbb{Z}\left[\begin{array}{l}
a u_{x}+b u_{y} \\
c u_{x}+d u_{y}
\end{array}\right]+\mathbb{Z}\left[\begin{array}{l}
a v_{x}+b v_{y} \\
c v_{x}+d v_{y}
\end{array}\right]
$$

This is clearly an action, as one can easily check.
2. In order to show that this action is transitive, let $\Gamma=\mathbb{Z} u+\mathbb{Z} v=\mathbb{Z}\left[\begin{array}{l}u_{x} \\ u_{y}\end{array}\right]+\mathbb{Z}\left[\begin{array}{l}v_{x} \\ v_{y}\end{array}\right]$. Let e_{1}, e_{2} be the two standard basis vectors of \mathbb{R}^{2}. Then it holds that with $M=$ $\left[\begin{array}{ll}u_{x} & v_{x} \\ u_{y} & v_{y}\end{array}\right]$

$$
M .\left(\mathbb{Z} e_{1}+\mathbb{Z} e_{2}\right)=\mathbb{Z} M \cdot e_{1}+\mathbb{Z} M \cdot e_{2}=\mathbb{Z}\left[\begin{array}{l}
u_{x} \\
u_{y}
\end{array}\right]+\mathbb{Z}\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]=\mathbb{Z} u+\mathbb{Z} v .
$$

This means that there exists only one orbit, and so the action is transitive.
3. The stabiliser of the lattice $\mathbb{Z}^{2}=\mathbb{Z} e_{1}+\mathbb{Z} e_{2}$ is the set of matrices M for which $M \cdot \mathbb{Z}^{2}=\mathbb{Z}^{2}$ holds. Let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{GL}_{2}(\mathbb{R})$ with $M \cdot \mathbb{Z}^{2}=\mathbb{Z}^{2}$. It holds that

$$
M \cdot \mathbb{Z}^{2}=M \cdot\left(\mathbb{Z} e_{1}+\mathbb{Z} e_{2}\right)=\mathbb{Z} M \cdot e_{1}+\mathbb{Z} M \cdot e_{2}=\underbrace{\mathbb{Z}}_{=: u}\left[\begin{array}{l}
a \\
c
\end{array}\right]+\underbrace{\left[\begin{array}{l}
b \\
d
\end{array}\right]}_{=: v} .
$$

If M is contained in the stabiliser, then the vectors $u=a e_{1}+c e_{2}$ and $v=b e_{1}+d e_{2}$ form a basis of \mathbb{Z}^{2}. By question 4. of the previous exercise, this holds exactly if $a, b, c, d \in \mathbb{Z}$ such that $a d-b c= \pm 1$, which by definition means that $M \in \mathrm{GL}_{2}(\mathbb{Z})$. By the Orbit/Stabiliser Theorem, there is an isomorphism

$$
\mathcal{L}_{2} \simeq \mathrm{GL}_{2}(\mathbb{R}) / \mathrm{GL}_{2}(\mathbb{Z})
$$

4. Let $M \in \mathrm{GL}_{2}(\mathbb{R})$ and Γ a lattice. Then

$$
\operatorname{vol}(M \cdot \Gamma)=|\operatorname{det} M| \operatorname{vol}(\Gamma)
$$

is a direct consequence of the definiton of the volume in question 5 . of the previous exercise.

Exercise 4. For $z \in \mathbb{C}^{*}$ non-real, we define the lattice

$$
\Gamma_{z}:=\mathbb{Z}+\mathbb{Z} . z
$$

with basis $(1, z)$.

1. The volume of Γ_{z} is equal to the determinant of the matrix M that contains in its columns the coordinates of 1 and z in the standard basis. Let $z=x+i y$. Then $M=\left[\begin{array}{ll}1 & x \\ 0 & y\end{array}\right]$. Hence $\operatorname{vol}\left(\Gamma_{z}\right)=|\operatorname{det} M|=|y|$.
2. As seen in Serie 3,

$$
\mathcal{D}_{\mathrm{SL}_{2}(\mathbb{Z})}=\{z \in \mathbb{H} \mid \operatorname{Re}(z) \in[-1 / 2,1 / 2[,|z|>1\} \cup\{z \in \mathbb{H}|\operatorname{Re}(z) \in[-1 / 2,0],|z|=1\}
$$ is a fundamental domain for the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathbb{H}. Let $z=x+i y \in \mathcal{D}_{\mathrm{SL}_{2}(\mathbb{Z})}$, and define the lattice $\Gamma_{z}=\mathbb{Z} .1+\mathbb{Z} . z$.

First we show that 1 is the element of smallest length in Γ_{z}. Let $\gamma=c+d z \in \Gamma_{z}$, with $c, d \in \mathbb{Z}$, not both equal to zero. We want to show that $|\gamma| \geq 1$ holds.

- If $d=0$, then $\gamma=c$ and so $|\gamma|=|c| \geq 1$.
- If $d=1$, then $\gamma=c+z$ and

$$
\begin{aligned}
|\gamma| & =|c+(x+i y)|=\sqrt{(c+x)^{2}+y^{2}}=\sqrt{c^{2}+2 c x+x^{2}+y^{2}} \\
& \geq \sqrt{c^{2}+2 c x+1} \xrightarrow{* *} \sqrt{-c+c^{2}+1} \geq 1 .
\end{aligned}
$$

The inequality $*$ follows from the fact that $x^{2}+y^{2}=|z|^{2} \geq 1$ in $\mathcal{D}_{\mathrm{SL}_{2}(\mathbb{Z})}$ and at $* *$ we use the fact that $x \geq-1 / 2$, and so $2 c x \geq-c$.

- If $d=-1$, a similar computation to the one above shows that $|\gamma| \geq 1$.
- If $|d| \geq 2$, we consider

$$
\begin{aligned}
|\gamma| & =|c+d z|=\sqrt{(\operatorname{Re}(c+d z))^{2}+(\operatorname{Im}(c+d z))^{2}} \\
& \geq|\operatorname{Im}(c+d z)|=|d||\operatorname{Im}(z)| \geq|d| \frac{\sqrt{3}}{2}>1 .
\end{aligned}
$$

where the last inequality holds due to the fact that $|z| \geq 1$, and so

$$
\sqrt{x^{2}+y^{2}} \geq 1 \Rightarrow y^{2} \geq 1-x^{2} \geq 1-\left(\frac{1}{2}\right)^{2}=\frac{3}{4} \Rightarrow y \geq \frac{\sqrt{3}}{2}
$$

Next we show that z is minimal amongst the elements in the lattice that are noncollinear to 1 . Let $\gamma=c+d z \in \Gamma_{z}$, with $c, d \in \mathbb{Z}, d \neq 0$. We want to show that $|\gamma| \geq|z|$ holds.

- For $d=1$, we have $\gamma=c+z$, and so

$$
\begin{aligned}
|\gamma| & =|c+x+i y|=\sqrt{(c+x)^{2}+y^{2}}=\sqrt{c^{2}+2 c x+x^{2}+y^{2}} \\
& \geq \sqrt{c^{2}-c+x^{2}+y^{2}} \geq \sqrt{x^{2}+y^{2}}=|z| .
\end{aligned}
$$

The inequality $*$ holds because $x \geq-1 / 2$.

- Similarly for $d=-1$.
- Let $\gamma=c+d z$ with $|d| \geq 2$. We want to show that

$$
\begin{aligned}
|\gamma| & \geq|z| \\
\Leftrightarrow|\gamma|^{2} & \geq|z|^{2} \\
\Leftrightarrow|c+d(x+i y)|^{2} & \geq|x+i y|^{2} \\
\Leftrightarrow \underbrace{(c+d x)^{2}}_{\geq 0}+(d y)^{2}-x^{2}-y^{2} & \geq 0
\end{aligned}
$$

We show that

$$
\begin{aligned}
d^{2} y^{2}-x^{2}-y^{2} & \geq 0 \\
\Leftrightarrow\left(d^{2}-1\right) y^{2}-x^{2} & \geq 0 .
\end{aligned}
$$

Since $|z| \geq 1 \Rightarrow y^{2} \geq 1-x^{2}$, and so

$$
\left(d^{2}-1\right) y^{2}-x^{2} \geq\left(d^{2}-1\right)\left(1-x^{2}\right)-x^{2}=d^{2}\left(1-x^{2}\right)-1+x^{2}-x^{2}=d^{2} \underbrace{\left(1-x^{2}\right)}_{\geq 3 / 4}-1 \geq 0,
$$

since $|d| \geq 2$.
Exercise 6. 1. Let $\mathbf{P}^{\prime}=\gamma+\mathbf{P}$ be the translation of the fundamental parallelogram \mathbf{P} by $\gamma \in \Gamma$. Suppose that \mathbf{P}^{\prime} intersects the circle $C(0, R)$. The distance between any two points contained in \mathbf{P}^{\prime} is at most $2 r_{0}$. Hence if \mathbf{P}^{\prime} intersects $C(0, R)$, then the distance between any point of \mathbf{P}^{\prime} and the origin 0 is at most $R+2 r_{0}$, and so $\mathbf{P}^{\prime} \subset B\left(0, R+2 r_{0}\right)$. Similarly, no point of \mathbf{P}^{\prime} intersects the ball $B\left(0, R-3 r_{0}\right)$.
2. Let N denote the number of parallelograms $\gamma+\mathbf{P}$ that are contained in $C(0, R)$. By 1., it holds that the surface area of the union of all these parallelograms contianed in $C(0, R)$ is equal to $\operatorname{Aire}(\mathbf{P}) N$, which is bounded above (respectively below) by the circle $C\left(0, R+2 r_{0}\right)$, respectively $R\left(0, R-2 r_{0}\right)$. It follows that

$$
\begin{aligned}
& \text { surface area of } C\left(0, R-3 r_{0}\right) \leq \operatorname{Aire}(P) N \leq \text { surface area of } C\left(0, R+2 r_{0}\right) \\
& \Leftrightarrow \pi\left(R-3 r_{0}\right)^{2} \leq \operatorname{vol}(\Gamma) N \leq \pi\left(R+2 r_{0}\right)^{2} \\
& \Leftrightarrow \frac{\pi\left(R-3 r_{0}\right)^{2}}{\operatorname{vol}(\Gamma)} \leq N \leq \frac{\pi\left(R+2 r_{0}\right)^{2}}{\operatorname{vol}(\Gamma)} \\
& \Leftrightarrow \frac{\pi\left(R^{2}-6 R r_{0}+9 r_{0}^{2}\right)}{\operatorname{vol}(\Gamma)} \leq N \leq \frac{\pi\left(R^{2}+4 R r_{0}+4 r_{0}^{2}\right)}{\operatorname{vol}(\Gamma)} \\
& \Leftrightarrow \frac{\pi R^{2}}{\operatorname{vol}(\Gamma)}+\frac{\pi\left(-6 R r_{0}+9 r_{0}^{2}\right)}{\operatorname{vol}(\Gamma)} \leq N \leq \frac{\pi R^{2}}{\operatorname{vol}(\Gamma)}+\frac{\pi\left(4 R r_{0}+4 r_{0}^{2}\right)}{\operatorname{vol}(\Gamma)} \\
& \Leftrightarrow \frac{\pi\left(-6 R r_{0}+9 r_{0}^{2}\right)}{\operatorname{vol}(\Gamma)} \leq \underbrace{N-\frac{\pi R^{2}}{\operatorname{vol}(\Gamma)}}_{=: A} \leq \frac{\pi\left(4 R r_{0}+4 r_{0}^{2}\right)}{\operatorname{vol}(\Gamma)}
\end{aligned}
$$

Hence $N=\frac{\pi R^{2}}{\operatorname{vol}(\Gamma)}+A$, where A is a function depending on R.
3. We show that the limit $\delta(\Gamma, r)=\lim _{R \rightarrow \infty} \frac{\operatorname{Aire}(B(0, R) \cap \Gamma(r))}{\pi R^{2}}$ exists for r satisfying the condition that

$$
\begin{equation*}
\gamma \neq \gamma^{\prime} \in \Gamma \Rightarrow B(\gamma, r) \cap B\left(\gamma^{\prime}, r\right)=\emptyset \tag{1}
\end{equation*}
$$

and that its value is $\frac{\pi r^{2}}{\operatorname{vol}(\Gamma)}$.
According to the previous question, there are $\sim \frac{\pi R^{2}}{\operatorname{vol}(\Gamma)}$ lattice points that are contained in $C(0, R)$. For each of this points, we get a ball with radius r that is contained in $C(0, R)$. The surface are of all of these balls is equal to $\frac{\pi R^{2}}{\operatorname{vol}(\Gamma)} \pi r^{2}$, and so it follows that

$$
\delta(\Gamma, r)=\lim _{R \rightarrow \infty} \frac{\operatorname{Aire}(B(0, R) \cap \Gamma(r))}{\pi R^{2}} \sim \frac{\frac{\pi R^{2}}{\operatorname{vol}(\Gamma)} \pi r^{2}}{\pi R^{2}} \sim \frac{\pi r^{2}}{\operatorname{vol}(\Gamma)} .
$$

4. Let $\gamma_{0}, \gamma_{1} \in \Gamma$ such that $\Gamma=\mathbb{Z} \gamma_{0}+\mathbb{Z} \gamma_{1}$. Suppose that $\left|\gamma_{0}\right| \leq\left|\gamma_{1}\right|$. Then the maximal radius r_{Γ}, for which (1) is satisfied is $r_{\Gamma}=\frac{\left|\gamma_{0}\right|}{2}$. This can be seen by considering the translation of the fundamental parallelogram. In order for a radius r to satisfy condition (1), a ball centered in the middle of the parallelogram needs to be contained inside the parallelogram. This holds for a radius of maximal length $\frac{\left|\gamma_{0}\right|}{2}$, where $\left|\gamma_{0}\right|$ denotes the smaller side of the parallelogram.
We define $\delta(\Gamma)=\delta\left(\Gamma, r_{\Gamma}\right)=\frac{\pi r_{\Gamma}^{2}}{\operatorname{vol}(\Gamma)}$.
5. We want to show that $\delta(\Gamma)$ doesn't vary under homothetie and under rotation.

Homothetie Let the lattice $\alpha \Gamma$ be defined by the two basis vectors $\alpha \gamma_{0}=\left[\begin{array}{l}\alpha \gamma_{0, x} \\ \alpha \gamma_{0, y}\end{array}\right]$, where $\gamma_{0}=\left[\begin{array}{l}\gamma_{0, x} \\ \gamma_{0, y}\end{array}\right]$ and $\alpha \gamma_{1}$, for $\alpha \in \mathbb{R}$. It holds that

$$
r_{\alpha \Gamma}=\frac{\left|\alpha \gamma_{0}\right|}{2}=\frac{|\alpha|\left|\gamma_{0}\right|}{2}=|\alpha| r_{\Gamma}
$$

and
$\operatorname{vol}(\alpha \Gamma)=\operatorname{Aire}\left(P_{\alpha \gamma_{0}, \alpha \gamma_{1}}\right)=\left|\alpha \gamma_{0} \times \alpha \gamma_{1}\right|=\alpha^{2}\left|\gamma_{0} \times \gamma_{1}\right|=\alpha^{2} \operatorname{Aire}\left(P_{\gamma_{0}, \gamma_{1}}\right)=\alpha^{2} \operatorname{vol}(\Gamma)$.
Therefore

$$
\delta(\alpha \Gamma)=\delta\left(\alpha \Gamma, r_{\alpha \Gamma}\right)=\frac{\pi r_{\alpha \Gamma}^{2}}{\operatorname{vol}(\alpha \Gamma)}=\frac{\pi\left(|\alpha| r_{\Gamma}\right)^{2}}{\alpha^{2} \operatorname{vol}(\Gamma)}=\frac{\pi r_{\Gamma}^{2}}{\operatorname{vol}(\Gamma)}=\delta(\Gamma) .
$$

Rotation Let $M_{\text {rot }}=\left[\begin{array}{cc}c & -s \\ x & c\end{array}\right] \in \mathrm{SO}_{2}(\mathbb{R})$ be the matrix of a rotation with angle $\theta, c=\cos \theta, s=\sin \theta$. By notation of exercise 3, the rotation of the lattice Γ is defined to be

$$
\Gamma_{\text {rot }}:=M_{\text {rot }} \Gamma=\mathbb{Z} M_{\text {rot }} \gamma_{0}+\mathbb{Z} M_{\text {rot }} \gamma_{1} .
$$

It holds that

$$
r_{\Gamma_{r o t}}=\frac{\left|\gamma_{0}\right|}{2}=r_{\Gamma},
$$

since the rotation does not change the length of the basis vectors. Furthermore,

$$
\operatorname{vol}\left(\Gamma_{r o t}\right)=\operatorname{vol}\left(M_{r o t} \Gamma\right)=\left|\operatorname{det} M_{r o t}\right| \operatorname{vol}(\Gamma)=\operatorname{vol}(\Gamma),
$$

since the determinant of the rotation matrix is one. Therefore

$$
\delta\left(\Gamma_{r o t}\right)=\delta\left(\Gamma_{r o t}, r_{\Gamma_{r o t}}\right)=\frac{\pi r_{\Gamma_{r o t}}^{2}}{\operatorname{vol}\left(\Gamma_{r o t}\right)}=\frac{\pi r_{\Gamma}^{2}}{\operatorname{vol}(\Gamma)}=\delta(\Gamma)
$$

6. We suppose that $\Gamma=\Gamma_{z}=\mathbb{Z}+\mathbb{Z} z$, with $z \in \mathcal{D}_{\mathrm{SL}_{2}(\mathbb{Z})}$. We want to show that $\delta\left(\Gamma_{z}\right)=\frac{\pi r_{\Gamma_{z}}^{2}}{\operatorname{vol}\left(\Gamma_{z}\right)}$ is maximal for $z=\omega_{3}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$. The value for $r_{\Gamma_{z}}$ is defined by
the value of the first basis vector 1 , and is therefore independant of the z. Hence in order for $\delta\left(\Gamma_{z}\right)$ to be maximal, we choose z in a way that $\operatorname{vol}\left(\Gamma_{z}\right)$ is minimal. Let $z=x+i y$. Then $\operatorname{vol}\left(\Gamma_{z}\right)=y$. Since $|z| \geq 1$ it follows that

$$
\sqrt{x^{2}+y^{2}} \geq 1 \Rightarrow y^{2} \geq 1-\underbrace{x^{2}}_{\in\left[0,(1 / 2)^{2}\right]}
$$

The imaginary part y is minimal if x^{2} is maximal, hence if $x= \pm \frac{1}{2}$, and if the inequality $y^{2} \geq 1-x^{2}$ is an equality, hence if $|z|=1$. In that case $x=-\frac{1}{2}$ and $y=\sqrt{1-x^{2}}=\frac{\sqrt{3}}{2}$.

