
Correction Serie 4/5

April 1, 2019

Exercise 2. Soit Γ = Zu+ Zv un reseau avec une base donnee.

1. In order to show that the set EndL2(Γ) of endomorphisms of the lattice can be
identified with M2(Z), we define the following bijective map

Ψ : EndL2(Γ)→M2(Z)

as follows. Let φ ∈ EndL2(Γ). The action of φ is defined by its action on the two
basis vectors of the lattice, u and v. Let φ(u) = au+ cv and φ(b) = bu+ dv. Then
define

Ψ(φ) =

[
a b
c d

]
This map is clearly injective, by construction. If Ψ(φ) = Ψ(ϕ) for two lattice
endomorphisms, then φ and ϕ coincide on the basis vectors, hence φ = ϕ. In order

to show surjectivity, let M =

[
a b
c d

]
∈ M2(Z). The endomorphism φ defined on

the basis vectors by φ(u) = au + cv and φ(b) = bu + dv satisfies Ψ(φ) = M by
construction. Hence Ψ is surjective.

2. We already know that GL2(R) is a group. So in order to show that GL2(Z) is

a group, we can show that it is a subgroup of GL2(R). Let M =

[
a b
c d

]
with

a, b, c, d ∈ Z. Its inverse is M−1 = 1
ad−bc

[
d −b
−a a

]
, and hence since ad− bc = ±1,

M−1 ∈ GL2(Z). In order to show that GL2(Z) is closed under multiplication, take
M,N ∈ GL2(Z). It holds that M ∗ N ∈ GL2(Z), since clearly the entries are
integers, and furthermore det(M ∗N) =detMdetN = ±1.

3. We want to show that
Ψ(AutL2(Γ)) = GL2(Z)

holds. First, let φ ∈ AutL2(Γ). Since φ is bijective, there exists ϕ ∈ AutL2(Γ) such
that φ◦ϕ = ϕ◦φ = Id . But since Ψ(φ)∗Ψ(ϕ) = Ψ(φ◦ϕ) = Id2, the 2×2 identitiy
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matrix, we get, passing to the determinant,

det(Ψ(φ) ∗Ψ(ϕ)) = det(Id2)

⇔ det(Ψ(φ) ∗Ψ(ϕ)) = 1

Since the determinants are integers, it follws that det(Ψ(φ)) = ±1, and hence
Ψ(φ) ∈ GL2(Z).

In order to show the other direction, let M ∈ GL2(Z). We want to show that
Ψ−1(M) ∈ AutL2(Γ), i.e. that Ψ−1(M) is bijective. Since M ∈ GL2(Z), there
exists an inverse matrix M−1 ∈ GL2(Z). It holds that Ψ−1(M) ◦ Ψ−1(M−1) =
Ψ−1(M ∗M−1) = Ψ−1(Id2) = Id, which shows that Ψ−1(M) is bijective.

4. Let u′, v′ be a basis of Γ. We can write u′ = au+cv, v′ = bu+dv. Let φ ∈ EndL2(Γ)
be defined by φ(u) = u′ and φ(v) = v′. This is a bijective morphism, and therefore

φ ∈ AutL2(Γ). By 3. it follows that the matrix M =

[
a b
c d

]
∈ GL2(Z), and so

ad− bc = ±1.

On the other hand, if we have

u′ = au+ cv, v′ = bu+ dv,

with ad− bc = ±1, then by 3., this corresponds to an automorphism φ defined by
u′ = φ(u) = au+ cv, v′ = φ(v) = bu+ dv. It follows that (u′, v′) is a basis of Γ.

5. Let Pu,v be the parallelogram spanned by the two vectors u, v. The surface area is
equal to the length of the cross product u× v,

Aire(Pu,v) =
∣∣u× v∣∣ =

∣∣uxvy − uyvx∣∣ =
∣∣∣ det

[
ux vx
uy vy

]
︸ ︷︷ ︸

:=Mu,v

∣∣∣,

where u =

[
ux
uy

]
, and equivalently for v.

Let (u′, v′) be an other basis of the lattice Γ. Let Mu,v respecitvely Mu′,v′ be the
matrices corresponding to (u, v), repsectivley (u′, v′). Denote by B ∈ GL2(Z) the
matrix of the base change, as defined in 4., with Mu,v ∗B = Mu′,v′ . It follows that

Aire(Pu′,v′) =
∣∣ detMu′,v′

∣∣ =
∣∣ det(Mu,v∗B)

∣∣ =
∣∣ detMu,v

∣∣∣∣ detB
∣∣ =

∣∣ detMu,v

∣∣ = Aire(Pu,v)

Exercise 3. 1. Let M =

[
a b
c d

]
∈ GL2(R) and L = Zu+Zv = Z

[
ux
uy

]
+Z

[
vx
vy

]
∈ L2.

We define the action of GL2(R) on L2 as follows

M.L = ZM.u+ ZM.v = Z
[
aux + buy
cux + duy

]
+ Z

[
avx + bvy
cvx + dvy

]
This is clearly an action, as one can easily check.
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2. In order to show that this action is transitive, let Γ = Zu+Zv = Z
[
ux
uy

]
+Z

[
vx
vy

]
.

Let e1, e2 be the two standard basis vectors of R2. Then it holds that with M =[
ux vx
uy vy

]
M.(Ze1 + Ze2) = ZM.e1 + ZM.e2 = Z

[
ux
uy

]
+ Z

[
vx
vy

]
= Zu+ Zv.

This means that there exists only one orbit, and so the action is transitive.

3. The stabiliser of the lattice Z2 = Ze1 + Ze2 is the set of matrices M for which

M.Z2 = Z2 holds. Let M =

[
a b
c d

]
∈ GL2(R) with M.Z2 = Z2. It holds that

M.Z2 = M.(Ze1 + Ze2) = ZM.e1 + ZM.e2 = Z
[
a
c

]
︸︷︷︸
=:u

+Z
[
b
d

]
︸︷︷︸
=:v

.

If M is contained in the stabiliser, then the vectors u = ae1 +ce2 and v = be1 +de2

form a basis of Z2. By question 4. of the previous exercise, this holds exactly if
a, b, c, d ∈ Z such that ad− bc = ±1, which by definition means that M ∈ GL2(Z).
By the Orbit/Stabiliser Theorem, there is an isomorphism

L2 ' GL2(R)/GL2(Z).

4. Let M ∈ GL2(R) and Γ a lattice. Then

vol(M · Γ) =
∣∣ detM

∣∣ vol(Γ)

is a direct consequence of the definiton of the volume in question 5. of the previous
exercise.

Exercise 4. For z ∈ C∗ non-real, we define the lattice

Γz := Z + Z.z

with basis (1, z).

1. The volume of Γz is equal to the determinant of the matrix M that contains in its
columns the coordinates of 1 and z in the standard basis. Let z = x + iy. Then

M =

[
1 x
0 y

]
. Hence vol(Γz) =

∣∣ detM
∣∣ = |y|.

2. As seen in Serie 3,

DSL2(Z) = {z ∈ H|Re(z) ∈ [−1/2, 1/2[, |z| > 1}∪{z ∈ H|Re(z) ∈ [−1/2, 0], |z| = 1}

is a fundamental domain for the action of SL2(Z) on H. Let z = x+ iy ∈ DSL2(Z),
and define the lattice Γz = Z.1 + Z.z.
First we show that 1 is the element of smallest length in Γz. Let γ = c+ dz ∈ Γz,
with c, d ∈ Z, not both equal to zero. We want to show that |γ| ≥ 1 holds.
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• If d = 0, then γ = c and so |γ| = |c| ≥ 1.

• If d = 1, then γ = c+ z and

|γ| = |c+ (x+ iy)| =
√

(c+ x)2 + y2 =
√
c2 + 2cx+ x2 + y2

∗
≥
√
c2 + 2cx+ 1

∗∗
≥
√
−c+ c2 + 1 ≥ 1.

The inequality ∗ follows from the fact that x2 + y2 = |z|2 ≥ 1 in DSL2(Z) and
at ∗∗ we use the fact that x ≥ −1/2, and so 2cx ≥ −c.
• If d = −1, a similar computation to the one above shows that |γ| ≥ 1.

• If |d| ≥ 2, we consider

|γ| = |c+ dz| =
√

(Re(c+ dz))2 + (Im(c+ dz))2

≥ | Im(c+ dz)| = |d|| Im(z)| ≥ |d|
√

3

2
> 1.

where the last inequality holds due to the fact that |z| ≥ 1, and so√
x2 + y2 ≥ 1⇒ y2 ≥ 1− x2 ≥ 1−

(
1

2

)2

=
3

4
⇒ y ≥

√
3

2
.

Next we show that z is minimal amongst the elements in the lattice that are non-
collinear to 1. Let γ = c + dz ∈ Γz, with c, d ∈ Z, d 6= 0. We want to show that
|γ| ≥ |z| holds.

• For d = 1, we have γ = c+ z, and so

|γ| = |c+ x+ iy| =
√

(c+ x)2 + y2 =
√
c2 + 2cx+ x2 + y2

∗
≥
√
c2 − c+ x2 + y2 ≥

√
x2 + y2 = |z|.

The inequality * holds because x ≥ −1/2.

• Similarly for d = −1.

• Let γ = c+ dz with |d| ≥ 2. We want to show that

|γ| ≥ |z|
⇔ |γ|2 ≥ |z|2

⇔ |c+ d(x+ iy)|2 ≥ |x+ iy|2

⇔ (c+ dx)2︸ ︷︷ ︸
≥0

+(dy)2 − x2 − y2 ≥ 0

We show that

d2y2 − x2 − y2 ≥ 0

⇔ (d2 − 1)y2 − x2 ≥ 0.
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Since |z| ≥ 1⇒ y2 ≥ 1− x2, and so

(d2−1)y2−x2 ≥ (d2−1)(1−x2)−x2 = d2(1−x2)−1+x2−x2 = d2 (1− x2)︸ ︷︷ ︸
≥3/4

−1 ≥ 0,

since |d| ≥ 2.

Exercise 6. 1. Let P′ = γ + P be the translation of the fundamental parallelogram
P by γ ∈ Γ. Suppose that P′ intersects the circle C(0, R). The distance between
any two points contained in P′ is at most 2r0. Hence if P′ intersects C(0, R), then
the distance between any point of P′ and the origin 0 is at most R + 2r0, and so
P′ ⊂ B(0, R + 2r0). Similarly, no point of P′ intersects the ball B(0, R− 3r0).

2. Let N denote the number of parallelograms γ+P that are contained in C(0, R). By
1., it holds that the surface area of the union of all these parallelograms contianed
in C(0, R) is equal to Aire(P)N, which is bounded above (respectively below) by
the circle C(0, R + 2r0), respectively R(0, R− 2r0). It follows that

surface area of C(0, R− 3r0) ≤ Aire(P )N ≤ surface area of C(0, R + 2r0)

⇔ π(R− 3r0)2 ≤ vol(Γ)N ≤ π(R + 2r0)2

⇔ π(R− 3r0)2

vol(Γ)
≤ N ≤ π(R + 2r0)2

vol(Γ)

⇔ π(R2 − 6Rr0 + 9r2
0)

vol(Γ)
≤ N ≤ π(R2 + 4Rr0 + 4r2

0)

vol(Γ)

⇔ πR2

vol(Γ)
+
π(−6Rr0 + 9r2

0)

vol(Γ)
≤ N ≤ πR2

vol(Γ)
+
π(4Rr0 + 4r2

0)

vol(Γ)

⇔ π(−6Rr0 + 9r2
0)

vol(Γ)
≤ N − πR2

vol(Γ)︸ ︷︷ ︸
=:A

≤ π(4Rr0 + 4r2
0)

vol(Γ)

Hence N = πR2

vol(Γ)
+ A, where A is a function depending on R.

3. We show that the limit δ(Γ, r) = lim
R→∞

Aire(B(0,R)∩Γ(r))
πR2 exists for r satisfying the

condition that
γ 6= γ′ ∈ Γ⇒ B(γ, r) ∩B(γ′, r) = ∅, (1)

and that its value is πr2

vol(Γ)
.

According to the previous question, there are ∼ πR2

vol(Γ)
lattice points that are con-

tained in C(0, R). For each of this points, we get a ball with radius r that is
contained in C(0, R). The surface are of all of these balls is equal to πR2

vol(Γ)
πr2, and

so it follows that

δ(Γ, r) = lim
R→∞

Aire(B(0, R) ∩ Γ(r))

πR2
∼

πR2

vol(Γ)
πr2

πR2
∼ πr2

vol(Γ)
.
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4. Let γ0, γ1 ∈ Γ such that Γ = Zγ0 + Zγ1. Suppose that |γ0| ≤ |γ1|. Then the

maximal radius rΓ, for which (1) is satisfied is rΓ = |γ0|
2
. This can be seen by

considering the translation of the fundamental parallelogram. In order for a radius
r to satisfy condition (1), a ball centered in the middle of the parallelogram needs
to be contained inside the parallelogram. This holds for a radius of maximal length
|γ0|
2
, where |γ0| denotes the smaller side of the parallelogram.

We define δ(Γ) = δ(Γ, rΓ) =
πr2

Γ

vol(Γ)
.

5. We want to show that δ(Γ) doesn’t vary under homothetie and under rotation.

Homothetie Let the lattice αΓ be defined by the two basis vectors αγ0 =

[
αγ0,x

αγ0,y

]
,

where γ0 =

[
γ0,x

γ0,y

]
and αγ1, for α ∈ R. It holds that

rαΓ =
|αγ0|

2
=
|α||γ0|

2
= |α|rΓ

and

vol(αΓ) = Aire(Pαγ0,αγ1) = |αγ0×αγ1| = α2|γ0×γ1| = α2 Aire(Pγ0,γ1) = α2 vol(Γ).

Therefore

δ(αΓ) = δ(αΓ, rαΓ) =
πr2

αΓ

vol(αΓ)
=
π(|α|rΓ)2

α2 vol(Γ)
=

πr2
Γ

vol(Γ)
= δ(Γ).

Rotation Let Mrot =

[
c −s
x c

]
∈ SO2(R) be the matrix of a rotation with angle

θ, c = cos θ, s = sin θ. By notation of exercise 3, the rotation of the lattice Γ
is defined to be

Γrot := MrotΓ = ZMrotγ0 + ZMrotγ1.

It holds that

rΓrot =
|γ0|
2

= rΓ,

since the rotation does not change the length of the basis vectors. Further-
more,

vol(Γrot) = vol(MrotΓ) = | detMrot| vol(Γ) = vol(Γ),

since the determinant of the rotation matrix is one. Therefore

δ(Γrot) = δ(Γrot, rΓrot) =
πr2

Γrot

vol(Γrot)
=

πr2
Γ

vol(Γ)
= δ(Γ).

6. We suppose that Γ = Γz = Z + Zz, with z ∈ DSL2(Z). We want to show that

δ(Γz) =
πr2

Γz

vol(Γz)
is maximal for z = ω3 = −1

2
± i

√
3

2
. The value for rΓz is defined by
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the value of the first basis vector 1, and is therefore independant of the z. Hence
in order for δ(Γz) to be maximal, we choose z in a way that vol(Γz) is minimal.
Let z = x+ iy. Then vol(Γz) = y. Since |z| ≥ 1 it follows that√

x2 + y2 ≥ 1⇒ y2 ≥ 1− x2︸︷︷︸
∈[0,(1/2)2]

.

The imaginary part y is minimal if x2 is maximal, hence if x = ±1
2
, and if the

inequality y2 ≥ 1 − x2 is an equality, hence if |z| = 1. In that case x = −1
2

and

y =
√

1− x2 =
√

3
2
.
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