

Funcionamiento de Gemasolar Gemasolar: how it works

Heliostatos / Heliostats

La luz solar incide sobre los heliostatos reflejándola hacia el receptor, situado en lo alto de la torre.

Solar light is refl ected by the heliostats towards the receiver, located on top of the tower.

Tanque 1 / Tank 1

Las sales, a 290°C, son bombeadas desde el tanque frío hasta el receptor.

Molten salts, at 290°C, are pumped from the cold molten salt tank to the receiver.

Torre / Tower

Dentro del receptor de torre, las sales son calentadas hasta 565°C antes de ser almacenadas en el tanque de sales calientes. Inside the receiver, molten salts are heated up to 565°C before being stored in the hot molten salt tank.

Fanque 2 / Tank 2

En el tanque de sales calientes se almacenan las sales fundidas a muy alta temperatura.

The hot molten salt tank keeps the energy accumulated in form of molten salts at very high temperature.

Generador de vapor / Steam Generator

Desde el tanque caliente las sales son conducidas al sistema de generación de vapor donde ceden calor y se enfrían.

The hot molten salts are delivered to the steam generation system, where they transfer their heat to the water, reducing their temperature.

Turbina / Turbine

Las sales al enfriarse generan vapor de agua a alta presión para mover la turbina.

The heat transferred transforms the water into high pressure steam to move the turbine.

Generador eléctrico / Electric Generator

La turbina mueve un generador eléctrico produciendo energía. The turbine powers the electric generator producing electrical energy.

Transformador / Electrical Transformer

La energía producida en el generador es conducida a un transformador eléctrico para ser inyectada a la red. The electricity is delivered to a transformer to be injected into the distribution grid.

Gemasolar: Datos destacados Gemasolar: key figures

Primera

First

- Primera planta comercial en el mundo con tecnología CSP
- Primer receptor solar de alta temperatura en sales fundidas
- Primera planta CSP con 15 horas de almacenamiento térmico
- First worldwide commercial application of this new CSP technology
- First high temperature solar receiver with molten salt
- First CSP plant with bours of thermal storage

Heliostats and Receiver

Heliostat:

Mirror reflectivity: r = 0.88

Heliostat concentration:

 $C = \frac{A_{Heliostat Field}}{A_{receiver}} = 1212 \text{ suns}$

Size of single heliostat: $A_{mirror} = 115 \text{ m}^2$

Receiver:

Absorption efficiency: $\eta_{ab} = 0.95$

Diameter = 8 m; Height = 10 m

Storage Tanks

Molten Salt: Sodium and potassium nitrates

 $c_p = 1.55 \frac{\text{kJ}}{\text{kgK}}, \rho_{salt} = 1750 \text{ kg/m}^3$ at 565°C

Hot Tank: $T = 565^{\circ}$ C, Diameter = 23 m, Height = 14 m

Cold Tank: $T = 290^{\circ}$ C, Diameter = 23 m, Height = 14 m

Steam Generator

Heat Exchanger:	efficiency: 0.8			
Condenser:	outlet temperature = 320 K, outlet steam quality = 0%			
	no pressure drop through condenser			
Pump:	adiabatic, outlet temperature = 325 K			

PowerBlock

Turbine: Siemens SST-600

adiabatic, outlet steam quality = 92.5 %

SST-600

up to 150MW

The SST-600 is a single-casing turbine with front admission, geared or with direct drive; suited to both generator and mechanical drives. Used for tailor-made applications for most complex processes in industry and power generation.

Technical data

- Power output up to 150MW
- Inlet pressure up to 165bar/2,393psi
- Inlet temperature up to 565°C/1,049°F
- Rotational speed 3,000–18,000rpm
 Up to 2 controlled extraction with
- Op to 2 controlled extraction with pressure up to 72bar/1,044psi
 Up to 7 bleeds at various pressure levels
- Exhaust pressure (back pressure) up to
- 72bar/1,044psi or condensing
- Exhaust area 0.2–8.0m²/1.9–38sq.ft.

"The plant Gemasolar uses a Siemens SST-600 Turbine with an inlet pressure of 100 bar and an inlet temperature of 542°C" (Fact sheet: "Steam turbines for CSP plants", Siemens)

Rankine Cycle

The Rankine cycle, in the form of a steam engine is used to generate electric power in solar thermal, biomass, coal and nuclear power plants.

Process 1-2: The working fluid is pumped from low to high pressure. As the fluid is a liquid at this stage, the pump requires little input energy.

Process 2-3: The high pressure liquid enters a heat exchanger where it is heated at a constant pressure to become dry saturated vapor and then superheated steam.

Process 3-4: The superheated steam expands through a turbine, generating power. This decreases the temperature and pressure of the vapor, and some condensation occurs.

Process 4-1: The wet vapor then enters a condenser where it is condensed at a constant pressure to saturated water.

_			_		
Press.	Temp.	Volume, m ³ /kg	Enthalpy, kJ/kg	Entropy, kJ/(kg•K)	Press.
MPa	t (°C)	V _L V _V	h _L h _V	S _L S _V	MPa
0.001 0.002 0.003 0.004 0.005	6.97 17.50 24.08 28.96 32.88	0.0010001 129.18 0.0010014 66.990 0.0010028 45.655 0.0010041 34.792 0.0010053 28.186	29.2982513.773.4352532.9100.992544.9121.402553.7137.772560.8	0.10598.97490.26068.72270.35438.57660.42248.47350.47638.3939	0.001 0.002 0.003 0.004 0.005
0.006 0.007 0.008 0.009 0.010	36.16 39.00 41.51 43.76 45.81	0.0010064 23.734 0.0010075 20.525 0.0010085 18.099 0.0010094 16.200 0.0010103 14.671	151.492566.7163.372571.8173.852576.2183.262580.3191.812583.9	0.52098.32910.55918.27460.59258.22740.62238.18590.64928.1489	0.006 0.007 0.008 0.009 0.010
0.012 0.014 0.016 0.018 0.020	49.42 52.55 55.31 57.80 60.06	0.0010119 12.359 0.0010133 10.691 0.0010147 9.4309 0.0010160 8.4433 0.0010171 7.6482	206.912590.3219.992595.8231.552600.7241.952605.0251.402608.9	0.69638.08500.73668.03120.77207.98470.80357.94370.83207.9072	0.012 0.014 0.016 0.018 0.020
0.025 0.030 0.035 0.040 0.045	64.96 69.10 72.68 75.86 78.71	0.00101986.20340.00102225.22860.00102444.52520.00102643.99310.00102823.5761	271.932617.4289.232624.6304.252630.7317.572636.1329.552640.9	0.8931 7.8302 0.9439 7.7675 0.9876 7.7146 1.0259 7.6690 1.0601 7.6288	0.025 0.030 0.035 0.040 0.045
0.05 0.06 0.07 0.08 0.09	81.32 85.93 89.93 93.49 96.69	0.00102993.24010.00103312.73180.00103592.36490.00103852.08720.00104091.8695	340.482645.2359.842652.9376.682659.4391.642665.2405.132670.3	1.09107.59301.14527.53111.19197.47901.23287.43391.26947.3942	0.05 0.06 0.07 0.08 0.09
0.10 0.12 0.14 0.16 0.18	99.61 104.78 109.29 113.30 116.91	0.00104311.69400.00104731.42840.00105101.23660.00105441.09140.00105760.97753	417.442674.9439.302683.1458.372690.0475.342696.0490.672701.4	1.30267.35881.36087.29761.41097.24601.45497.20141.49447.1620	0.10 0.12 0.14 0.16 0.18
0.20 0.25 0.30 0.35 0.40	120.21 127.41 133.53 138.86 143.61	0.00106050.885740.00106720.718700.00107320.605790.00107860.524200.00108360.46239	504.682706.2535.352716.5561.462724.9584.312732.0604.722738.1	1.53017.12691.60727.05241.67186.99161.72756.94011.77666.8954	0.20 0.25 0.30 0.35 0.40
0.45 0.50 0.55 0.60 0.65	147.91 151.84 155.46 158.83 161.99	0.00108820.413900.00109260.374800.00109670.342590.00110060.315580.00110440.29258	623.222743.4640.192748.1655.882752.3670.502756.1684.222759.6	1.82066.85601.86066.82061.89726.78851.93116.75921.96266.7321	0.45 0.50 0.55 0.60 0.65
0.70 0.80 0.90 1.00 1.10	164.95 170.41 175.36 179.89 184.07	0.00110800.272760.00111480.240330.00112120.214870.00112720.194350.00113300.17744	697.142762.7721.022768.3742.722773.0762.682777.1781.202780.7	1.99216.70702.04606.66152.09446.62122.13846.58502.17896.5520	0.70 0.80 0.90 1.00 1.10

 Table 5. Properties of Saturated Water and Steam (Pressure)

Pressure MPa (Sat. T)		Tempe 300	erature—[325	Degrees Ce 350	elsius 375	400	450	500	550	600	650	700	750	800
7.0 (285.83)	v h s	0.0295 2839.8 5.9335	0.0326 2935.5 6.0970	0.0353 3016.8 6.2303	0.0377 3090.4 6.3460	0.0400 3159.1 6.4501	0.0442 3288.2 6.6351	0.0482 3411.3 6.7997	0.0520 3531.5 6.9505	0.0557 3650.6 7.0909	0.0593 3769.4 7.2232	0.0628 3888.5 7.3488	0.0664 4008.1 7.4687	0.0698 4128.6 7.5837
7.5 (290.54)	v h s	0.0267 2814.3 5.8644	0.0298 2917.4 6.0407	0.0325 3002.7 6.1805	0.0348 3078.8 6.3002	0.0370 3149.3 6.4070	0.0410 3280.7 6.5954	0.0448 3405.3 6.7620	0.0483 3526.7 6.9141	0.0518 3646.5 7.0555	0.0552 3765.9 7.1885	0.0586 3885.4 7.3145	0.0619 4005.5 7.4348	0.0651 4126.3 7.5501
8.0 (295.01)	v h s	0.0243 2786.4 5.7935	0.0274 2898.3 5.9849	0.0300 2988.1 6.1319	0.0323 3066.9 6.2560	0.0343 3139.3 6.3657	0.0382 3273.2 6.5577	0.0418 3399.4 6.7264	0.0452 3521.8 6.8798	0.0485 3642.4 7.0221	0.0517 3762.4 7.1557	0.0548 3882.4 7.2823	0.0579 4002.9 7.4030	0.0610 4124.0 7.5186
8.5 (299.27)	v h s	0.0220 2755.4 5.7193	0.0252 2878.3 5.9294	0.0278 2972.9 6.0845	0.0300 3054.7 6.2132	0.0320 3129.1 6.3259	0.0357 3265.6 6.5216	0.0391 3393.4 6.6925	0.0424 3516.9 6.8473	0.0455 3638.3 6.9905	0.0485 3758.9 7.1248	0.0515 3879.4 7.2519	0.0545 4000.2 7.3730	0.0574 4121.7 7.4889
9.0 (303.35)	v h s		0.0233 2857.0 5.8736	0.0258 2957.2 6.0378	0.0280 3042.2 6.1716	0.0300 3118.8 6.2875	0.0335 3257.9 6.4871	0.0368 3387.3 6.6601	0.0399 3511.9 6.8163	0.0429 3634.2 6.9605	0.0458 3755.4 7.0955	0.0486 3876.4 7.2231	0.0514 3997.6 7.3446	0.0541 4119.4 7.4608
9.5 (307.25)	v h s		0.0215 2834.4 5.8170	0.0240 2940.9 5.9917	0.0262 3029.4 6.1309	0.0281 3108.2 6.2502	0.0316 3250.2 6.4538	0.0347 3381.2 6.6291	0.0377 3506.9 6.7867	0.0405 3630.0 6.9319	0.0433 3751.9 7.0676	0.0460 3873.3 7.1957	0.0486 3994.9 7.3176	0.0512 4117.0 7.4341
10.0 (311.00)	v h s		0.0199 2810.2 5.7593	0.0224 2924.0 5.9458	0.0246 3016.2 6.0910	0.0264 3097.4 6.2139	0.0298 3242.3 6.4217	0.0328 3375.1 6.5993	0.0357 3501.9 6.7584	0.0384 3625.8 6.9045	0.0410 3748.3 7.0409	0.0436 3870.3 7.1696	0.0461 3992.3 7.2918	0.0486 4114.7 7.4086
11.0 (318.08)	v h s		0.0170 2755.6 5.6373	0.0196 2887.8 5.8541	0.0217 2988.7 6.0129	0.0235 3075.1 6.1438	0.0267 3226.2 6.3605	0.0296 3362.6 6.5430	0.0322 3491.9 6.7050	0.0347 3617.5 6.8531	0.0371 3741.2 6.9910	0.0395 3864.2 7.1207	0.0418 3987.0 7.2437	0.0441 4110.1 7.3612
12.0 (324.68)	v h s		0.0143 2688.4 5.4988	0.0172 2848.0 5.7607	0.0193 2959.5 5.9362	0.0211 3051.9 6.0762	0.0242 3209.8 6.3027	0.0268 3350.0 6.4902	0.0293 3481.7 6.6553	0.0317 3609.0 6.8055	0.0339 3734.1 6.9448	0.0361 3858.0 7.0756	0.0383 3981.6 7.1994	0.0404 4105.4 7.3175
13.0 (330.86)	v h s			0.0151 2803.6 5.6635	0.0173 2928.3 5.8600	0.0190 3027.6 6.0104	0.0220 3192.9 6.2475	0.0245 3337.1 6.4404	0.0269 3471.4 6.6087	0.0291 3600.5 6.7610	0.0312 3726.9 6.9018	0.0332 3851.9 7.0336	0.0352 3976.3 7.1583	0.0372 4100.7 7.2771
14.0 (336.67)	v h s			0.0132 2752.9 5.5595	0.0155 2894.9 5.7832	0.0172 3002.2 5.9457	0.0201 3175.6 6.1945	0.0225 3324.1 6.3931	0.0248 3461.0 6.5648	0.0268 3591.9 6.7192	0.0288 3719.7 6.8615	0.0308 3845.7 6.9944	0.0326 3970.9 7.1200	0.0345 4096.0 7.2393
15.0 (342.16)	v h s			0.0115 2693.0 5.4435	0.0139 2858.9 5.7049	0.0157 2975.5 5.8817	0.0185 3157.8 6.1433	0.0208 3310.8 6.3479	0.0229 3450.5 6.5230	0.0249 3583.3 6.6797	0.0268 3712.4 6.8235	0.0286 3839.5 6.9576	0.0304 3965.6 7.0839	0.0321 4091.3 7.2039
16.0 (347.36)	v h s			0.0098 2617.0 5.3045	0.0125 2819.5 5.6238	0.0143 2947.5 5.8177	0.0170 3139.6 6.0935	0.0193 3297.3 6.3045	0.0214 3439.8 6.4832	0.0232 3574.6 6.6422	0.0250 3705.1 6.7876	0.0267 3833.3 6.9228	0.0284 3960.2 7.0499	0.0301 4086.6 7.1706
17.0 (352.29)	v h s				0.0112 2775.9 5.5384	0.0130 2917.8 5.7533	0.0158 3120.9 6.0449	0.0180 3283.6 6.2627	0.0199 3429.1 6.4451	0.0218 3565.9 6.6064	0.0235 3697.8 6.7534	0.0251 3827.0 6.8897	0.0267 3954.8 7.0178	0.0282 4081.9 7.1391
18.0 (356.99)	v h s				0.0100 2726.9 5.4465	0.0119 2886.3 5.6881	0.0147 3101.7 5.9973	0.0168 3269.7 6.2222	0.0187 3418.3 6.4085	0.0204 3557.0 6.5722	0.0221 3690.4 6.7208	0.0236 3820.7 6.8583	0.0251 3949.4 6.9872	0.0266 4077.2 7.1091

Table 6. Superheated Steam – SI Units

v = specific volume, m³/kg h = enthalpy, kJ/kg s = entropy, kJ/(kg • K)

Site latitude 37.37; Site longitude -5.98; Elevation 13 m

Provider: MINES ParisTech; http://www.soda-is.com/eng/

Time [h]	Irradiance [W/m ²]
1	0
2	0
3	0
4	0
5	0
6	32
7	144
8	360
9	593
10	783
11	925
12	1007
13	885
14	671
15	816
16	664
17	550
18	311
19	100
20	16
21	0
22	0
23	0
24	0