
Condition variables revisited

Pamela Delgado

April 3, 2019

based on:
- W. Zwaenepoel slides
- Arpaci-Dusseau book

Multithreaded Web Server
Working solution

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread_create(…)
forever {

Receive(request)
Pthread_mutex_lock(queuelock)
put request in queue
avail++
Pthread_cond_signal(notempty)
Pthread_mutex_unlock(queuelock)

} }
WorkerThread {

forever {
Pthread_mutex_lock(queuelock)
while(avail <= 0) Pthread_cond_wait(notempty, queuelock)
take request out of queue
avail--
Pthread_mutex_unlock(queuelock)
read file from disk
Send(reply)

} }

Recap Pthreads: Condition Variables

• Pthread_cond_wait(cond, mutex)

• Pthread_cond_signal(cond, mutex)

• Pthread_cond_broadcast(cond , mutex)
– Mutex not really needed, easier to explain

• Must hold mutex when calling any of these!
– Not strictly needed for signal/broadcast, but safe

Wait: particularities of implementation

• assumes that mutex is locked (to caller thread)
when its called

a. (atomically*) release lock and put caller
thread to sleep;

b. when signaled, re-acquire lock and return to
caller thread

* It means no possible interleaving

Signal: particularities of implementation

• Thread might not immediately acquire lock

• More (not necessary for this class)

– unblocks at least one of the threads that are
blocked on the specified cond*

– scheduling policy determines the order in which
threads are unblocked*

* source: pthreads man page

Multithreaded Web Server
Broken solution 1

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread_create(…)
forever {

Receive(request)
Pthread_mutex_lock(queuelock)
put request in queue
Pthread_cond_signal(notempty)
Pthread_mutex_unlock(queuelock)

}
}
WorkerThread {

forever {
Pthread_mutex_lock(queuelock)
Pthread_cond_wait(notempty, queuelock)
take request out of queue
Pthread_mutex_unlock(queuelock)
read file from disk
Send(reply)

}
}

Broken solution 1 – problem

1. All worker threads busy (none waiting)

2. Listener does a signal

3. No thread waiting: signal is no-op

4. Worker thread finishes what it was doing

– Will do a wait

– Although request is waiting in queue

Thread trace – broken solution 1
Workers wait after Listener signals

Listener

Queue

Worker 1

Worker2

time

Waiting for
request

Empty

Processing
request A

Processing
request B

Add request
X to queue

Full

Processing
request A

Processing
request B

SIGNAL
waiting
thread

Full

Processing
request A

Processing
request B

Waiting for
request

Full

Waiting on
signal

Waiting on
signal

In General

• Signals have no memory

• Forgotten if no thread waiting

• So need an extra variable to remember them

Multithreaded Web Server
Broken solution 2

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread_create(…)
forever {

Receive(request)
Pthread_mutex_lock(queuelock)
put request in queue
avail++
Pthread_cond_signal(notempty, queuelock)
Pthread_mutex_unlock(queuelock)

} }
WorkerThread {

forever {
Pthread_mutex_lock(queuelock)
if(avail <= 0) Pthread_cond_wait(notempty, queuelock)
take request out of queue
avail--
Pthread_mutex_unlock(queuelock)
read file from disk
Send(reply)

} }

Thread trace – broken solution 2
Worker wont wait after Listener signals

Listener

Queue
Avail

Worker 1

Worker2

time

Waiting for
request

Empty
0

Processing
request A

Processing
request B

Add request
X to queue
& avail++

Full
1

Processing
request A

Processing
request B

SIGNAL
waiting
thread

Full
1

Processing
request A

Processing
request B

Waiting for
request

Full
1

Check avail,
wont wait

Check avail,
wont wait

Note

• Should now be clear why mutex must be held

• Avail is a shared data item

• Without mutex could have data race

Multithreaded Web Server
No locks

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread_create(…)
forever {

Receive(request)
Pthread_mutex_lock(queuelock)
put request in queue
avail++
Pthread_cond_signal(notempty, queuelock)
Pthread_mutex_unlock(queuelock)

} }
WorkerThread {

forever {
Pthread_mutex_lock(queuelock)
if(avail <= 0) Pthread_cond_wait(notempty, queuelock)
take request out of queue
avail--
Pthread_mutex_unlock(queuelock)
read file from disk
Send(reply)

} }

No locks solution - problem

1. Worker checks avail and finds it to be 0

2. Worker interrupted (by OS) and listener runs

3. Listener sets avail to 1 and signals

4. No thread is waiting, so signal is no-op

5. Listener interrupted (by OS) and worker runs

6. Worker does a wait

Incorrect: worker waits with request in queue

Thread trace – No locks solution

Listener

Queue
Avail

Worker 1

time

Waiting for
request

Empty
0

Check avail,
Interrupted
before wait

Waiting for
request

Full
1

Continue to wait

SIGNAL
waiting thread

Full
1

Interrupted before
wait

Back to Solution With Locks
ListenerThread {

for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread_create(…)
forever {

Receive(request)
Pthread_mutex_lock(queuelock)
put request in queue
avail++
Pthread_cond_signal(notempty)
Pthread_mutex_unlock(queuelock)

} }
WorkerThread {

forever {
Pthread_mutex_lock(queuelock)
if(avail <= 0) Pthread_cond_wait(notempty, queuelock)
take request out of queue
avail--
Pthread_mutex_unlock(queuelock)
read file from disk
Send(reply)

} }

Still not quite correct

1. Queue is empty, Worker1 waits

2. Listener puts request in queue
– Sets avail to 1

– Signals

– Worker1 is unblocked

3. Worker2 runs, takes something out of queue
– Sets avail to 0

4. Now Worker1 runs
– It must check the value of avail

Thread trace – broken solution 2
Worker wants to process empty queue

Listener

Queue
Avail

Worker 1

Worker2

time

Waiting for
request

Empty
0

Wait

SIGNAL
waiting
thread

Full
1

Unblocked

Waiting for
request

Empty
0

Take from
queue?!

Waiting for
signal

Waiting for
request

Full
1

Unblocked

Check avail,
process
request

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread_create(…)
forever {

Receive(request)
Pthread_mutex_lock(queuelock)
put request in queue
avail++
Pthread_cond_signal(notempty)
Pthread_mutex_unlock(queuelock)

} }
WorkerThread {

forever {
Pthread_mutex_lock(queuelock)
while(avail <= 0) Pthread_cond_wait(notempty, queuelock)
take request out of queue
avail--
Pthread_mutex_unlock(queuelock)
read file from disk
Send(reply)

} }

Multithreaded Web Server
Working solution

Mesa semantics

Signaling only wakes a thread up
NO GUARANTEE that when the thread

runs the state will be the same

Want stronger guarantees?

Hoare semantics
(older than Mesa

semantics)

Also author of
Quicksort!

