Printemps 2019

EPFL Geometrie, MATH-125

Série 6 Sol

Exercice 1. Soit $G = G_{\mathcal{P}}$ un groupe cristallographique et G^+ son sous-groupe des rotations et $T_G = T(\Gamma) \in G^+$ son reseau des translations. On note G_0 l'image de G par le morphisme partie lineaire et G_0^+ celle de G^+ . On suppose que $G \neq G^+$ et on note s un element de $G - G^+$ (si il existe). On note s_0 sa partie lineaire.

- 1. $G^+ = ker(\det)$, therefore G^+ is a normal subgroup of G. Here det is the determinant morphism, sending elements of G to $\{\pm 1\}$. To show T_G is normal in G, we note that $T_G = ker(lin)$, where lin is the "linear part" morphism from G to G_0 .
- 2. If there is no $s \in G G^+$, then $G = G^+$ and G/G^+ is order 1. Otherwise, given any $s \in G G^+$, we have $G = G^+ \sqcup s \cdot G^+ = G^+ \sqcup G^+ \cdot s$, and G/G^+ is of order 2.
- 3. We recall that $|G_0^+| = 1, 2, 3, 4, 6$. In particular, $|G^+/T_G| = |G_0^+| \leq 6$, since $G^+/T_G \simeq G_0^+$. Recall also $|G/G^+| \leq 2$. Then $|G/T_G| = |G/G^+||G^+/T_G| \leq 2 \cdot 6 = 12$.
- 4. $G = G^+ \sqcup sG^+$ and $G_0 = G_0^+ \sqcup sG_0^+$. Since $|G_0^+| = 1, 2, 3, 4, 6, |G_0| = 2|G_0^+| = 2, 4, 6, 8, 12$. Let $G_0^+ = \langle r \rangle$, where r is a rotation. Then $G_0 = \langle s_0, r \rangle$ is a Dihedral group.
- 5. We write $s = t_{\delta} \circ s_0$, where $\delta \in \Gamma$. Then $s^2 = t_{\delta} \circ s_0 \circ t_{\delta} \circ s_0 = t_{\delta} \circ t'_{\delta} = t_{\delta+\delta'} \in T(\Gamma)$. Here in the second equality we used the fact that T_G is normal in G.
- 6. We recall from the first semester (Corollary 3.1) that we can write $s = t_{\gamma} \circ s'$ with $s^2 = t_{2\gamma}$. From the calculation in Part 5, this implies that $2\gamma = \delta + \delta' \in \Gamma$. Hence $\gamma = \frac{\delta + \delta'}{2} \in \frac{1}{2}\Gamma$.
- 7. Let $t_{\gamma} \in T(\Gamma)$ be a translation. Then one can check that $s_0 \circ t_{\gamma} \circ s_0 = t_{s_0(\gamma)}$. Since $t(\Gamma)$ is a normal subgroup of G, this implies $t_{s_0(\gamma)} \in T(\Gamma)$ and hence $s_0(\gamma) \in \Gamma$. This proves the inclusion $s_0(\Gamma) \subset \Gamma$. On the other hand, for any $\gamma \in \Gamma$, we can write $\gamma = s_0(s_0(\gamma)) = s_0\gamma'$ for some $\gamma' \in \Gamma$ by what we just proved (that $s_0(\Gamma) \subset \Gamma$). This implies the other inclusion $\Gamma \subset s_0(\Gamma)$, so that we have $s_0(\Gamma) = \Gamma$.
- 8. We know $s_0(\Gamma) = \Gamma$. Then $s_0(\mathbb{Z}.1 + \mathbb{Z}\gamma_1) = s_0(\mathbb{Z}.1) + s_0(\mathbb{Z}\gamma_1) = \mathbb{Z}.1 + \mathbb{Z}\gamma_1$. Since s_0 is an isometry and $1 < |\gamma_1|$, we know $s_0(\mathbb{Z}.1) \neq \mathbb{Z}\gamma_1$. Then $s_0(\mathbb{Z}.1) = \mathbb{Z}.1$. By the property that 1 is of minimal length, $s_0(1) = \pm 1$.

9. Since $s_0(1) = -1$, s_0 is a symmetry whose line of symmetry is the imaginary axis. Recall $s_0(\Gamma) = \Gamma$ implies $s_0(\mathbb{Z}.1) + s_0(\mathbb{Z}\gamma_1) = \mathbb{Z}.1 + \mathbb{Z}\gamma_1$, which implies $\mathbb{Z}.1 + \mathbb{Z}\gamma_1 = \mathbb{Z}.(-1) + \mathbb{Z}.(-\overline{\gamma_1})$ and then $\mathbb{Z}.2\Re e\gamma_1 = \mathbb{Z}(\gamma_1 + \overline{\gamma_1}) = \mathbb{Z}$. Therefore $\Re e\gamma_1 \in \frac{1}{2}\mathbb{Z}$.

Exercice 2.

Exercice 3. Soient X un espace affine de dimension d et

$$P_0, \cdots, P_d \in X$$

- d+1 points en position generale (tels que (P_0P_1, \cdots, P_0P_d) forment une base de V).
 - 1. Since (P_0P_1, \dots, P_0P_d) forms a basis for V, for any $P \in X$, the vector P_0P_d can be uniquely spanned by (P_0P_1, \dots, P_0P_d) . That is, there exists an unique $(\lambda_1, \lambda_2, \dots, \lambda_d) \in k^d$ such that

$$\vec{P_0P} = \lambda_1 \vec{P_0P_1} + \dots + \lambda_d \vec{P_0P_d}.$$

This implies that

$$P = P_0 + \vec{P_0 P} = P_0 + \lambda_1 P_0 \vec{P_1} + \dots + \lambda_d P_0 \vec{P_d}$$

= $(1 - \sum_{i=1}^d \lambda_i) P_0 + \lambda_1 (P_0 + P_0 \vec{P_1}) + \dots + \lambda_d (P_0 + P_0 \vec{P_d})$
= $\lambda_0 P_0 + \lambda_1 P_1 + \dots + \lambda_d P_d$,

where $\lambda_0 := (1 - \sum_{i=1}^d \lambda_i)$, and $(\lambda_0, \dots, \lambda_d) \in k^{d+1}$ satisfies $\lambda_0 + \dots + \lambda_d = 1$.

2. (a) Assume that $n < d = \dim_k V$, then $W = \langle P_0 P_1, \cdots, P_0 P_n \rangle$ is a proper subspace of V, then there exists such a vector $P_0 P \in V$, but $P_0 P \notin W$, i.e., there does not exist $(\lambda_1, ..., \lambda_n)$ such that $P_0 P = \sum_{i=1}^n \lambda_i P_0 P_i$. This would imply that for such a $P \in X$, there does not exist $(\lambda_0, ..., \lambda_n) \in k^{n+1}$ with $\sum_{i=0}^n \lambda_i = 1$ such that $P = Bar(P_0, \cdots, P_d; \lambda_0, \cdots, \lambda_n)$. This contradicts with the assumption, Since dim $X = \dim V = d$, to simplify the proof, we can assume $(P_0 P_1, \cdots, P_0 P_d)$ forms a basis of V.

(b) Assume that d < n, then it must be the case that $(P_0 P_1, \dots, P_0 P_d)$ are linearly dependent. Since otherwise if they are not, then it implies that $(P_0 P_1, \dots, P_0 P_d)$ forms a basis of V and then d = n, contradicting our assumption d < n. Now since $(P_0 P_1, \dots, P_0 P_d)$ are linearly dependent, there exists a unique tuple $(\lambda_1, \lambda_2, \dots, \lambda_d)$, not all of them being zero, such that $\lambda_1 P_0 P_1 + \dots + \lambda_d P_0 P_d = 0$. Assume $\lambda_i \neq 0$, then by dividing both sides of the equation by λ_i we have that $P_0 P_i = -\frac{\lambda_1}{\lambda_i} P_0 P_1 - \dots - \frac{\lambda_{i-1}}{\lambda_i} P_0 P_{i-1} - \frac{\lambda_{i+1}}{\lambda_i} P_0 P_i + \dots + \frac{\lambda_d}{\lambda_i} P_0 P_d$. This is equivalent to the statement that P_i can be uniquely represented as $P_i = (1 + \sum_{j=1, j \neq j}^d \frac{\lambda_j}{\lambda_i})P_0 - \frac{\lambda_1}{\lambda_i}P_1 - \dots - \frac{\lambda_{i-1}}{\lambda_i}P_{i-1} - \frac{\lambda_{i+1}}{\lambda_i}P_{i+1} - \dots - \frac{\lambda_d}{\lambda_i}P_d$. But on the other hand we know that $P_i = P_i$, then, P_i has two different representations. This contradicts the hypothesis that any $P \in X$ can be represented uniquely as $Bar(P_0, \dots, P_d; \lambda_0, \dots, \lambda_n)$. Since both case (a) and case (b) can not happen, it must be the case that n = d. By our assumption (P_0P_1, \dots, P_0P_d) forms a basis of V, then P_0, \dots, P_d are in general position.

3. If $(P_{\sigma(0)}, \dots, P_{\sigma(d)})$ is in general position, then $(P_{0}P_{1}, \dots, P_{0}P_{d})$ forms a basis of V. For any vector $P_{0}P \in V$, there exists a unique tuple $(\lambda_{1}, \dots, \lambda_{d}) \in k^{d}$ such that $P_{0}P = \sum_{i=1}^{d} \lambda_{i}P_{0}P_{i}$. This is equivalent to the statement that P can be written uniquely as $P = \sum_{i=0}^{d} \lambda_{i}P_{i}$ with $\sum_{i=0}^{d} \lambda_{i} = 1$. For any given permutation $\sigma \in S_{d+1}$, we have $P = \sum_{i=0}^{d} \lambda_{i}P_{i} = \sum_{i=0}^{d} \lambda_{\sigma(i)}P_{\sigma(i)}$, where $\sum_{i=0}^{d} \lambda_{\sigma(i)} = 1$. Then $P - P_{\sigma(0)} = \sum_{i=0}^{d} \lambda_{\sigma(i)}P_{\sigma(i)} - P_{\sigma(0)} = \sum_{i=0}^{d} \lambda_{\sigma(i)}(P_{\sigma(i)} - P_{\sigma(0)})$. This is $P_{\sigma(0)}P = \sum_{i=0}^{d} \lambda_{\sigma(i)}P_{\sigma(i)}$, i.e., the vector $P_{\sigma(0)}P \in V$ can be written uniquely as $P_{\sigma(0)}P = \sum_{i=0}^{d} \lambda_{\sigma(i)}P_{\sigma(0)}P_{\sigma(i)}$. Therefore $(P_{\sigma(0)}, \dots, P_{\sigma(d)})$ is in general position.

Exercice 4. Soit X un espace affine de direction V. Soit $Y \subset X$ un sous-ensemble.

1. To show (a) implies (b), let $\{\vec{PP_1}, \cdots, \vec{PP_n}\}$ be a basis of W. Then for any $w \in W$, there exists $(\lambda_1, ..., \lambda_n) \in k^n$ such that $w = \sum_{i=1}^n \lambda_i \vec{PP_i}$. Then

$$Y = \{P + \vec{w}, \ \vec{w} \in W\} = \{P + \sum_{i=1}^{n} \lambda_i P \vec{P}_i, \lambda_i \in k\}$$
$$= \{(1 - \sum_{i=i}^{n} \lambda_i)P + \sum_{i=1}^{n} \lambda_i P_i, \lambda_i \in k\}$$
$$= \{Bar(P, \cdots, P_n; \lambda_0, \cdots, \lambda_n), \ \lambda_i \in k, \ \sum_{i=0}^{n} \lambda_i = 1\}$$

Assume (b) is true, then we can write

$$Y = \{\sum_{i=0}^{n} \lambda_i P_i, \ \lambda_i \in k, \ \sum_{i=0}^{n} \lambda_i = 1\}$$
$$= \{P_0 + \sum_{i=0}^{n} \lambda_i (P_i - P_0), \ \lambda_i \in k\}$$
$$= P_0 + \{\sum_{i=0}^{n} \lambda_i P_0 P_i, \ \lambda_i \in k\}$$
$$= P_0 + W,$$

where $W = \langle \vec{P_0P_1}, \cdots, \vec{P_0P_n} \rangle$.

- If n > dim_kW, then the vectors {P₀P₁, ..., P₀P_n} are linearly dependent over k, since otherwise they would form a basis of W and then we would have n = dim_kW. Then there exists (λ₁, ..., λ_n) ∈ kⁿ {(0, ..., 0)} such that ∑ⁿ_{i=1}λ_iP₀P_i = 0. Assume without loss of generality that λ_n ≠ 0, then P₀P_n = ∑ⁿ⁻¹_{i=1} -λ_i/λ_nP₀P_i. This implies that W = ⟨P₀P₁, ..., P₀P_n⟩ = ⟨P₀P₁, ..., P₀P_{n-1}⟩. We can continue this process until we arrive at the case that W = ⟨P₀P₁, ..., P₀P_d⟩, where d = dim_kW. If P₀P₁, ..., P₀P_n forms a basis of W, then for any P ∈ Y, there exists an unique (λ₁, ..., λ_n) ∈ kⁿ such that P₀P = ∑ⁿ_{i=1} λ_iP₀P_i. This is equivalent to the uniquely representation of P ∈ Y as the barycentre of (P₀, ..., P_n) : P =
 - $(1 \sum_{i=1}^{n} \lambda_i) P_0 + \sum_{i=1}^{n} \lambda_i P_i$. $(P_0, ..., P_n)$ forms an affine basis of Y.
- 3. This follows from the equivalent description in Part 1 and Part 2.