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Série 6 Sol

Exercice 1. Soit G = GP un groupe cristallographique et G+ son sous-groupe des
rotations et TG = T (Γ) ∈ G+ son reseau des translations. On note G0 l’image de G
par le morphisme partie lineaire et G+

0 celle de G+. On suppose que G 6= G+ et on
note s un element de G−G+ (si il existe). On note s0 sa partie lineaire.

1. G+ = ker(det), therefore G+ is a normal subgroup of G. Here det is the deter-
minant morphism, sending elements of G to {±1}.
To show TG is normal in G, we note that TG = ker(lin), where lin is the “linear
part” morphism from G to G0.

2. If there is no s ∈ G−G+, then G = G+ and G/G+ is order 1. Otherwise, given
any s ∈ G−G+, we have G = G+ t s ·G+ = G+ tG+ · s, and G/G+ is of order
2.

3. We recall that |G+
0 | = 1, 2, 3, 4, 6. In particular, |G+/TG| = |G+

0 | 6 6, since
G+/TG ' G+

0 . Recall also |G/G+| 6 2. Then |G/TG| = |G/G+||G+/TG| 6
2 · 6 = 12.

4. G = G+ t sG+ and G0 = G+
0 t sG+

0 . Since |G+
0 | = 1, 2, 3, 4, 6, |G0| = 2|G+

0 | =
2, 4, 6, 8, 12. Let G+

0 = 〈r〉, where r is a rotation. Then G0 = 〈s0, r〉 is a Dihedral
group.

5. We write s = tδ◦s0, where δ ∈ Γ. Then s2 = tδ◦s0◦tδ◦s0 = tδ◦t′δ = tδ+δ′ ∈ T (Γ).
Here in the second equality we used the fact that TG is normal in G.

6. We recall from the first semester (Corollary 3.1) that we can write s = tγ ◦ s′
with s2 = t2γ. From the calculation in Part 5, this implies that 2γ = δ+ δ′ ∈ Γ.
Hence γ = δ+δ′

2
∈ 1

2
Γ.

7. Let tγ ∈ T (Γ) be a translation. Then one can check that s0 ◦ tγ ◦ s0 = ts0(γ).
Since t(Γ) is a normal subgroup of G, this implies ts0(γ) ∈ T (Γ) and hence
s0(γ) ∈ Γ. This proves the inclusion s0(Γ) ⊂ Γ. On the other hand, for any
γ ∈ Γ, we can write γ = s0(s0(γ)) = s0γ

′ for some γ′ ∈ Γ by what we just
proved (that s0(Γ) ⊂ Γ). This implies the other inclusion Γ ⊂ s0(Γ), so that we
have s0(Γ) = Γ.

8. We know s0(Γ) = Γ. Then s0(Z.1+Zγ1) = s0(Z.1)+s0(Zγ1) = Z.1+Zγ1. Since
s0 is an isometry and 1 < |γ1|, we know s0(Z.1) 6= Zγ1. Then s0(Z.1) = Z.1. By
the property that 1 is of minimal length, s0(1) = ±1.



9. Since s0(1) = −1, s0 is a symmetry whose line of symmetry is the imaginary
axis. Recall s0(Γ) = Γ implies s0(Z.1) + s0(Zγ1) = Z.1 + Zγ1, which implies
Z.1 + Zγ1 = Z.(−1) + Z.(−γ1) and then Z.2<eγ1 = Z(γ1 + γ1) = Z. Therefore
<eγ1 ∈ 1

2
Z.

Exercice 2.

Exercice 3. Soient X un espace affine de dimension d et

P0, · · · , Pd ∈ X

d+ 1 points en position generale (tels que ( ~P0P1, · · · , ~P0Pd) forment une base de V ).

1. Since ( ~P0P1, · · · , ~P0Pd) forms a basis for V , for any P ∈ X, the vector ~P0P

can be uniquely spanned by ( ~P0P1, · · · , ~P0Pd). That is, there exists an unique
(λ1, λ2, ..., λd) ∈ kd such that

~P0P = λ1 ~P0P1 + ...+ λd ~P0Pd.

This implies that

P = P0 + ~P0P =P0 + λ1 ~P0P1 + ...+ λd ~P0Pd

=(1−
d∑
i=1

λi)P0 + λ1(P0 + ~P0P1) + ...+ λd(P0 + ~P0Pd)

=λ0P0 + λ1P1 + ...+ λdPd,

where λ0 := (1−
∑d

i=1 λi), and (λ0, · · · , λd) ∈ kd+1 satisfies λ0 + ...+ λd = 1.

2. (a) Assume that n < d = dimk V , then W = 〈 ~P0P1, · · · , ~P0Pn〉 is a proper

subspace of V , then there exists such a vector ~P0P ∈ V , but ~P0P 6∈ W , i.e., there
does not exist (λ1, ..., λn) such that ~P0P =

∑n
i=1 λi

~P0Pi. This would imply that
for such a P ∈ X, there does not exist (λ0, ...λn) ∈ kn+1 with

∑n
i=0 λi = 1 such

that P = Bar(P0, · · · , Pd;λ0, · · · , λn). This contradicts with the assumption,

Since dimX = dimV = d, to simplify the proof, we can assume ( ~P0P1, · · · , ~P0Pd)
forms a basis of V .

(b) Assume that d < n, then it must be the case that ( ~P0P1, · · · , ~P0Pd) are li-

nearly dependent. Since otherwise if they are not, then it implies that ( ~P0P1, · · · , ~P0Pd)
forms a basis of V and then d = n, contradicting our assumption d < n.
Now since ( ~P0P1, · · · , ~P0Pd) are linearly dependent, there exists a unique tuple

(λ1, λ2, ..., λd), not all of them being zero, such that λ1 ~P0P1 + ...+ λd ~P0Pd = 0.
Assume λi 6= 0, then by dividing both sides of the equation by λi we have that
~P0Pi = −λ1

λi
~P0P1− ...− λi−1

λi
~P0Pi−1− λi+1

λi
~P0Pi+1− λd

λi
~P0Pd. This is equivalent to



the statement that Pi can be uniquely represented as Pi = (1+
∑d

j=1,j 6=j
λj
λi

)P0−
λ1
λi
P1− ...− λi−1

λi
Pi−1− λi+1

λi
Pi+1− ...− λd

λi
Pd. But on the other hand we know that

Pi = Pi, then, Pi has two different representations. This contradicts the hypothe-
sis that any P ∈ X can be represented uniquely as Bar(P0, · · · , Pd;λ0, · · · , λn).

Since both case (a) and case (b) can not happen, it must be the case that n = d.

By our assumption ( ~P0P1, · · · , ~P0Pd) forms a basis of V , then P0, · · · , Pd are in
general position.

3. If (Pσ(0), · · · , Pσ(d)) is in general position, then ( ~P0P1, · · · , ~P0Pd) forms a basis

of V . For any vector ~P0P ∈ V , there exists a unique tuple (λ1, ..., λd) ∈ kd such

that ~P0P =
∑d

i=1 λi
~P0Pi. This is equivalent to the statement that P can be

written uniquely as P =
∑d

i=0 λiPi with
∑d

i=0 λi = 1. For any given permutation

σ ∈ Sd+1, we have P =
∑d

i=0 λiPi =
∑d

i=0 λσ(i)Pσ(i), where
∑d

i=0 λσ(i) = 1. Then

P − Pσ(0) =
∑d

i=0 λσ(i)Pσ(i) − Pσ(0) =
∑d

i=0 λσ(i)(Pσ(i) − Pσ(0)). This is ~Pσ(0)P =∑d
i=0 λσ(i)

~Pσ(0)Pσ(i), i.e., the vector ~Pσ(0)P ∈ V can be written uniquely as
~Pσ(0)P =

∑d
i=0 λσ(i)

~Pσ(0)Pσ(i). Therefore (Pσ(0), · · · , Pσ(d)) is in general position.

Exercice 4. Soit X un espace affine de direction V . Soit Y ⊂ X un sous-ensemble.

1. To show (a) implies (b), let { ~PP1, · · · , ~PPn} be a basis of W . Then for any

w ∈ W , there exists (λ1, ..., λn) ∈ kn such that w =
∑n

i=1 λi
~PPi. Then

Y ={P + ~w, ~w ∈ W} = {P +
n∑
i=1

λi ~PPi, λi ∈ k}

={(1−
n∑
i=i

λi)P +
n∑
i=1

λiPi, λi ∈ k}

={Bar(P, · · · , Pn;λ0, · · · , λn), λi ∈ k,
n∑
i=0

λi = 1}

Assume (b) is true, then we can write

Y ={
n∑
i=0

λiPi, λi ∈ k,
n∑
i=0

λi = 1}

={P0 +
n∑
i=0

λi(Pi − P0), λi ∈ k}

=P0 + {
n∑
i=0

λi ~P0Pi, λi ∈ k}

=P0 +W,

where W = 〈 ~P0P1, · · · , ~P0Pn〉.



2. If n > dimkW , then the vectors { ~P0P1, · · · , ~P0Pn} are linearly dependent
over k, since otherwise they would form a basis of W and then we would
have n = dimkW . Then there exists (λ1, ..., λn) ∈ kn − {(0, ..., 0)} such that∑n

i=1 λi
~P0Pi = 0. Assume without loss of generality that λn 6= 0, then ~P0Pn =∑n−1

i=1
−λi
λn

~P0Pi. This implies that W = 〈 ~P0P1, · · · , ~P0Pn〉 = 〈 ~P0P1, · · · , ~P0Pn−1〉.
We can continue this process until we arrive at the case thatW = 〈 ~P0P1, · · · , ~P0Pd〉,
where d = dimkW .

If ~P0P1, · · · , ~P0Pn forms a basis of W , then for any P ∈ Y , there exists an
unique (λ1, ..., λn) ∈ kn such that ~P0P =

∑n
i=1 λi

~P0Pi. This is equivalent to
the uniquely representation of P ∈ Y as the barycentre of (P0, · · · , Pn) : P =
(1−

∑n
i=1 λi)P0 +

∑n
i=1 λiPi. (P0, ..., Pn) forms an affine basis of Y .

3. This follows from the equivalent description in Part 1 and Part 2.


