Série 6 Sol

Exercice 1. Soit $G=G_{\mathcal{P}}$ un groupe cristallographique et G^{+}son sous-groupe des rotations et $T_{G}=T(\Gamma) \in G^{+}$son reseau des translations. On note G_{0} l'image de G par le morphisme partie lineaire et G_{0}^{+}celle de G^{+}. On suppose que $G \neq G^{+}$et on note s un element de $G-G^{+}$(si il existe). On note s_{0} sa partie lineaire.

1. $G^{+}=\operatorname{ker}(\operatorname{det})$, therefore G^{+}is a normal subgroup of G. Here det is the determinant morphism, sending elements of G to $\{ \pm 1\}$.
To show T_{G} is normal in G, we note that $T_{G}=\operatorname{ker}(\operatorname{lin})$, where lin is the "linear part" morphism from G to G_{0}.
2. If there is no $s \in G-G^{+}$, then $G=G^{+}$and G / G^{+}is order 1 . Otherwise, given any $s \in G-G^{+}$, we have $G=G^{+} \sqcup s \cdot G^{+}=G^{+} \sqcup G^{+} \cdot s$, and G / G^{+}is of order 2.
3. We recall that $\left|G_{0}^{+}\right|=1,2,3,4,6$. In particular, $\left|G^{+} / T_{G}\right|=\left|G_{0}^{+}\right| \leqslant 6$, since $G^{+} / T_{G} \simeq G_{0}^{+}$. Recall also $\left|G / G^{+}\right| \leqslant 2$. Then $\left|G / T_{G}\right|=\left|G / G^{+}\right|\left|G^{+} / T_{G}\right| \leqslant$ $2 \cdot 6=12$.
4. $G=G^{+} \sqcup s G^{+}$and $G_{0}=G_{0}^{+} \sqcup s G_{0}^{+}$. Since $\left|G_{0}^{+}\right|=1,2,3,4,6,\left|G_{0}\right|=2\left|G_{0}^{+}\right|=$ $2,4,6,8,12$. Let $G_{0}^{+}=\langle r\rangle$, where r is a rotation. Then $G_{0}=\left\langle s_{0}, r\right\rangle$ is a Dihedral group.
5. We write $s=t_{\delta} \circ s_{0}$, where $\delta \in \Gamma$. Then $s^{2}=t_{\delta} \circ s_{0} \circ t_{\delta} \circ s_{0}=t_{\delta} \circ t_{\delta}^{\prime}=t_{\delta+\delta^{\prime}} \in T(\Gamma)$. Here in the second equality we used the fact that T_{G} is normal in G.
6. We recall from the first semester (Corollary 3.1) that we can write $s=t_{\gamma} \circ s^{\prime}$ with $s^{2}=t_{2 \gamma}$. From the calculation in Part 5, this implies that $2 \gamma=\delta+\delta^{\prime} \in \Gamma$. Hence $\gamma=\frac{\delta+\delta^{\prime}}{2} \in \frac{1}{2} \Gamma$.
7. Let $t_{\gamma} \in T(\Gamma)$ be a translation. Then one can check that $s_{0} \circ t_{\gamma} \circ s_{0}=t_{s_{0}(\gamma)}$. Since $t(\Gamma)$ is a normal subgroup of G, this implies $t_{s_{0}(\gamma)} \in T(\Gamma)$ and hence $s_{0}(\gamma) \in \Gamma$. This proves the inclusion $s_{0}(\Gamma) \subset \Gamma$. On the other hand, for any $\gamma \in \Gamma$, we can write $\gamma=s_{0}\left(s_{0}(\gamma)\right)=s_{0} \gamma^{\prime}$ for some $\gamma^{\prime} \in \Gamma$ by what we just proved (that $s_{0}(\Gamma) \subset \Gamma$). This implies the other inclusion $\Gamma \subset s_{0}(\Gamma)$, so that we have $s_{0}(\Gamma)=\Gamma$.
8. We know $s_{0}(\Gamma)=\Gamma$. Then $s_{0}\left(\mathbb{Z} .1+\mathbb{Z} \gamma_{1}\right)=s_{0}(\mathbb{Z} .1)+s_{0}\left(\mathbb{Z} \gamma_{1}\right)=\mathbb{Z} .1+\mathbb{Z} \gamma_{1}$. Since s_{0} is an isometry and $1<\left|\gamma_{1}\right|$, we know $s_{0}(\mathbb{Z} .1) \neq \mathbb{Z} \gamma_{1}$. Then $s_{0}(\mathbb{Z} .1)=\mathbb{Z} .1$. By the property that 1 is of minimal length, $s_{0}(1)= \pm 1$.
9. Since $s_{0}(1)=-1, s_{0}$ is a symmetry whose line of symmetry is the imaginary axis. Recall $s_{0}(\Gamma)=\Gamma$ implies $s_{0}(\mathbb{Z} .1)+s_{0}\left(\mathbb{Z} \gamma_{1}\right)=\mathbb{Z} .1+\mathbb{Z} \gamma_{1}$, which implies $\mathbb{Z} .1+\mathbb{Z} \gamma_{1}=\mathbb{Z} .(-1)+\mathbb{Z} \cdot\left(-\overline{\gamma_{1}}\right)$ and then $\mathbb{Z} \cdot 2 \Re e \gamma_{1}=\mathbb{Z}\left(\gamma_{1}+\overline{\gamma_{1}}\right)=\mathbb{Z}$. Therefore $\Re e \gamma_{1} \in \frac{1}{2} \mathbb{Z}$.

Exercice 2.

Exercice 3. Soient X un espace affine de dimension d et

$$
P_{0}, \cdots, P_{d} \in X
$$

$d+1$ points en position generale (tels que $\left(\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0}} \overrightarrow{P_{d}}\right)$ forment une base de V).

1. Since $\left(\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0} P_{d}}\right)$ forms a basis for V, for any $P \in X$, the vector $\overrightarrow{P_{0} P}$ can be uniquely spanned by $\left(\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0} P_{d}}\right)$. That is, there exists an unique $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right) \in k^{d}$ such that

$$
\overrightarrow{P_{0} P}=\lambda_{1} \overrightarrow{P_{0} P_{1}}+\ldots+\lambda_{d} \overrightarrow{P_{0} P_{d}}
$$

This implies that

$$
\begin{aligned}
P=P_{0}+\overrightarrow{P_{0} P} & =P_{0}+\lambda_{1} \overrightarrow{P_{0} P_{1}}+\ldots+\lambda_{d} \overrightarrow{P_{0} P_{d}} \\
& =\left(1-\sum_{i=1}^{d} \lambda_{i}\right) P_{0}+\lambda_{1}\left(P_{0}+\overrightarrow{P_{0} P_{1}}\right)+\ldots+\lambda_{d}\left(P_{0}+\overrightarrow{P_{0} P_{d}}\right) \\
& =\lambda_{0} P_{0}+\lambda_{1} P_{1}+\ldots+\lambda_{d} P_{d},
\end{aligned}
$$

where $\lambda_{0}:=\left(1-\sum_{i=1}^{d} \lambda_{i}\right)$, and $\left(\lambda_{0}, \cdots, \lambda_{d}\right) \in k^{d+1}$ satisfies $\lambda_{0}+\ldots+\lambda_{d}=1$.
2. (a) Assume that $n<d=\operatorname{dim}_{k} V$, then $W=\left\langle\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0} P_{n}}\right\rangle$ is a proper subspace of V, then there exists such a vector $\overrightarrow{P_{0} P} \in V$, but $\overrightarrow{P_{0} P} \notin W$, i.e., there does not exist $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that $\overrightarrow{P_{0} P}=\sum_{i=1}^{n} \lambda_{i} \overrightarrow{P_{0} P_{i}}$. This would imply that for such a $P \in X$, there does not exist $\left(\lambda_{0}, \ldots \lambda_{n}\right) \in k^{n+1}$ with $\sum_{i=0}^{n} \lambda_{i}=1$ such that $P=\operatorname{Bar}\left(P_{0}, \cdots, P_{d} ; \lambda_{0}, \cdots, \lambda_{n}\right)$. This contradicts with the assumption, Since $\operatorname{dim} X=\operatorname{dim} V=d$, to simplify the proof, we can assume $\left(\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0} P_{d}}\right)$ forms a basis of V.
(b) Assume that $d<n$, then it must be the case that $\left(\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0} P_{d}}\right)$ are linearly dependent. Since otherwise if they are not, then it implies that $\left(P_{0} \vec{P}_{1}, \cdots, \overrightarrow{P_{0}} \vec{P}_{d}\right)$ forms a basis_of V and then $d=n$, contradicting our assumption $d<n$. Now since $\left(\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0} P_{d}}\right)$ are linearly dependent, there exists a unique tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)$, not all of them being zero, such that $\lambda_{1} \overrightarrow{P_{0} P_{1}}+\ldots+\lambda_{d} \overrightarrow{P_{0}}{ }_{d}=0$. Assume $\lambda_{i} \neq 0$, then by dividing both sides of the equation by λ_{i} we have that $\overrightarrow{P_{0} P_{i}}=-\frac{\lambda_{1}}{\lambda_{i}} \vec{P}_{0} P_{1}-\ldots-\frac{\lambda_{i-1}}{\lambda_{i}} P_{0} \vec{P}_{i-1}-\frac{\lambda_{i+1}}{\lambda_{i}} P_{0} \vec{P}_{i+1}-\frac{\lambda_{d}}{\lambda_{i}} \overrightarrow{P_{0} P_{d}}$. This is equivalent to
the statement that P_{i} can be uniquely represented as $P_{i}=\left(1+\sum_{j=1, j \neq j}^{d} \frac{\lambda_{j}}{\lambda_{i}}\right) P_{0}-$ $\frac{\lambda_{1}}{\lambda_{i}} P_{1}-\ldots-\frac{\lambda_{i-1}}{\lambda_{i}} P_{i-1}-\frac{\lambda_{i+1}}{\lambda_{i}} P_{i+1}-\ldots-\frac{\lambda_{d}}{\lambda_{i}} P_{d}$. But on the other hand we know that $P_{i}=P_{i}$, then, P_{i} has two different representations. This contradicts the hypothesis that any $P \in X$ can be represented uniquely as $\operatorname{Bar}\left(P_{0}, \cdots, P_{d} ; \lambda_{0}, \cdots, \lambda_{n}\right)$. Since both case (a) and case (b) can not happen, it must be the case that $n=d$. By our assumption $\left(\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0} P_{d}}\right)$ forms a basis of V, then P_{0}, \cdots, P_{d} are in general position.
3. If $\left(P_{\sigma(0)}, \cdots, P_{\sigma(d)}\right)$ is in general position, then $\left(\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0} P_{d}}\right)$ forms a basis of V. For any vector $\overrightarrow{P_{0} P} \in V$, there exists a unique tuple $\left(\lambda_{1}, \ldots, \lambda_{d}\right) \in k^{d}$ such that $\overrightarrow{P_{0} P}=\sum_{i=1}^{d} \lambda_{i} \overrightarrow{P_{0} P_{i}}$. This is equivalent to the statement that P can be written uniquely as $P=\sum_{i=0}^{d} \lambda_{i} P_{i}$ with $\sum_{i=0}^{d} \lambda_{i}=1$. For any given permutation $\sigma \in S_{d+1}$, we have $P=\sum_{i=0}^{d} \lambda_{i} P_{i}=\sum_{i=0}^{d} \lambda_{\sigma(i)} P_{\sigma(i)}$, where $\sum_{i=0}^{d} \lambda_{\sigma(i)}=1$. Then $P-P_{\sigma(0)}=\sum_{i=0}^{d} \lambda_{\sigma(i)} P_{\sigma(i)}-P_{\sigma(0)}=\sum_{i=0}^{d} \lambda_{\sigma(i)}\left(P_{\sigma(i)}-P_{\sigma(0)}\right)$. This is $P_{\sigma(0)} P=$ $\sum_{i=0}^{d} \lambda_{\sigma(i)} P_{\sigma(0)} \overrightarrow{P_{\sigma(i)}}$, i.e., the vector $P_{\sigma(0)} P \in V$ can be written uniquely as $P_{\sigma(0)} P=\sum_{i=0}^{d} \lambda_{\sigma(i)} P_{\sigma(0)} \vec{P}_{\sigma(i)}$. Therefore $\left(P_{\sigma(0)}, \cdots, P_{\sigma(d)}\right)$ is in general position.
Exercice 4. Soit X un espace affine de direction V. Soit $Y \subset X$ un sous-ensemble.

1. To show (a) implies (b), let $\left\{\overrightarrow{P P}_{1}, \cdots, P \vec{P}_{n}\right\}$ be a basis of W. Then for any $w \in W$, there exists $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in k^{n}$ such that $w=\sum_{i=1}^{n} \lambda_{i} \overrightarrow{P P_{i}}$. Then

$$
\begin{aligned}
Y & =\{P+\vec{w}, \vec{w} \in W\}=\left\{P+\sum_{i=1}^{n} \lambda_{i} \overrightarrow{P P_{i}}, \lambda_{i} \in k\right\} \\
& =\left\{\left(1-\sum_{i=i}^{n} \lambda_{i}\right) P+\sum_{i=1}^{n} \lambda_{i} P_{i}, \lambda_{i} \in k\right\} \\
& =\left\{\operatorname{Bar}\left(P, \cdots, P_{n} ; \lambda_{0}, \cdots, \lambda_{n}\right), \lambda_{i} \in k, \sum_{i=0}^{n} \lambda_{i}=1\right\}
\end{aligned}
$$

Assume (b) is true, then we can write

$$
\begin{aligned}
Y & =\left\{\sum_{i=0}^{n} \lambda_{i} P_{i}, \lambda_{i} \in k, \sum_{i=0}^{n} \lambda_{i}=1\right\} \\
& =\left\{P_{0}+\sum_{i=0}^{n} \lambda_{i}\left(P_{i}-P_{0}\right), \lambda_{i} \in k\right\} \\
& =P_{0}+\left\{\sum_{i=0}^{n} \lambda_{i} \overrightarrow{P_{0} P_{i}}, \lambda_{i} \in k\right\} \\
& =P_{0}+W,
\end{aligned}
$$

where $W=\left\langle\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0}} \overrightarrow{P_{n}}\right\rangle$.
2. If $n>\operatorname{dim}_{k} W$, then the vectors $\left\{\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0}} \vec{P}_{n}\right\}$ are linearly dependent over k, since otherwise they would form a basis of W and then we would have $n=\operatorname{dim}_{k} W$. Then there exists $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in k^{n}-\{(0, \ldots, 0)\}$ such that $\sum_{i=1}^{n} \lambda_{i} \overrightarrow{P_{0} P_{i}}=0$. Assume without loss of generality that $\lambda_{n} \neq 0$, then $\vec{P}_{0} \vec{P}_{n}=$ $\sum_{i=1}^{n-1} \frac{-\lambda_{i}}{\lambda_{n}} \overrightarrow{P_{0} P_{i}}$. This implies that $W=\left\langle\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0} P_{n}}\right\rangle=\left\langle\overrightarrow{P_{0} P_{1}}, \cdots, P_{0} \overrightarrow{P_{n-1}}\right\rangle$.
We can continue this process until we arrive at the case that $W=\left\langle\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0} P_{d}}\right\rangle$, where $d=\operatorname{dim}_{k} W$.
If $\overrightarrow{P_{0} P_{1}}, \cdots, \overrightarrow{P_{0} P_{n}}$ forms a basis of $\underset{\vec{~}}{W}$, then for any $P \in Y$, there exists an unique $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in k^{n}$ such that $\overrightarrow{P_{0} P}=\sum_{i=1}^{n} \lambda_{i} \overrightarrow{P_{0} P_{i}}$. This is equivalent to the uniquely representation of $P \in Y$ as the barycentre of $\left(P_{0}, \cdots, P_{n}\right): P=$ $\left(1-\sum_{i=1}^{n} \lambda_{i}\right) P_{0}+\sum_{i=1}^{n} \lambda_{i} P_{i} .\left(P_{0}, \ldots, P_{n}\right)$ forms an affine basis of Y.
3. This follows from the equivalent description in Part 1 and Part 2.

