
1

Evolutionary Robotics

Prof. Dario Floreano

E2 Laboratory Exercises

Body encoding & Simulation/Evolutionary

parameters

Davide Zappetti (davide.zappetti@epfl.ch)

Anand Bhaskaran (anand.bhaskaran@epfl.ch)

Goal.

To further familiarize yourself with the RoboGen software suite by hand-designing a robot body

and performing a brain only evolution of its controller. The designed-evolved robot has to

navigate in a rough environment as fast as possible overcoming obstacles (for examples, pebbles

and small hills)

Learning objectives

By the end of this laboratory you should have learned something about:

• Gaining an understanding of the tree structure used for encoding robot morphologies

• Learning to write your own robot description file

• Learning about how to set and use oscillatory neurons

• A more in depth knowledge of customizable simulation and evolutionary parameters

• Gaining experience evolving controllers for hand-designed robots

Getting Started: Similar to the Evolutionary Robotics exercises from last time, we will be using
the new new RoboGen software that runs on your computer. If you did not install it yet, you can
find instruction in the last week exercise 1 Manual.

 Important:

 While last week you evolved controllers for a wheeled robot (the e-puck like robot), and
this functionality does exist in RoboGen, for the rest of the semester you will not be
allowed to use wheels. For this year’s class the available parts are CoreComponent,
FixedBrick, ParametricJoint, PassiveHinge, ActiveHinge, LightSensor, and IrSensor (if you
specify addBodyPart=All when evolving morphologies, these will be the parts that your
robots will be composed of).

mailto:davide.zappetti@epfl.ch

2

Step 1.0

Last time you saw how to simulate a robot and how to define a scenario in order to evolve a
controller for a pre-provided robot morphology. Now, it is time to understand how robots are
defined in RoboGen.

Step 1.1: Create a folder named Exercise2 (without space) in ~/Robogen/Exercises directory
already present on the lab computer. To do this, you can open a terminal and execute the
following command:

 mkdir –p ~/Robogen/Exercises/Exercise2

Download the zip file provided in moodle named Exercise2 and extract it inside this folder.

In “Build a Robot” section, it is possible to manually define the body and brain of a robot or upload
an existing robot body-brain file (e.g. name.robot.txt). For this exericise2, the Robot file,
simpleRobot.robot.txt needs to be selected.

As already described in last class a Robot description file is composed of the following sections:

• Robot Body: that describes the tree structure of the body

• Hidden neurons: that describes any hidden neuron in the brain of the robot along
with its parameters

• Connections to describe the weights of the neural network

• Bias that defines the offset of the sigmoid neurons or the three parameters of an
oscillatory neuron

Notes:

1. To observe and simulate simpleRobot.robot.txt you can press the Test Me button on the
right.

2. For the details how robots are represented you should read through
http://robogen.org/docs/guidelines-for-writing-a-robot-text-file/

Make sure you understand all lines of the robot description file simpleRobot.robot.txt. Verify
that you can answer the following questions:

 Which part of the file represents the robot's body and which part represents the robot's
brain?

 For the body description, what does the indentation specify?

 What do the various numbers and strings on each line specify?

http://robogen.org/docs/guidelines-for-writing-a-robot-text-file/

3

Step 1.2

Now speicify myRobot1.robot.txt as robot description file. This is a copy of simpleRobot.robot.txt
that has had the brain specification removed.

Try adding/removing/modifying body components from this file and re-launching the simulation
so that you can view your changes.

For example:

 What happens if you change ActiveHinge to PassiveHinge on line 2?

 What happens when you remove the last three lines of robot body?

 Can you add a light-sensor attached to one end of the robot?

Note: If your file is not properly formatted, you will receive an error message when you try to
simulate this robot.

Step 1.3

Now, to make sure you understand how to write a robot description file, you should try to
reproduce the robot shown below. To do this select Build your own robot in the robot file. You
should pay careful attention to make sure all the components are included in the proper position,
and all joint orientations match.

4

Step 2

Now that you understand how to modify a robot body, it is time to learn a bit about how robot
brains are described.

For this exercise open myRobot2.robot.txt. This is an exact replica of simpleRobot.robot.txt that
you saw in action at the start of Step 1.1.

Now look at the Bias section of the robot, that were absent in myRobot1.robot.txt. These lines
define a very simple “brain” for your robot.

In general, brains in RoboGen are Artificial Neural Networks (ANNs). However, we also provide
the ability to include some alternative types of artificial neurons, such as oscillators, in order to
quickly find good locomotion abilities. Here, for example, we have specified that motor-neuron
0 of body part Hip1 is an oscillator with a period of 0.8s, a phase offset (relative to a central clock)
of -0.8 periods, and an amplitude of 1 (meaning the joint's entire motor range).

Refer back to http://robogen.org/docs/guidelines-for-writing-a-robot-text-file/ for details of
defining a robot brain (specifically the content under “The brain part”).

Try modifying the parameters of the oscillators and see what happens. What happens if you
increase the period? What happens if you decrease the amplitude (note amplitude must be in
[0,1])? Or change the phase offset?

It is also possible to define a standard ANN in this description file, but it may be difficult to
understand how the parameters influence behavior. Even so, in order to understand this you
should try to define a simple neural network.

Replace each oscillator definition line with a line like

Hip1 0 Sigmoid 10 (replacing Hip1 with the appropriate body part name for each motor neuron).
This will set each motor neuron to be a standard sigmoid, with bias 10.

 What happens if you simulate this robot?

 What happens if you change 10 to -10 on some of these lines?

Keep in mind that you have only set neuron biases, there are still no weights between neurons.

In order to manually set weights you will need to add weight lines to this file. For example remove
all of the bias lines you just created and add this line to the file such that it comes immediately
after two blank lines following the body description

Core 0 Hip1 0 10

This specifies that there is a connection with weight 10 from neuron 0 of the core component to
neuron 0 of Hip1. Note that the core component contains the IMU sensor with accelerometer

http://robogen.org/docs/guidelines-for-writing-a-robot-text-file/

5

and gyroscope. The indices of neurons there are as follows: 0,1,2 are the sensor neurons
corresponding to x,y,z accelerations respectively. 3,4,5 are the sensor neurons corresponding to
x,y,z gyroscope respectively. Neuron 0 of Hip1 corresponds to the motor neuron driving the servo
motor of Hip1.

 What happens when you specify this weight?

 What happens if you also include a bias on Hip1 0? Remember to include a blank line
after the weight description lines.

In general, it is not so intuitive to define the parameters of a neural network by hand, but do not
worry we will be allowing evolution to define the weights for us!

Step 3

The last thing to understand about simulating robots in RoboGen is the simulator configuration
file. Perhaps you modified this last time, but now we will look at it in a bit more depth. Go to
the simulation settings tab and the file conf.sim.txt should be preloaded.

 The full documentation for defining this parameters is available
http://robogen.org/docs/evolution-configuration/#Simulator_settings

For now, it is important to notice the following parameters in this tab:

Robot File: This is the robot that will be simulated. As you are using multiple robot files pay
attention to which robot file the simulation uses.

Fitness Function –specifies the scenario the robot should be evaluated in. There are two
scenarios provided to you: “racing_scenario.js” and “chasing_scenario.js”. racing scenario gives
fitness based of the distance traveled by the robot and chasing scenario gives fitness based on
how well the robot chases the light. Hoverer, chasing scenario are out of the scope of today’s
class. Alternatively, as you saw last time, you can define your own scenario with a small amount
of JavaScript and provide the name of the js file . You should select the corresponding file in the
Fitness function of the simulation.

obstaclesConfigFile – this optionally specifies the name of another file where environmental
obstacles are defined. You should refer to http://robogen.org/docs/evolution-
configuration/#Obstacles_configuration_file to see how to create obstacles. You can add
obstaclesConfigFile=maze.arena.txt

startPositionConfigFile – this specifies the name of another file where starting positions and
orientations are defined. The starting position configuration file contains 1 or more lines each
containing the x-position, y-position and orientation of the robot (in degrees). Each robot will be
simulated once for each starting position.

actuationFrequency (You cannot modify this) – this specifies the frequency (in Hz) that the
controller operates at. Lower frequencies may lead to less jittery gaits, but may also be less
reactive. 25 Hz is a reasonable value for the real hardware.

http://robogen.org/docs/evolution-configuration/#Simulator_settings
http://robogen.org/docs/evolution-configuration/#Obstacles_configuration_file
http://robogen.org/docs/evolution-configuration/#Obstacles_configuration_file

6

timeStep – this specifies the time step of the physics simulator (in s) or in other words, how much
real time each iteration of the simulation represents. Larger time steps will allow running faster
simulations, but can lead to unstable simulations. For the simulations that you want to be as
close as reality use the value 0.005 in the time step, however for faster evolutions you can use
any value between 0.005 to 0.04. NOTE: Inverse of actuation frequency should be a multiple of
timestep. nTimeSteps – this specifies the length of a simulation in terms of number of time steps.
The amount of real time represented by the simulation is timeStep * nTimeSteps

terrainLength and terrainWidth – these specify the dimensions of the terrain that the robot
operates on (in meters). Note: that the ground is simulated as an infinite plane, so these are just
used for rendering purposes.

terrainFriction – this specifies the coefficient of friction between the robot and the terrain

sensorNoiseLevel – this specifies the sensor noise level. Where the sensor noise is a Gaussian
with std dev of sensorNoiseLevel * actualValue. i.e. the value given to the controller Neural
Network is

N(a * s)

where a is actual, uncorrupted sensor value and s is sensorNoiseLevel

motorNoiseLevel – this specifies the motor noise level. Where the motor noise is uniform in
range +/- (motorNoiseLevel * actualValue)

capAcceleration – this is a boolean flag that when true will return a very poor fitness for any
individual whose acceleration exceeds caps (setable with maxLinearAcceleration and
maxAngularAcceleration parameters). Setting this to true is useful for catching solutions that
exploit flaws in the physics model and end up “flying” across the screen, mostly this arises when
evolving morphologies, but may also be seen when just evolving controllers.

Try using different timeSteps and see how you can speed up the simulation, but be careful not to
destabilize the simulator. Note that you should also modify nTimeSteps appropriately to keep a
fixed overall simulation time. Also note that you cannot make the frequency of simulator updates
faster than the actuation frequency, and in fact the period of actuation (inverse of frequency)
must be a multiple of the timeStep!

Step 4

Now that you understand more about defining a robot and configuring the simulator, it's time to
return to evolving controllers.

Navigate to the section Evolution settings. By default conf.evol.txt will be used as an evolutionary
configuration file. By default, conf.evol.txt file will be used for evolutionary settings. Also make
sure that you select the right robot file for your evolution. If you run multiple evolutionary
experiments with the same output directory, the software will start creating directories:

7

evol_results, evol_results_1, evol_results_2, etc. Keep this in mind when analyzing results.
Make sure you are not looking in the wrong place.

Additionally, remember that if you want to save results for future use, make sure to backup
these folders.

Important: When you back up the folders, make sure to remove all the evol_result folders in
the excersise2 directory. The software will be confused if random evol_result folder exists.

Finally, note the seed of the evolution for each step that you would like to replicate. The seed for
the random number generator is important. If you are replicating an evolutionary experiment
several times, you should be sure to specify different seeds for each replicate (this is important
for making statistical comparisons!).

The evolution configuration file specifies parameters related to the evolutionary algorithm, as
you saw last time, and also includes references to the simulator configuration file that will be
used for the fitness evaluations, and to a robot file to evolve from (if applicable). All the possible
evolutionary settings are documented: http://robogen.org/docs/evolution-
configuration/#Evolution_client_settings

evolutionaryAlgorithm – this lets you switch between a basic evolutionary algorithm (Basic) or an
indirect encoding known as HyperNEAT, which you will learn about later in the course. For this
example we use HyperNEAT so that we can quickly evolve good gaits for our robot. The
neatParamsFile lets you modify some internal parameters for HyperNEAT, but we will not touch
this file now.

Step 5

Now, you will use everything you have learned from Steps 1-5 to hand-design a robot body and

perform a brain only evolution of its controller. The designed-evolved robot has to navigate in a

rough environment as fast as possible overcoming obstacles (for examples, pebbles and small

hills).

 You can follow today’s Step 1 instructions to design your robot body (write a robot

description file in txt format).

 You can try to define the brain manually with what you learned in today’s Step 2,

or leave it empty and evolve it.

 You can simulate your robot in the example maze.arena.txt file to check its body-

shape and eventually its hand-designed brain.

 The same maze.arena.txt can be used for performing evolution of the robot brain.

However, you are free to define your own arenas and simulation configuration file

to improve the evolution of the robot (set different obstacles and starting

positions)

http://robogen.org/docs/evolution-configuration/#Evolution_client_settings
http://robogen.org/docs/evolution-configuration/#Evolution_client_settings

8

 The fitness function file in this lab can be set as “racing_scenario.js”, this will use

automatically a scenario file with a fitness function that tries to maximize distance

travelled in a certain time (and therefore robot speed). You are welcome to customize

this scenario.

