Solution suggestions série 7 continued

April 29, 2019

Preliminary exercise

Let X and Y be affine spaces of directions V and W resp.

Question 1

Let $\{v_1, ..., v_n\}$ be a basis of V and $\{w_1, ..., w_n\}$ be arbitrary vectors in W. **T.S.**: \exists a unique $\varphi \in Hom_k(V, W)$ s.t. $\varphi_0(v_i) = w_i \forall 1 \le i \le n$

Let $v \in V$, we have $v = \sum c_i v_i$ where $c_i \in k \forall 1 \le i \le n$ are unique. Define $\varphi_0(v) = \sum c_i w_i$. We leave it to the reader to check φ_0 is linear. Uniqueness is clear from linearity.

Question 2

Let $P_0 \in X$, $Q_0 \in Y$ and $\varphi_0 \in Hom_k(V, W)$.

T.S. There exists a unique affine transformation $\varphi : X \to Y$ s.t. $\varphi(P_0) = Q_0$ and φ_0 is the linear part of φ .

Let $P \in X$, $P = P_0 + v$ for a unique $v \in V$. Define $\varphi(P) = Q_0 + \varphi_0(v)$. It follows from Théorème 3.1, that φ is an affine transformation. If $\psi : X \to Y$ is an affine transformation, we have $\psi(P) = \psi(P_0) + lin(\psi)(v)$. So an affine transformation is uniquely determined by the image of one point and the linear part.

Compare this question to the theorem in the solution of exercise 5.

Exercise 3

Let φ be the affine morphism from \mathbb{R}^3 to \mathbb{R}^3 that maps

$$P_0 = (1, 1, 1), P_1 = (1, 1, 2), P_2 = (1, 2, 1), P_3 = (2, 2, 4)$$

 to

$$Q_0 = (1, 2, 3), \ Q_1 = (1, 3, 3), \ Q_2 = (2, 3, 6), \ Q_3 = (1, 2, 4).$$

Question 1

We compute $v_i := P_i - P_0$

$$v_1 = (0, 0, 1), v_2 = (0, 1, 0), v_3 = (1, 1, 3)$$

These vectors form a basis of \mathbb{R}^3 i.e. the points P_i are in general position. It follows from the theorem in solution of exercise 5 that φ exists and is unique.

Question 2

We also compute $w_i := Q_i - Q_0$

$$w_1 = (0, 1, 0), w_2 = (1, 1, 3), w_3 = (0, 0, 1)$$

Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map which satisfies $f(e_i) = v_i$ and let $g : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map which satisfies $g(e_i) = w_i$, where $\{e_1, e_2, e_3\}$ is the standard basis of \mathbb{R}^3 . It follows that $\varphi_0 = g \circ f^{-1}$. Note that the above statements use first question of the preliminary exercise. We made the above construction to calculate the matrix of φ_0 (w.r.t. the standard basis of \mathbb{R}^3). Here are the matrices of f, g, φ_0 : (w.r.t the standard basis)

$$M_f = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 3 \end{pmatrix}, M_f^{-1} = \begin{pmatrix} -3 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, M_g = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$$

and we get

$$M_{\varphi_0} = \left(\begin{array}{rrrr} -1 & 1 & 0\\ -4 & 1 & 1\\ -2 & 3 & 0 \end{array}\right)$$

The translation vector is given by $w = Q_0 - P_0 = (0, 1, 2)$. So $\varphi(P_0 + v) = P_0 + w + \varphi_0(v)$. The image of φ is \mathbb{R}^3 because φ_0 is surjective.

 $arphi^{-1}({f 3},{f 2},{f 1}):$

 $(3,2,1) - Q_0 = (2,0,-2)$. Further $\varphi_0^{-1}(2,0,-2) = (-8,-6,-26)$. We conclude that $\varphi^{-1}(3,2,1) = P_0 + (-8,-6,-26) = (-7,-5,-25)$.

Calculating in the same way as above $\varphi^{-1}(Q) = P_0 + \varphi_0^{-1}(Q - Q_0)$. Note that φ is invertible since it is surjective between affine space of same dimension or by observing that Q_i 's are in general position and using the second corollary to our theorem. (solution of exercise 5) Also note:

$$M_{\varphi_0^{-1}} = \left(\begin{array}{ccc} -3 & 0 & 1 \\ -2 & 0 & 1 \\ -10 & 1 & 3 \end{array} \right)$$

Question 3

Now set

$$Q_0 = (1, 2, 3), Q_1 = (1, 3, 3), Q_2 = (1, 7/3, 10/3), Q_3 = (1, 2, 4).$$

There exists a unique φ mapping P_i to Q_i resp.(this only uses the fact that P_i are in general position). We list properties φ , calculations are left to the reader.

$$M_{\varphi_0} = \begin{pmatrix} 0 & 0 & 0 \\ -10/3 & 1/3 & 1 \\ 2/3 & 1/3 & 0 \end{pmatrix}, \text{ Translation vector is } (0, 1, 2).$$

The image of φ is the 2 dimensional affine subspace given by $\{Q_0 + \lambda(0,1,0) + \mu(0,0,1) | \lambda, \mu \in \mathbb{R}\} = \{(1,2+\lambda,3+\mu) | \lambda, \mu \in \mathbb{R}\}$. In particular $\varphi^{-1}(3,2,1) = \phi$.

Question 4

Now consider

$$P_0 = (1, 1, 1), P_1 = (1, 1, 2), P_2 = (3/2, 3/2, 3), P_3 = (2, 2, 4)$$

$$Q_0 = (1, 2, 3), \ Q_1 = (1, 3, 3), \ Q_2 = (1, 5/2, 7/2), \ Q_3 = (1, 2, 4)$$

We want to understand if there exists an affine transformation that maps the P_i to Q_i and if it is unique. In the light of the preliminary exercise, this reduces to studying the existence and uniqueness of a linear map φ_0 which maps $v_i := P_i - P_0$ to $w_i := Q_i - Q_0, \forall 1 \le i \le 3$. We have,

$$v_1 = (0, 0, 1), v_2 = (1/2, 1/2, 2), v_3 = (1, 1, 3)$$

to

to

$$w_1 = (0, 1, 0), w_2 = (0, 1/2, 1/2), w_3 = (0, 0, 1).$$

Observe that $v_2 = \frac{1}{2}v_3 + \frac{1}{2}v_1$ and that v_1 and v_3 are linearly independent. (In other words v_1 , v_2 and v_3 lie in a 2-dimensional subspace.) Moreover $w_2 = \frac{1}{2}w_3 + \frac{1}{2}w_1$, so any linear transformation that maps v_1 to w_1 and v_3 to w_3 , automatically maps v_2 to w_2 ! Linear maps φ_0 with the above property therefore exist but are not unique. We proceed to describe the linear maps with this property, using first part of the preliminary exercise:

Let us consider as a basis for \mathbb{R}^3 (Check!),

$$v'_1 = (0, 0, 1), v'_2 = (1, 0, 0), v'_3 = (1, 1, 3)$$

we want to consider the linear transformation φ^w that maps the v_i 's respectively to

$$w'_1 = (0, 1, 0), w'_2 = w := (c_1, c_2, c_3), w'_3 = (0, 0, 1)$$

We can therefore parametrize all the linear maps which map v_1 to w_1 and v_3 to w_3 by φ^w for $w \in \mathbb{R}^3$. This is an affine subspace of $Hom_{\mathbb{R}}(\mathbb{R}^3, \mathbb{R}^3)$ (the vector space of linear transformations from \mathbb{R}^3 to \mathbb{R}^3). More explicitly, the linear transformations of interest are of the form $\varphi^w = \varphi^0 + c_1\psi^{e_1} + c_2\psi^{e_2} + c_3\psi^{e_3}, c_1, c_2, c_3 \in \mathbb{R}$ (i.e. the affine subspace $\varphi^0 + (\mathbb{R}\psi^{e_1} \oplus \mathbb{R}\psi^{e_2} \oplus \mathbb{R}\psi^{e_3})$) and ψ^w is the linear transformation that maps

$$v_1' = (0, 0, 1), v_2' = (1, 0, 0), v_3' = (1, 1, 3)$$

respectively to

$$w'_1 = (0, 0, 0), w'_2 = w, w'_3 = (0, 0, 0).$$

and e_i is the ith standard basis vector

Any affine transformation that maps P_i to Q_i has linear part ϕ^w for some $w \in \mathbb{R}^3$ and maps P_0 to Q_0 .