Solution suggestions série 7 continued

April 29, 2019

Preliminary exercise

Let X and Y be affine spaces of directions V and W resp.

Question 1

Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V and $\left\{w_{1}, \ldots, w_{n}\right\}$ be arbitrary vectors in W.
T.S.: \exists a unique $\varphi \in \operatorname{Hom}_{k}(V, W)$ s.t. $\varphi_{0}\left(v_{i}\right)=w_{i} \forall 1 \leq i \leq n$

Let $v \in V$, we have $v=\sum c_{i} v_{i}$ where $c_{i} \in k \forall 1 \leq i \leq n$ are unique. Define $\varphi_{0}(v)=\sum c_{i} w_{i}$. We leave it to the reader to check φ_{0} is linear. Uniqueness is clear from linearity.

Question 2

Let $P_{0} \in X, Q_{0} \in Y$ and $\varphi_{0} \in \operatorname{Hom}_{k}(V, W)$.
T.S. There exists a unique affine transformation $\varphi: X \rightarrow Y$ s.t. $\varphi\left(P_{0}\right)=$ Q_{0} and φ_{0} is the linear part of φ.

Let $P \in X, P=P_{0}+v$ for a unique $v \in V$. Define $\varphi(P)=Q_{0}+\varphi_{0}(v)$. It follows from Théorème 3.1, that φ is an affine transformation. If $\psi: X \rightarrow Y$ is an affine transformation, we have $\psi(P)=\psi\left(P_{0}\right)+\operatorname{lin}(\psi)(v)$. So an affine transformation is uniquely determined by the image of one point and the linear part.

Compare this question to the theorem in the solution of exercise 5 .

Exercise 3

Let φ be the affine morphism from \mathbb{R}^{3} to \mathbb{R}^{3} that maps

$$
P_{0}=(1,1,1), P_{1}=(1,1,2), \quad P_{2}=(1,2,1), P_{3}=(2,2,4)
$$

to

$$
Q_{0}=(1,2,3), Q_{1}=(1,3,3), Q_{2}=(2,3,6), Q_{3}=(1,2,4) .
$$

Question 1

We compute $v_{i}:=P_{i}-P_{0}$

$$
v_{1}=(0,0,1), v_{2}=(0,1,0), v_{3}=(1,1,3)
$$

These vectors form a basis of \mathbb{R}^{3} i.e. the points P_{i} are in general position. It follows from the theorem in solution of exercise 5 that φ exists and is unique.

Question 2

We also compute $w_{i}:=Q_{i}-Q_{0}$

$$
w_{1}=(0,1,0), w_{2}=(1,1,3), w_{3}=(0,0,1)
$$

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map which satisfies $f\left(e_{i}\right)=v_{i}$ and let g : $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map which satisfies $g\left(e_{i}\right)=w_{i}$, where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard basis of \mathbb{R}^{3}. It follows that $\varphi_{0}=g \circ f^{-1}$. Note that the above statements use first question of the preliminary exercise. We made the above construction to calculate the matrix of φ_{0} (w.r.t. the standard basis of \mathbb{R}^{3}). Here are the matrices of f, g, φ_{0} : (w.r.t the standard basis)

$$
M_{f}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 3
\end{array}\right), M_{f}^{-1}=\left(\begin{array}{ccc}
-3 & 0 & 1 \\
-1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), M_{g}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 3 & 1
\end{array}\right)
$$

and we get

$$
M_{\varphi_{0}}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
-4 & 1 & 1 \\
-2 & 3 & 0
\end{array}\right)
$$

The translation vector is given by $w=Q_{0}-P_{0}=(0,1,2)$. So $\varphi\left(P_{0}+v\right)=$ $P_{0}+w+\varphi_{0}(v)$. The image of φ is \mathbb{R}^{3} because φ_{0} is surjective.

$$
\varphi^{-1}(3,2,1):
$$

$(3,2,1)-Q_{0}=(2,0,-2)$. Further $\varphi_{0}^{-1}(2,0,-2)=(-8,-6,-26)$. We conclude that $\varphi^{-1}(3,2,1)=P_{0}+(-8,-6,-26)=(-7,-5,-25)$.

Calculating in the same way as above $\varphi^{-1}(Q)=P_{0}+\varphi_{0}^{-1}\left(Q-Q_{0}\right)$. Note that φ is invertible since it is surjective between affine space of same dimension or by observing that Q_{i} 's are in general position and using the second corollary to our theorem. (solution of exercise 5) Also note:

$$
M_{\varphi_{0}^{-1}}=\left(\begin{array}{ccc}
-3 & 0 & 1 \\
-2 & 0 & 1 \\
-10 & 1 & 3
\end{array}\right)
$$

Question 3

Now set

$$
Q_{0}=(1,2,3), Q_{1}=(1,3,3), Q_{2}=(1,7 / 3,10 / 3), Q_{3}=(1,2,4)
$$

There exists a unique φ mapping P_{i} to Q_{i} resp.(this only uses the fact that P_{i} are in general position). We list properties φ, calculations are left to the reader.

$$
M_{\varphi_{0}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
-10 / 3 & 1 / 3 & 1 \\
2 / 3 & 1 / 3 & 0
\end{array}\right) \text {, Translation vector is }(0,1,2) .
$$

The image of φ is the 2 dimensional affine subspace given by $\left\{Q_{0}+\right.$ $\lambda(0,1,0)+\mu(0,0,1) \mid \lambda, \mu \in \mathbb{R}\}=\{(1,2+\lambda, 3+\mu) \mid \lambda, \mu \in \mathbb{R}\}$. In particular $\varphi^{-1}(3,2,1)=\phi$.

Question 4

Now consider

$$
P_{0}=(1,1,1), \quad P_{1}=(1,1,2), \quad P_{2}=(3 / 2,3 / 2,3), \quad P_{3}=(2,2,4)
$$

to

$$
Q_{0}=(1,2,3), Q_{1}=(1,3,3), Q_{2}=(1,5 / 2,7 / 2), Q_{3}=(1,2,4)
$$

We want to understand if there exists an affine transformation that maps the P_{i} to Q_{i} and if it is unique. In the light of the preliminary exercise, this reduces to studying the existence and uniqueness of a linear map φ_{0} which maps $v_{i}:=P_{i}-P_{0}$ to $w_{i}:=Q_{i}-Q_{0}, \forall 1 \leq i \leq 3$. We have,

$$
v_{1}=(0,0,1), v_{2}=(1 / 2,1 / 2,2), v_{3}=(1,1,3)
$$

to

$$
w_{1}=(0,1,0), w_{2}=(0,1 / 2,1 / 2), w_{3}=(0,0,1)
$$

Observe that $v_{2}=\frac{1}{2} v_{3}+\frac{1}{2} v_{1}$ and that v_{1} and v_{3} are linearly independent. (In other words v_{1}, v_{2} and v_{3} lie in a 2 -dimensional subspace.) Moreover $w_{2}=\frac{1}{2} w_{3}+\frac{1}{2} w_{1}$, so any linear transformation that maps v_{1} to w_{1} and v_{3} to w_{3}, automatically maps v_{2} to w_{2} ! Linear maps φ_{0} with the above property therefore exist but are not unique. We proceed to describe the linear maps with this property, using first part of the preliminary exercise:

Let us consider as a basis for \mathbb{R}^{3} (Check!),

$$
v_{1}^{\prime}=(0,0,1), v_{2}^{\prime}=(1,0,0), v_{3}^{\prime}=(1,1,3)
$$

we want to consider the linear transformation φ^{w} that maps the v_{i} 's respectively to

$$
w_{1}^{\prime}=(0,1,0), w_{2}^{\prime}=w:=\left(c_{1}, c_{2}, c_{3}\right), w_{3}^{\prime}=(0,0,1)
$$

We can therefore parametrize all the linear maps which map v_{1} to w_{1} and v_{3} to w_{3} by φ^{w} for $w \in \mathbb{R}^{3}$. This is an affine subspace of $\operatorname{Hom}_{\mathbb{R}}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ (the vector space of linear transformations from \mathbb{R}^{3} to $\left.\mathbb{R}^{3}\right)$. More explicitly, the linear transformations of interest are of the form $\varphi^{w}=\varphi^{0}+c_{1} \psi^{e_{1}}+c_{2} \psi^{e_{2}}+$ $c_{3} \psi^{e_{3}}, c_{1}, c_{2}, c_{3} \in \mathbb{R}\left(\right.$ i.e. the affine subspace $\left.\varphi^{0}+\left(\mathbb{R} \psi^{e_{1}} \oplus \mathbb{R} \psi^{e_{2}} \oplus \mathbb{R} \psi^{e_{3}}\right)\right)$ and ψ^{w} is the linear transformation that maps

$$
v_{1}^{\prime}=(0,0,1), v_{2}^{\prime}=(1,0,0), v_{3}^{\prime}=(1,1,3)
$$

respectively to

$$
w_{1}^{\prime}=(0,0,0), w_{2}^{\prime}=w, w_{3}^{\prime}=(0,0,0)
$$

and e_{i} is the ith standard basis vector
Any affine transformation that maps P_{i} to Q_{i} has linear part ϕ^{w} for some $w \in \mathbb{R}^{3}$ and maps P_{0} to Q_{0}.

