• Outline:

Hydrogen as an energy vector:

- 1. Motivation
- 2. **Properties**
- 3. Production
- 4. Storage
- 5. Distribution
- 6. Application

Learning outcomes of todays lecture

- Hydrogen as an energy vector
 - What is hydrogen and what makes it special
 - Why using hydrogen as an energy vector, alternatives
 - How can hydrogen be generated, how renewable
 - How can hydrogen be stored
 - How can hydrogen be transported/distributed
 - Where and how is hydrogen used as an end product

- Current society is largely based on the use of fossil fuels
 - Switzerland: 56% (oil, gas, coal)

• Global: 87% (oil, coal, gas)

• This is not sustainable:

EPFL

- Finite reserves (economy)
- Pollution and climate change (environment)
 - Emissions: CO₂, CH₄, N₂O, particles, NO_x, SO₂, F-gases, heavy metals (Hg, As)
 - Health issues: smog (winter and summer-smog), ozon layer depletion
 - Climate change: temperature, precipitation,

*See IPCC report:

snow cover, sea level, etc.*

• Geopolitical tensions over resources (security)

https://www.ipcc.ch/report/ar5/

• Winter smog in Zürich:

• Summer smog Zürich:

RE, Haussener | April, 2019 5/63

- Increase of renewable energy sources, but issues with
 - Storage
 - Transport, distribution
- Introduction of an energy vector:

An energy vector allows to transfer, in space and time, a quantity of energy.

... energy vectors allow to make energy available for use at a distance of time and space from the source, [independent of] the point of availability of the primary resource in nature.

Orecchini, The era of energy vectors, IJHE, 31, 2006.

- Various energy vectors:
 - Hydrogen
 - Synthetic fuels
 - Fossil fuels
 - Electricity
 - •

Table 1 Energy vectors key attitudes

Energy vector	Transfer attitude	Storage attitude
Fossil fuels	Short, medium, long range	Yes, short, medium, long term.
Hydrogen	Short, medium, long range	Yes, short, medium, long term. (Cryogenic exception)
Heat exchanging fluids	Short range	Yes, short term
Electricity	Short and medium range	No (indirect methods)
Mechanical, oil-dynamic and pressure-dynamic transmissions	Short range	Yes
Radiation	Very long range in space Short range in atmosphere	No

Orecchini, The era of energy vectors, IJHE, 31, 2006.

- Hydrogen has been identified as a possible energy vector and alternative to hydrocarbon-based fuels:
 - Sustainable and environmentally acceptable (produced from water, production/storage/transport can be almost GHG and pollutant free)
 - Independent from crude oil
 - Available from different energy sources
 - Storable in gas, liquid, or metal-hydride form
 - Alternative production technologies
 - Versatile conversion (can be converted in variety of other forms) and application
 - Efficient direct conversion to/from electricity via fuel cells/electrolyzer
 - Almost pollutant free combustion (only NO_x)
 - Large market potential

• Hydrogen is an energy carrier not an energy source!

Bossel, Does a hydrogen economy make sense?, Proceedings of the IEEE, vol. 94, no. 10, October 2006.

But:

- Charging time of batteries, reliability, range, weight, toxicity •
- Versatility of electricity limited (hydrogen can also be used in ICE, or • as chemical commodity) EPFL RE, Haussener | April, 2019

• Outline:

Hydrogen as an energy vector:

- **1.** Motivation
- 2. **Properties**
- 3. Production
- 4. Storage
- 5. Distribution
- 6. Application

- Lightest, most abundant element
 - 90 wt% of the universe
 - 4th most abundant on earth (highly reactive - mainly found in water and hydrocarbons)
- Colorless, odorless, tasteless
- Non-toxic and non-corrosive
- Low viscosity
 (0.89·10⁻⁵ Pa·s @ 293 K, 1 atm)
- Low density
 (0.08345 kg/m³ @ 293 K, 1 atm)
- Gaseous to 20 K (-253 °C)

• Negative Joule-Thompson coefficient above inversion (inversion 193 K):

$$\mu_{\rm J} = \left(\frac{\partial T}{\partial p}\right)_h$$

• Determined experimentally in an enthalpic expansion process

- Highly diffusive (diffusion coeff. $0.61 \cdot 10^{-4} \text{ m}^2/\text{s}$): rapid mixing
- High solubility: leads to steel embrittlement, enhanced with higher pressure and temperature
- Most energy per unit mass:
 - Hydrogen: 120 MJ/kg
 - Biomass 18 MJ/kg
 - Gasoline 43 MJ/kg

- Safety:
 - Light: rises quickly and disperses
 - High diffusivity: less easy built up of flammable mixtures
 - Small and low viscosity: easily leaks and doesn't accumulate but can also diffuse in metals and embrittle them
 - Small volumetric energy density: holds less energy than gasoline
 - Concentration limits of flammable fuel/air mixture 5-76 vol% (gasoline 1-7 vol%)
 - Autoignition temperature 853 K (gasoline 533 K)
 - Non-toxic
 - Odorless: odorants such as thiole (R-S, done for natural gas)
 Can be added (already)

• Properties in comparison to other gases and liquids:

Property	Hydrogen	Methane	Propane	Gasoline
Molecular weight (u)	2.02	16.04	44.06	~107
Density (kg/m ³) at normal conditions	0.084	0.651	1.87	4.4
Buoyancy (density with respect to air)	0.07	0.55	1.52	3.4 to 4.0
Diffusion coefficient (cm ² /s)	0.61	0.16	0.12	0.05
Lean flammability limit in air (% by volume)	4.1	5.3	2.1	1.0
Rich flammability limit in air (% by volume)	75	15	10	7.8
Minimum ignition energy (mJ)	0.02	0.29	0.26	0.24
Minimum self-ignition energy (K)	858	813	760	501 to 744
Lean detonability limit in air (% by volume)	18	6.3	3.1	1.1
Rich detonability limit in air (% by volume)	59	13.5	7.0	3.3
Explosion energy (kg equivalent TNT per m ³ of vapor)	2.02	7.02	20.2	44.2

^ Selected physical properties of hydrogen, methane, propane and gasoline.

Hydrogen use

• Current yearly world production ~55 mio tons and used for:

• Outline:

Hydrogen as an energy vector:

- 1. Motivation
- 2. **Properties**
- 3. Production
- 4. Storage
- 5. Distribution
- 6. Application

	Electrolysis, 1%		
• Production of hyd	rogen:		Oil, 23%
Technology		F	Natural gas, 76%
Technology	Hydrogen source	Energy source	
Steam reforming	Natural gas	Combustion, solar	
Gasification	Coal, carbonaceous material, biomass	Combustion, solar	
Thermal cracking	Natural gas, oil	Combustion, solar	
Thermal dissociation	Water	Solar	
Thermochemical cycles	Water	Solar, nuclear	
Photoelectrochemical	Water	Solar	
Electrolysis	Water	Electricity from rene fossil	ewable, nuclear,

• Steam reforming: uses light hydrocarbon feedstock, usually methane, reacts it at elevated temperatures with steam and catalytically converts the feed into hydrogen

 $CH_4 + H_2O \rightarrow CO + 3H_2 (\Delta H = 206 \text{ kJ/mol})$

water gas shift: $CO + H_2O \rightarrow CO_2 + H_2$ ($\Delta H = -41$ kJ/mol)

Gasification: uses carbonaceous materials, reacts it at high temperatures (>700 °C), without combustion, with a controlled amount of steam, oxygen, and/or CO₂. Results in CO, H₂, and CO_2 . 1600 12

$$C + H_2O \rightarrow CO + H_2$$

- Consists of (sequential or simultaneous): Dehydration Pyrolysis (thermal d in the d in the absence of O_2 , devolatilization)
 - Gasification (heterogeneous gas-• solid reaction of pyrolysis residue with reactive gas)
 - Combustion

EPFL

Water-gas-shift

• Thermal cracking: complex organic molecules such as heavy hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon-carbon bonds in the precursors at high temperatures and by using catalysts

 $CH_4 \rightarrow C + 2H_2 (\Delta H = 74.85 \text{ kJ/mol})$

- Hydrogen derived from fossil fuels has many impurities:
 - From combustion: CO₂, CO, N₂
 - From the feedstock: sulfur
- Purification:
 - Desulfurization for gaseous feedstock: calcium-based slurries (SO₂ to sulfites and sulfates)
 - Desulfurization from solid/liquid feedstock: via catalysts into H_2S
 - CO₂ removal:
 - temperature swing adsorption (solubility variation of CO₂ with temperature)
 - pressure swing adsorption (pressure dependent absorption of e.g. zeolites)
 - special membranes (cellulose)
 - CO removal from H₂ mixture: Hydrogen-permeable membranes made of metals (palladium)

- Heat for steam reforming, gasification, or cracking can be produced via:
 - Autothermal processes (partial combustion of the feedstock)

Combustion: $C_xH_y + (x+y/4)O_2 \rightarrow xCO_2 + y/2H_2O$

• Any other heat source such as solar or nuclear:

• Thermal and thermochemical approaches:

• Thermochemical cycles – solar: concentrating technologies

Parabolic through

Solar tower

Fresnel

• Temperatures reachable:

$$\eta_{\rm rec} = \frac{q_{\rm use}}{q_{\rm sol,in}} = \frac{q_{\rm use}}{CI} = \alpha - \sigma \varepsilon \frac{T_{\rm abs}^4 - T_{\rm amb}^4}{CI}$$
$$\eta_{\rm heat-to-electricity} = \frac{T_{\rm abs} - T_{\rm amb}}{T_{\rm abs}}$$

• Thermochemical cycles – nuclear:

- Possible coolants/ heat transfer fluid:
 - Molten-salt
 - Gases (e.g. He)
 - Heavy metals

• Compared to solar: limited in temperature (1573 K)

• Thermal dissociation:

$H_2O \rightarrow 1/2O_2 + H_2$

• Multi-step water-splitting cycles

$$H_{2} \xrightarrow{\mathsf{MeO}} H_{2} \xrightarrow{\mathsf{Me+1/2O}_{2}} \xrightarrow{\mathsf{MeO}_{2}} H_{2} \xrightarrow{\mathsf{MeO}_{2}} \xrightarrow{\mathsf{MOO}_{2}} \xrightarrow{$$

- reduce required temperatures
- omit explosive H_2/O_2 mixture

• Possible redox pairs for two-step cycles:

Cycle	Reactions	Cycle	Reactions
Zn/ZnO	$ZnO \rightarrow Zn + O_2$	SoO ₂ /SiO	$SiO_2 \rightarrow SiO + 1/2 O_2$
	$Zn + H_2O \rightarrow ZnO+H_2$		$SiO+H_2O \rightarrow SiO_2+H_2$
Fe ₃ O ₄ /FeO	$Fe_3O_4 \rightarrow 3 FeO + \frac{1}{2}O_2$	W/WO ₃	$WO_3 \rightarrow W+3/2 O_2$
	$3 \text{ FeO} + \text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + \text{H}_2$		$W+3H_2O\rightarrow WO_3+3H_2$
In ₂ O ₃ /In ₂ O	$In_2O_3 \rightarrow In_2O+1/2 O_2$	Hg/HgO	$Hg+H_2O\rightarrow HgO+H_2$
	$In_2O+2H_2O\rightarrow In_2O_3+2H_2$		$HgO\rightarrow Hg+1/2O_2$
SnO ₂ /Sn	$SnO_2 \rightarrow Sn+O_2$	Cd/CdO	$Cd+H_2O\rightarrow CdO+H_2$
	$Sn+2H_2O \rightarrow SnO2+2H_2$		$CdO \rightarrow Cd+1/2O_2$
MnO/MnSO ₄	$MnSO_4 \rightarrow MnO+SO_2+1/2O_2$	CO/CO ₂	$CO+H_2O\rightarrow CO_2+H_2$
	$MnO+H_2O+SO_2\rightarrow MnSO_4+H_2$		$CO_2 \rightarrow CO + 1/2O_2$
FeO/FeSo ₄	$FeSO_4 \rightarrow FeO+SO_2+1/2O_2$	Ce_2O_3/CeO_2	$CeO_2 \rightarrow Ce_2O_3$
	$FeO+H_2O+SO_2\rightarrow FeSO_4+H_2$		$Ce_2O_3+H_2O\rightarrow 2CeO_2+H_2$
CoO/CoSO4	$CoSO_4 \rightarrow CoO + SO_2 + 1/2O_2$	Mg/MgO	MgO \rightarrow Mg+1/2O ₂
	$CoO+H_2O+SO_2\rightarrow CoSO_4+H_2$		$Mg+H_2O\rightarrow MgO+H_2$
Fe ₃ O ₄ /FeCl ₂	$Fe_3O_4+6HCl \rightarrow 3FeCl_2+3H_2O+1/2O_2$	SnO/SnO2	$SnO_2 \rightarrow SnO+1/2O_2$
	3 FeCl ₂ + 4 H ₂ O \rightarrow Fe ₃ O ₄ + 6 HCl+H ₂		$SnO+H_2O\rightarrow SnO_2+H_2$
Mo/Mo ₂	$MoO_2 \rightarrow Mo+O_2$		
	$Mo+2H_2O \rightarrow MoO_2+2H_2$		
the first states			RE, Haussener April , 2019 31/63

Oil, 23%

Natural

Electrolysis, 1%

Technology	Hydrogen source	Energy source gas, 76%
Steam reforming	Natural gas	Combustion, solar
	Coal,	
	carbonaceous	
Gasification	material, biomass	Combustion, solar
Thermal cracking	Natural gas, oil	Combustion, solar
Thermal dissociation	Water	Solar
Thermochemical		
cycles	Water	Solar, nuclear
Photoelectrochemical	Water	Solar
		Electricity from renewable, nuclear,
Electrolysis	Water	fossil

Production

electrol vte

H⁺

 $H_20 \rightarrow 2H^+ + 2e^- + 1/20^-$

E NHE

-1.0

-0.5

0.0

0.5

absorbe

GaAs

AE =

1.4 eV

 $2H^++2e^- \rightarrow H_2$

GaF

 $\Delta E =$

2.25 eV

CdSe

 $\Delta E =$

 $\Delta E =$

2.4 eV

ZnO

 $\Delta E =$

3.2 eV

ΔE = 2.1 eV

 $\Delta E =$

2.6 eV

ΔE = 3.8 eV

• Photoelectrochemical:

- Stringent material requirements:
 - band gap size
 - suitable band edge position
 - high chemical stability in the dark $\begin{bmatrix} 1.0 \\ 5 \\ 2.0 \\ 2.$
 - efficient charge transport in the semiconductor
 - selective and efficient electrochemical reactions
 - earth-abundance and low costs

H5/H,

H,O/O.

AE =

3.0 eV

 $\Delta E =$

3.2 eV

Oil, 23%

Natural

Electrolysis, 1%

Technology	Hydrogen source	Energy source gas, 76%
Steam reforming	Natural gas	Combustion, solar
	Coal,	
	carbonaceous	
Gasification	material, biomass	Combustion, solar
Thermal cracking	Natural gas, oil	Combustion, solar
Thermal dissociation	Water	Solar
Thermochemical		
cycles	Water	Solar, nuclear
Photoelectrochemical	Water	Solar
		Electricity from renewable, nuclear,
Electrolvsis	Water	fossil

Production

• Electrolysis, e.g. SPE

$$H_2O \rightarrow 1/2O_2 + H_2 ~(\Delta G = 237 \text{ kJ/mol})$$

• At standard conditions (25 °C and 1bar)

$$\Delta G = nFV_{rev} \rightarrow V_{rev} = \Delta G / (nF) = 1.23V$$

• Practical:

$$V = V_{rev} + \eta_a + \left|\eta_c\right| + \eta_\Omega$$

Overpotential due to electrochemical reactions and ohmic losses

$$\eta_{a,c} = a + b \log(i)$$
 Tafel relation

• Alkaline electrolyzer: uses high pH electrolytes (KOH, NaOH) Anode: $2OH^- \rightarrow \frac{1}{2}O_2 + H_2O + 2e^-$ Cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

NEL-Hydrogen: 50-485 Nm³ H₂/h 25% KOH aqueous solution, 80°C

• Solid polymer electrolyzer: polymeric electrolyte PEM fuel cell:

Anode: $H_2O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$ Cathode: $2H^+ + 2e^- \rightarrow H_2$

、 CF2

- Sulfonated tetrafluoroethylene:
 - Semi-permeable for products
 - Withstand large pressure differentials
 - Proton conducting (10 S/m)
 - Not conducting for electrons
- Membrane is usually only 150-300 μ m thick
- Commonly uses rare metals as catalysts (Pt, Ir, Ru)
- Gas diffusion layers:
 - Electrical conducting
 - Gas diffusing, permeable
 - Mechanical stable

EPEL

 Solid oxide electrolyzers: operate at very high temperatures (~700-1000 °C)

- Electricity from:
 - Solar: PV electricity
 - Solar: solar thermal electricity
 - Wind
 - Hydro
 - Geothermal
 - Biomass

EPFL

• Fossil fuels

Oil, 23%

Natural

Electrolysis, 1%

Technology	Hydrogen source	Energy source gas, 76%
Steam reforming	Natural gas	Combustion, solar
	Coal,	
	carbonaceous	
Gasification	material, biomass	Combustion, solar
Thermal cracking	Natural gas, oil	Combustion, solar
Thermal dissociation	Water	Solar
Thermochemical		
cycles	Water	Solar, nuclear
Photoelectrochemical	Water	Solar
		Electricity from renewable, nuclear,
Electrolysis	Water	fossil

Production

• Prize comparison:

TechnologyPrimary sourceProd. cost (\$/kg)Ref.Central steam reformingNatural gas1.5[17,26]Distrib. steam reformingNatural gas2.6[26]GasificationCoal1.2[26]Gasification with CCSCoal1.8[17,26]
Central steam reformingNatural gas1.5[17,26]Distrib. steam reformingNatural gas2.6[26]GasificationCoal1.2[26]Gasification with CCSCoal1.8[17,26]
Central steam reformingNatural gas1.5[17,26]Distrib. steam reformingNatural gas2.6[26]GasificationCoal1.2[26]Gasification with CCSCoal1.8[17,26]
Distrib. steam reformingNatural gas2.6[26]GasificationCoal1.2[26]Gasification with CCSCoal1.8[17,26]
GasificationCoal1.2[26]Gasification with CCSCoal1.8[17,26]
Gasification with CCS Coal 1.8 [17,26]
Distributed electrolysis Grid electricity 6.8 [26]
Central electrolysis Wind 3.8 [26]
Distributed electrolysis Wind 7.3 [26]
Thermochemical cycle Nuclear 1.4 [26]
Pyrolysis/Cracking Natural gas + solar 3.0 [9]
Pyrolysis/Cracking Natural gas + solar 3.6 [10]
Pyrolysis/Cracking Natural gas + solar 4.5 [9]
Steam reforming Natural gas + solar 2.2 [16]
FV electrolysis Solar 9.1 [17]
Solar thermoch. Solar 5.3 [17]
S cycles
Sol. thermoch. Solar 8.3 [17]
oxide/metal

Abanades et al., IJHE, 38, 2013.

• Outline:

Hydrogen as an energy vector:

- 1. Motivation
- 2. **Properties**
- 3. Production
- 4. Storage
- 5. Distribution
- 6. Application

• Major drawback for hydrogen due to its extremely low density (problematic for mobility applications)

Higher Heating Value per Volume for Different Fuel Options

- Two major storage possibilities:
 - Storage that alters the state or phase:
 - Compression
 - Liquefaction
 - Processes that associate hydrogen to other substances:
 - Adsorption on substrate (e.g. activated carbon)
 - Chemical combination of hydrogen to create hydrogen-rich compound:
 - Hydrogen is tightly bound, requiring chemical process for recovery (e.g. ammonia, methanol)
 - Compounds that can be reversibly transformed into another compound with higher/lower hydrogen content
 - Metal hydrides that can absorb and release hydrogen reversibly when temperature changes

- Compression:
 - Ideal isothermal compression:

$$\frac{W}{m} = p_0 v_0 \ln\left(\frac{p_1}{p_0}\right)$$

Adiabatic compression: •

Ratio of specific heats = c_{p}/c_{v} = 1.41 for hydrogen at 300 K

- Reality
 - Multi-stage compression with intercooling

- Compression:
 - Quantity of interest gravimetric concentration
 - Described by performance factor:

$$PF = \frac{p_{burst}V}{m_{container}}$$

- Mass of the container is proportional to maximum pressure (just below bursting)
- Only way to improve *PF* is finding better materials
- Currently small quantities are stored in steel pressure cylinders up to 150 bar (e.g. in laboratories), weight 90 kg, *PF* around 250'000 J/kg
- A 500 liter container at 150 bar holds ca. 6 kg of hydrogen which corresponds to 20 liters of gasoline (FC have double efficiency than IC)

- Compression:
 - For very large scale storage: underground formations (aquifers, mines, exhausted natural gas deposit, etc.)
 - Large scale storage in transport pipeline: 1000 km long, 1.2 m diameter at 60 atm → 1000 TJ (~23 mio liters gasoline)

- Liquification:
 - Cooling from 293 to 20 K, and condensation at 20 K and 1 atm, requires theoretically around 14 MJ/kg $H_{2,1}$
 - But no heat sinks at 20 K exists, multi-stage process needed:

Three-stage propane refrigeration system is used for cooling hydrogen gas from ambient temperature to about 170 K, followed by multistage nitrogen expansion to obtain 77 K, and a multistage helium compression– expansion to complete the liquefaction of hydrogen at 20.3 K and atmospheric pressure

- Liquification:
 - Cooling from 293 to 20 K, and condensation at 20 K and 1 atm, requires theoretically around 14 MJ/kg $H_{2,1}$
 - Commercial production (Linde Gas AG) reports 54 MJ/kg

- Chemical:
 - Fischer-Tropsch synthesis: use of a catalyst to produce methanol (most widely used catalyst: mixture of Cu, ZnO, and Al₂O₃), At 50–100 bar and 250 °C

 $CO + 2 H_2 \rightarrow CH_3OH$

• Methanol synthesis:

```
CO_2 + 3 H_2 \rightarrow CH_3OH + H_2O
```

Methanol: can be used in DMFC or ICE, already in liquid form
 Methanol as an energy vector?! But CO₂ has to come from the atmosphere

- Chemical:
 - Metal-hydrides (e.g. CaH₂, LiH): powdered metals absorb hydrogen under high pressures. With pressure release and applied heat, the process is reversed
 - Have a somewhat bad LCA, and energy intense for production

Comparison

8.6 | gasoline / 100 km = 1 kWh / km 3 | gasoline / 100 km = 0.36 kWh / km

• Comparison

Storage Media	Volume	Mass	Pressure	Temperature	
	max. 33 kg H₂·m⁻³	13 mass%	800 bar	298 K	Composite cylind.
					established
	71 kg H₂⋅m⁻³	100 mass%	1 bar	21 K	Liquid hydrogen
	20 kg H₂⋅m-³	4 mass%	70 bar	65 K	Physisorption
	150 kg H₂⋅m-₃	2 mass%	1 bar	298 K	Metalhydrides

• Outline:

Hydrogen as an energy vector:

- 1. Motivation
- 2. **Properties**
- 3. Production
- 4. Storage
- 5. Distribution
- 6. Application

Distribution

• Concept:

Trucks with compressed or liquid hydrogen:

Fueling station:

Transportation services

On site generation: By electrolysis and renewable By fossil fuels

- Piped hydrogen
- What about decentralized production, even in the car?

Distribution

• Hydrogen highway

40 "H2 pumps" on the Highway about 2000 km

Distribution

- Hydrogen highway
- 3 FC- busses in each city
- Different hydrogen
 Productions

Emerging Renewable Power

• Outline:

Hydrogen as an energy vector:

- **1.** Motivation
- 2. Properties
- 3. Production
- 4. Storage
- 5. Distribution
- 6. Application

Application

- In transportation:
 - Internal combustion:
 - No CO₂ emissions, no smog (sulfur-based, unburned hydrocarbons, CO), no particles, reduction in NO_x
 - Improved cold starting performance
 - Efficiency similar or slightly higher (higher diffusivity, uniform fuel-air mixtures, minimal ignition energy lower, wide flammability allows to work from lean to stoichiometric mixtures, high ignition temperatures allows to use higher compression ratio)
 - Fuel cells
 - No CO₂ emissions, no smog, no particles, no NO_x
 - Improved cold starting performance
 - No noise
 - Higher efficiencies (not limited by Carnot)

Learning outcomes of todays lecture

- Hydrogen as an energy vector
 - What is hydrogen and what makes it special
 - Why using hydrogen as an energy vector, alternatives
 - How can hydrogen be generated, how renewable
 - How can hydrogen be stored
 - How can hydrogen be transported/distributed
 - Where and how is hydrogen used as an end product

Additional literature

- Da Rosa: Fundamentals of Renewable Energy Processes, Elsevier, 2005.
- Grimes, Varghese, Ranjan: Light, Water, Hydrogen, Springer, 2008.