Série 10: Correction

Exercise 1

1. This is similar to the proof of Proposition 3.15 in the course notes. We consider the characteristic polynomial of $M=M_{\varphi}$,

$$
\begin{aligned}
P_{M}(x)=\operatorname{det}\left(x \cdot I d_{n}-M\right) & =x^{n}-\operatorname{tr}(M) x^{n-1}+\ldots+(-1)^{n} \operatorname{det}(M) \\
& =x^{n}-\operatorname{tr}(M) x^{n-1}+\ldots+\operatorname{det}(M),
\end{aligned}
$$

where $(-1)^{n}=1$ since n is even. Notice that $P_{M}(0)=\operatorname{det}(M)=-1<0$ by assumption, while $\lim _{x \rightarrow+\infty} P_{M}(x)=+\infty$ and $\lim _{x \rightarrow-\infty} P_{M}(x)=+\infty$. Then by the intermediate value theorem, $P_{M}(x)$ has a root $\lambda_{1} \in(0, \infty)$ and a root $\lambda_{2} \in(-\infty, 0)$. For $i=1,2$, since $\lambda_{i} I d_{n}-M$ are not invertible, there exist $\overrightarrow{v_{i}} \neq 0$ such that $\lambda_{i} \overrightarrow{v_{i}}-M \cdot \overrightarrow{v_{i}}=0$. Then $\varphi\left(\overrightarrow{v_{i}}\right)=\lambda_{i} \overrightarrow{v_{i}}$. We have seen that (see Proposition 3.14) $\lambda_{i}= \pm 1$, in particular, $\lambda_{i}=1$ and $\lambda_{2}=-1$. Let $\mathbf{e}_{1}=\overrightarrow{v_{1}} /\left\|\overrightarrow{v_{1}}\right\|$ and $\mathbf{e}_{2}=\overrightarrow{v_{2}} /\left\|\overrightarrow{v_{2}}\right\|$, then we have $\varphi\left(\mathbf{e}_{1}\right)=\mathbf{e}_{1}$ and $\varphi\left(\mathbf{e}_{2}\right)=-\mathbf{e}_{2}$, as required. Moreover, \mathbf{e}_{1} and \mathbf{e}_{2} are perpendicular, since $\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle=\left\langle\varphi\left(\mathbf{e}_{1}\right),-\varphi\left(\mathbf{e}_{2}\right)\right\rangle=\left\langle\mathbf{e}_{1},-\mathbf{e}_{2}\right\rangle$ which implies that $\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle=0$.
2. We can choose a BON of the form $\mathcal{B}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, v_{3}, \ldots, v_{n}\right\}$, where $\left\{v_{3}, \ldots, v_{n}\right\}$ is a BON of $\left(\mathbb{R} \mathbf{e}_{1} \oplus \mathbb{R} \mathbf{e}_{1}\right)^{\perp}$. Then under \mathcal{B}, the matrix $M_{\varphi, \mathcal{B}}$ is of the form as required.

Exercise 2

2. Since $M_{B, \varphi}=\left(x_{i j}\right)_{i, j}$ is an orthonormal matrix, each column vector $\overrightarrow{v_{i}}$ of $M_{B, \varphi}$ is of normal 1: $\left\|\overrightarrow{v_{i}}\right\|=\sqrt{\sum_{j=1}^{n} x_{i j}^{2}}=1$. In particular, each entry $x_{i j}$ of the matrix $M_{B, \varphi}$ is of absolute value bounded by $1:\left|x_{i j}\right| \leqslant 1$. Hence $\operatorname{tr}(\varphi)=\sum_{i=1}^{n} x_{i i} \in[-n, n]$.

Exercise 3

1. Under the convenient orthonormal basis $\mathcal{B}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, the matrix of φ is of the form

$$
M_{\varphi, \mathcal{B}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & -s \\
0 & s & c
\end{array}\right),
$$

where $c=\cos (\theta)$ and $s=\sin (\theta)$. From Exercise 2, we know that the trace and determinant of φ do not depend on the choices of the bases. Hence $\operatorname{tr}(\varphi)=$ $\operatorname{tr}\left(M_{\varphi, \mathcal{B}}\right)=1+2 \cos (\theta) \in[-3,3]$. If $\theta=\pi$, that is, if φ is an axial symmetry, then $\operatorname{tr}(\varphi)=1-2=-1$. If $\theta=0$, i.e., $\varphi=i d$, $\operatorname{then} \operatorname{tr}(\varphi)=3$.
2. Under the convenient orthonormal basis \mathcal{B}, the matrix of φ is of the form

$$
M_{\varphi, \mathcal{B}}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & c & -s \\
0 & s & c
\end{array}\right), c=\cos (\theta), s=\sin (\theta) .
$$

Then $\operatorname{tr}(\varphi)=\operatorname{tr}\left(M_{\varphi, \mathcal{B}}\right)=-1+2 \cos (\theta) \in[-3,1] . \operatorname{tr}(\varphi)=-3$ if $\cos (\theta)=-1$, if $\theta=\pi$ and φ is a point symmetry (symetrie centrale). If $\operatorname{tr}(\varphi)=1$, if $\cos (\theta)=1$ and $\theta=0$, in which case φ is an orthogonal symmetry with respect to the plane $\mathbb{R} \mathbf{e}_{2}+\mathbb{R} \mathbf{e}_{3}$.
3. Under an appropriate orthonormal basis, the matrix of φ is of the form

$$
M=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right),
$$

which implies that $\operatorname{tr}(\varphi)=\operatorname{tr}(M)=1$.
4. The matrix of a plane symmetry in the convenient orthonormal basis \mathcal{B} is given by $M_{\varphi, \mathcal{B}}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$. Let A be the base change matrix from $M_{\varphi, \mathcal{B}}$ to $M_{0, \varphi}$. Then $M_{0, \varphi}=A \cdot M_{\varphi, \mathcal{B}} \cdot A^{-1}=A \cdot M_{\varphi, \mathcal{B}} \cdot{ }^{t} A$, where A is an orthogonal matrix. Now

$$
{ }^{t} M_{0, \varphi}={ }^{t}\left(A \cdot M_{\varphi, \mathcal{B}} \cdot{ }^{t} A\right)={ }^{t}\left({ }^{t} A\right) \cdot{ }^{t} M_{\varphi, \mathcal{B}} \cdot{ }^{t} A=A \cdot M_{\varphi, \mathcal{B}} \cdot{ }^{t} A=M_{0, \varphi},
$$

since ${ }^{t} M_{\varphi, \mathcal{B}}=M_{\varphi, \mathcal{B}}$.
5. (a) If $\varphi=i d$ is the identity, then $\operatorname{tr}(\varphi)=\operatorname{tr}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=3$.
(b) If φ is a point symmetry (symetrie centrale), then from Part 2 , we know that $\operatorname{tr}(\varphi)=\operatorname{tr}\left(M_{\varphi, \mathcal{B}}\right)=-1=2 \cos (\pi)=-3$ (with $\theta=\pi$ there).
(c) If φ is an axial symmetry, then from Part 1, we know that $\operatorname{tr}(\varphi)=\operatorname{tr}\left(M_{\varphi, \mathcal{B}}\right)=$ $1+2 \cos (\pi)=-1$ (with $\theta=\pi$ there).
(d) If φ is a symmetry with respect to a plane, then from Part 3, we know that $\operatorname{tr}(\varphi)=\operatorname{tr}(M)=1$.
6. If φ is a rotation, then from Part 1 , we know that under the basis $\mathcal{B}, \operatorname{tr}(\varphi)=$ $1+2 \cos (\theta)$ and $\operatorname{det}(\varphi)=1$. Then $\frac{1}{2}\left(\operatorname{tr}\left(M_{\varphi, \mathcal{B}}\right)-\operatorname{det}\left(M_{\varphi, \mathcal{B}}\right)\right)=\frac{1}{2}(1+2 \cos (\theta)-1)=$ $\cos (\theta)$.
Similarly, if φ is an anti-rotation, then from Part 2, we know that $\operatorname{tr}\left(M_{\varphi, \mathcal{B}}\right)=$ $-1+2 \cos (\theta)$ and $\operatorname{det}\left(M_{\varphi, \mathcal{B}}\right)=-1$. Hence $\frac{1}{2}\left(\operatorname{tr}\left(M_{\varphi, \mathcal{B}}\right)-\operatorname{det}\left(M_{\varphi, \mathcal{B}}\right)\right)=\frac{1}{2}(-1+$ $2 \cos (\theta)+1)=\cos (\theta)$.

Exercise 6

1. In matrix notation we have

$$
\varphi(x, y, z)=\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\frac{1}{9}\left(\begin{array}{ccc}
1 & -8 & 4 \\
4 & 4 & 7 \\
-8 & 1 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right)
$$

The linear part is given by the matrix

$$
\frac{1}{9}\left(\begin{array}{ccc}
1 & -8 & 4 \\
4 & 4 & 7 \\
-8 & 1 & 4
\end{array}\right)
$$

which is orthogonal of determinant 1 and trace 1 , hence it defines a rotation of angle θ. The angle of rotation θ can be calculated as follows : by Exercise 2.6, $\cos (\theta)=\frac{1}{2}(\operatorname{tr}(M)-\operatorname{det}(M))=\frac{1}{2}(1-1)=0$, hence $\theta=\frac{\pi}{2}$.
The axis of the rotation is given by $\operatorname{ker}\left(\varphi_{0}-\mathrm{Id}\right)$, the fixed point of φ_{0}. Since the vector $(-1,2,2) \in \operatorname{ker}\left(\varphi_{0}-\mathrm{Id}\right)$, we have a Vissage (see classiification 5.4.1 (3)) along the line $\mathbb{R}(-1,2,2)$.
2. Now we have

$$
\psi(x, y, z)=\left(\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) .
$$

The linear part

$$
\frac{1}{3}\left(\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right)
$$

is orthogonal and symmetric of determinant -1 and trace 1 , and hence by Exercise 3.5, is a plane symmetry. The plane is defined to be $\operatorname{ker}\left(\psi_{0}-\mathrm{Id}\right)$,
which is spanned by the two basis vectors $(1,1,0)$ and $(1,0,1)$. The translation vector $(1,-1,-1)$ is perpendicular to this plane, since it is perpendicular to both of these two vectors. Hence $(1,-1,-1) \in \operatorname{ker}^{\perp}\left(\psi_{0}-\operatorname{Id}\right)=\operatorname{Im}\left(\psi_{0}-\mathrm{Id}\right)$. By the classification form 5.4.2 (2) ψ defines a symmetry with respect to a plane.
3. According to Exercise 5, the type of $\varphi \circ \psi \circ \varphi^{-1}$ is the same with the type of ψ, hence in our case, it is a symmetry with respect to a plane. In order to find this plane, note that the points that are fixed by $\varphi \circ \psi \circ \varphi^{-1}$ are exactly the points $\varphi(P)$, where P is a fixed point of ψ.

Exercise 7

1. In a positively oriented orthonormal basis $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ where $\mathbb{R} v_{1}=\mathbb{R}(1,1,1)$ is must be the rotation matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\pi / 6) & -\sin (\pi / 6) \\
0 & \sin (\pi / 6) & \cos (\pi / 6)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\
0 & \frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right) .
$$

To find such a basis one normalizes v_{1} to $v_{1}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, then one finds an orthogonal unitary vector like $v_{2}=\left(0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and completes the basis with the cross product $v_{3}=v_{1} \times v_{2}=\left(-\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$. Another way is with the Gram-Schmidt process.
Finally, one computes the matrix in the canonical basis using the base change matrix $\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & 0 & -\sqrt{\frac{2}{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\end{array}\right)$. The matrix under the canonical base is therefore given by

$$
\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 0 & -\sqrt{\frac{2}{3}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\
0 & \frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1+\sqrt{3}}{3} & \frac{1-\sqrt{3}}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1+\sqrt{3}}{3} & \frac{1-\sqrt{3}}{3} \\
\frac{1-\sqrt{3}}{3} & \frac{1}{3} & \frac{1+\sqrt{3}}{3}
\end{array}\right) .
$$

2. The vector $(1,0,-1)$ is orthogonal to $(1,1,1) \in \operatorname{ker}(r-\mathrm{Id})$ and hence belongs to $\operatorname{Im}(r-I d)$. By the classification 5.4.1 (2) it is a rotation around the line of fixed points of angle $\pi / 6$.
The axis of rotation of r^{\prime} is equal to $D_{r^{\prime}}=-z+D_{0}$ (see Proposition 3.16), where D_{0} denotes the axis of rotation r, and z is defined to be a vector such that $(1,0,-1)=(r-\operatorname{Id})(z)$. For instance, one can take $z=(0,-1-\sqrt{3}, 1)$. Therefore the axis of rotation of r^{\prime} is

$$
\operatorname{Fix}\left(r^{\prime}\right)=-z+\mathbb{R}(1,1,1)
$$

To calculate $\left(r^{\prime}\right)^{2018}$, since $2018=168 \times 12+2,\left(r^{\prime}\right)^{2018}$ gives 168 full rotations, followed by two rotations of $\pi / 6$, which results in a rotation of $\pi / 3$ around the axis described above.
3. This time $(2,2,2) \in \operatorname{ker}(r-\mathrm{Id})$. By the classification 5.4.1 (3), $r^{\prime \prime}$ is the composition of the affine rotation r around the axis $\mathbb{R}(1,1,1)$, followed by a translation with translation vector $(2,2,2)$, which is a vissage along $\mathbb{R}(1,1,1)$.
Note that $t_{(2,2,2)} \circ r=r \circ t_{(2,2,2)}$ (see Theorem 3.11 (2)), then

$$
\left(r^{\prime \prime}\right)^{2018}=\left(t_{(2,2,2)} \circ r\right)^{2018}=t_{(2,2,2)}^{2018} \circ r^{2018}=t_{(2,2,2)}^{2018} \circ r^{12 \cdot 168+2}=t_{(4036,4036,4036)} \circ r^{2} .
$$

