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Série 10: Correction

Exercise 1

1. This is similar to the proof of Proposition 3.15 in the course notes. We consider
the characteristic polynomial of M = Mϕ,

PM(x) = det(x · Idn −M) =xn − tr(M)xn−1 + ...+ (−1)n det(M)

=xn − tr(M)xn−1 + ...+ det(M),

where (−1)n = 1 since n is even. Notice that PM(0) = det(M) = −1 < 0 by
assumption, while limx→+∞ PM(x) = +∞ and limx→−∞ PM(x) = +∞. Then
by the intermediate value theorem, PM(x) has a root λ1 ∈ (0,∞) and a root
λ2 ∈ (−∞, 0). For i = 1, 2, since λiIdn−M are not invertible, there exist ~vi 6= 0
such that λi~vi−M ·~vi = 0. Then ϕ(~vi) = λi~vi. We have seen that (see Proposition
3.14) λi = ±1, in particular, λi = 1 and λ2 = −1. Let e1 = ~v1/‖~v1‖ and
e2 = ~v2/‖~v2‖, then we have ϕ(e1) = e1 and ϕ(e2) = −e2, as required. Moreover,
e1 and e2 are perpendicular, since 〈e1, e2〉 = 〈ϕ(e1),−ϕ(e2)〉 = 〈e1,−e2〉 which
implies that 〈e1, e2〉 = 0.

2. We can choose a BON of the form B = {e1, e2, v3, ..., vn}, where {v3, ..., vn}
is a BON of (Re1 ⊕ Re1)⊥. Then under B, the matrix Mϕ,B is of the form as
required.

Exercise 2

2. Since MB,ϕ = (xij)i,j is an orthonormal matrix, each column vector ~vi of MB,ϕ is

of normal 1 : ‖~vi‖ =
√∑n

j=1 x
2
ij = 1. In particular, each entry xij of the matrix MB,ϕ

is of absolute value bounded by 1 : |xij| 6 1. Hence tr(ϕ) =
∑n

i=1 xii ∈ [−n, n].



Exercise 3

1. Under the convenient orthonormal basis B = {e1, e2, e3}, the matrix of ϕ is of
the form

Mϕ,B =

1 0 0
0 c −s
0 s c

 ,

where c = cos(θ) and s = sin(θ). From Exercise 2, we know that the trace and
determinant of ϕ do not depend on the choices of the bases. Hence tr(ϕ) =
tr(Mϕ,B) = 1 + 2 cos(θ) ∈ [−3, 3]. If θ = π, that is, if ϕ is an axial symmetry,
then tr(ϕ) = 1− 2 = −1. If θ = 0, i.e., ϕ = id, then tr(ϕ) = 3.

2. Under the convenient orthonormal basis B, the matrix of ϕ is of the form

Mϕ,B =

−1 0 0
0 c −s
0 s c

 , c = cos(θ), s = sin(θ).

Then tr(ϕ) = tr(Mϕ,B) = −1 + 2 cos(θ) ∈ [−3, 1]. tr(ϕ) = −3 if cos(θ) = −1, if
θ = π and ϕ is a point symmetry (symetrie centrale). If tr(ϕ) = 1, if cos(θ) = 1
and θ = 0, in which case ϕ is an orthogonal symmetry with respect to the plane
Re2 + Re3.

3. Under an appropriate orthonormal basis, the matrix of ϕ is of the form

M =

1 0 0
0 1 0
0 0 −1

 ,

which implies that tr(ϕ) = tr(M) = 1.

4. The matrix of a plane symmetry in the convenient orthonormal basis B is given

by Mϕ,B =

1 0 0
0 1 0
0 0 −1

. Let A be the base change matrix from Mϕ,B to M0,ϕ.

Then M0,ϕ = A ·Mϕ,B · A−1 = A ·Mϕ,B · tA, where A is an orthogonal matrix.
Now

tM0,ϕ = t(A ·Mϕ,B · tA) = t(tA) · tMϕ,B · tA = A ·Mϕ,B · tA = M0,ϕ,

since tMϕ,B = Mϕ,B.

5. (a) If ϕ = id is the identity, then tr(ϕ) = tr

1 0 0
0 1 0
0 0 1

 = 3.

(b) If ϕ is a point symmetry (symetrie centrale), then from Part 2, we know
that tr(ϕ) = tr(Mϕ,B) = −1 = 2 cos(π) = −3 (with θ = π there).



(c) If ϕ is an axial symmetry, then from Part 1, we know that tr(ϕ) = tr(Mϕ,B) =
1 + 2 cos(π) = −1 (with θ = π there).

(d) If ϕ is a symmetry with respect to a plane, then from Part 3, we know that
tr(ϕ) = tr(M) = 1.

6. If ϕ is a rotation, then from Part 1, we know that under the basis B, tr(ϕ) =
1+2 cos(θ) and det(ϕ) = 1. Then 1

2
(tr(Mϕ,B)−det(Mϕ,B)) = 1

2
(1+2 cos(θ)−1) =

cos(θ).

Similarly, if ϕ is an anti-rotation, then from Part 2, we know that tr(Mϕ,B) =
−1 + 2 cos(θ) and det(Mϕ,B) = −1. Hence 1

2
(tr(Mϕ,B) − det(Mϕ,B)) = 1

2
(−1 +

2 cos(θ) + 1) = cos(θ).

Exercise 6

1. In matrix notation we have

ϕ(x, y, z) =

XY
Z

 =
1

9

 1 −8 4
4 4 7
−8 1 4

xy
z

 +

−1
2
2

 .

The linear part is given by the matrix

1

9

 1 −8 4
4 4 7
−8 1 4


which is orthogonal of determinant 1 and trace 1, hence it defines a rotation of
angle θ. The angle of rotation θ can be calculated as follows : by Exercise 2.6,
cos(θ) = 1

2
(tr(M)− det(M)) = 1

2
(1− 1) = 0, hence θ = π

2
.

The axis of the rotation is given by ker(ϕ0 − Id), the fixed point of ϕ0. Since
the vector (−1, 2, 2) ∈ ker(ϕ0 − Id), we have a Vissage (see classiification 5.4.1
(3)) along the line R(−1, 2, 2).

2. Now we have

ψ(x, y, z) =

X ′Y ′
Z ′

 =
1

3

1 2 2
2 1 −2
2 −2 1

xy
z

 +

 1
−1
−1

 .

The linear part

1

3

1 2 2
2 1 −2
2 −2 1


is orthogonal and symmetric of determinant −1 and trace 1, and hence by
Exercise 3.5, is a plane symmetry. The plane is defined to be ker(ψ0 − Id),



which is spanned by the two basis vectors (1, 1, 0) and (1, 0, 1). The translation
vector (1,−1,−1) is perpendicular to this plane, since it is perpendicular to
both of these two vectors. Hence (1,−1,−1) ∈ ker⊥(ψ0− Id) = Im(ψ0− Id). By
the classification form 5.4.2 (2) ψ defines a symmetry with respect to a plane.

3. According to Exercise 5, the type of ϕ ◦ ψ ◦ ϕ−1 is the same with the type of
ψ, hence in our case , it is a symmetry with respect to a plane. In order to find
this plane, note that the points that are fixed by ϕ ◦ ψ ◦ ϕ−1 are exactly the
points ϕ(P ), where P is a fixed point of ψ.

Exercise 7

1. In a positively oriented orthonormal basisB = {v1, v2, v3} where Rv1 = R(1, 1, 1)
is must be the rotation matrix1 0 0

0 cos(π/6) − sin(π/6)
0 sin(π/6) cos(π/6)

 =

1 0 0

0
√
3
2
−1

2

0 1
2

√
3
2

 .

To find such a basis one normalizes v1 to v1 = ( 1√
3
, 1√

3
, 1√

3
), then one finds

an orthogonal unitary vector like v2 = (0, 1√
2
,− 1√

2
) and completes the basis

with the cross product v3 = v1 × v2 = (−
√

2
3
, 1√

6
, 1√

6
). Another way is with the

Gram–Schmidt process.

Finally, one computes the matrix in the canonical basis using the base change

matrix

 1√
3

0 −
√

2
3

1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6

. The matrix under the canonical base is therefore

given by 1√
3

0 −
√

2
3

1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6


1 0 0

0
√
3
2
−1

2

0 1
2

√
3
2




1√
3

1√
3

1√
3

0 1√
2
− 1√

2

−
√

2
3

1√
6

1√
6

 =

 1+
√
3

3
1−
√
3

3
1
3

1
3

1+
√
3

3
1−
√
3

3
1−
√
3

3
1
3

1+
√
3

3

 .

2. The vector (1, 0,−1) is orthogonal to (1, 1, 1) ∈ ker(r − Id) and hence belongs
to Im(r − Id). By the classification 5.4.1 (2) it is a rotation around the line of
fixed points of angle π/6.

The axis of rotation of r′ is equal to Dr′ = −z + D0 (see Proposition 3.16),
where D0 denotes the axis of rotation r, and z is defined to be a vector such
that (1, 0,−1) = (r − Id)(z). For instance, one can take z = (0,−1 −

√
3, 1).

Therefore the axis of rotation of r′ is

Fix(r′) = −z + R(1, 1, 1).



To calculate (r′)2018, since 2018 = 168× 12 + 2, (r′)2018 gives 168 full rotations,
followed by two rotations of π/6, which results in a rotation of π/3 around the
axis described above.

3. This time (2, 2, 2) ∈ ker(r− Id). By the classification 5.4.1 (3), r′′ is the compo-
sition of the affine rotation r around the axis R(1, 1, 1), followed by a translation
with translation vector (2, 2, 2), which is a vissage along R(1, 1, 1).

Note that t(2,2,2) ◦ r = r ◦ t(2,2,2) (see Theorem 3.11 (2)), then

(r′′)2018 = (t(2,2,2) ◦ r)2018 = t2018(2,2,2) ◦ r2018 = t2018(2,2,2) ◦ r12·168+2 = t(4036,4036,4036) ◦ r2.


