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1. Introduction
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Problem

Consider the standard (generic) linear model (with n observations)

y = β0 + x1β1 + · · ·+ xpβp + u

where p is the number of (non-constant) explanatory variables.

What could be done in the following cases?

I p is large but p < n

I p >> n.
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Briefly speaking,

If n >> p, least squares estimates tend generally to perform well;

If n is not much larger than p, there can be a lot of variability, resulting in
overfitting and poor prediction accuracy;

If p > n, then least squares estimates are no longer unique and the variance is
infinite. Especially, one needs to rely on constraints and shrinkage methods.
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Solutions

Subset selection: Select a subset of the p variables for (each) possible combinations
of the p predictors and fit a model on the reduced set of variables;

Shrinkage: Fit a model with all variables but use a shrinkage (regularization)
procedure (e.g., some (all) coefficients are shrunken towards zero);

Dimension reduction: Project the p explanatory variables into a m-dimensional
subspace with m < p and fit a model with m projections or linear combinations of
initial variables.
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Examples

X Example 1: Credit rating

I (Small!) Set of predictors: ”Income”, ”Limit”, ”Rating”, ”Cards”, ”Age”,
”Education”, ”Gender”, ”Student”,”Married”,”Ethnicity”

I Output variable: ”Balance”;

X Example 2: UK CPI inflation forecasting

I (Small) set of quarterly macrovariables for the UK between 1988Q1 and 2015Q4;

I Use a lead-lag model in which the output/target variable, CPI inflation, leads changes
or the level of other features/variables by two years;

Among other questions, How to select the best specification? In which sense?
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Main objectives

X Overview of main challenges:

I Selection methods
I Shrinkage methods
I Reduction methods

X Review some applications and the programming.
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2. Subset selection
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2.1. Best subset selection

Algorithm: Best subset selection

1. Let M0 denote the null model (with no predictors).

2. For k = 1, · · · , p:

X Fit all (kp) models with exactly k predictors;

X Pick the best model, denoted Mk , among these (kp) models using some goodness-of-fit

measures (e.g., R2);

3. Select a single best model using the p + 1 options M0, · · · ,Mp using
cross-validated prediction error, AIC, BIC or adjusted R2.
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Issues:

X If p > n, it can be used only up to n variables (with poor performances as p gets
closer to n);

X The curse of dimensionality: If p = 10 (resp., 20), it requires approximately 1’000
possible models (resp., over one millon possible models). More generally, it involves
fitting 2p models. In practise, it becomes computationally infeasible for p > 40.

X It works only for least squares linear regressions;

X There is a risk of overfitting for large p and thus of high variance of the coefficient
estimates.

Note: Some possible models can be eliminated with branch-and-bound techniques as
long as p is not too large.
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Remark: The best subset selection model can be written as the following constrained
minimization problem:

min
β0,··· ,βp

 n

∑
i=1

(
yi − β0 −

p

∑
j=1

xi ,j βj

)2


s.t.
p

∑
j=1

I (βj 6= 0) ≤ s

where I (βj 6= 0) is an indicator variable that takes on a value of 1 if βj 6= 0 and equals
zero otherwise. After demeaning variables, this is also equivalent to:

β̂(λ) = argmin
β

(
‖y − X β‖+ λ‖β‖0

0

)
where β = (β1, · · · , βp)> and ‖β‖0

0 = ∑p
j=1 I (βj 6= 0) is the `0-penalty (or the `0

analogue of a norm).
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2.2. Forward stepwise selection

Algorithm: Forward stepwise selection

1. Let M0 denote the null model (with no predictors).

2. For k = 0, · · · , p − 1:

X Consider all p− k models that augments Mk with one additional explanatory variable;

X Choose the best model, denoted Mk+1, among these p − k models using some
goodness-of-fit measures (e.g., R2);

3. Select a single best model using the p + 1 options M0, · · · ,Mp using
cross-validated prediction error, AIC, BIC or adjusted R2.
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In practise,

X Step 1: Start with M0

yi = β0 + ui

X Step 2: Loop k = 0, · · · , p − 1

I k = 0: estimate each (p) model and use a goodness-of-fit measure (e.g, R̄2)

yi = β0 + β1xi ,1 + ui ,1

yi = β0 + β2xi ,2 + ui ,2

...

yi = β0 + βpxi ,p + ui ,p

Choose the best specification, denoted M1, using the goodness-of-fit measure
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In practise (cont’d),

X Step 2 (cont’d)

I k = 1: Consider all (p − 1) specifications and use a goodness-of-fit measure

yi = β0 + β`xi ,`︸ ︷︷ ︸
M1

+βjxi ,j + ui ,j

where j ∈ {1, · · · , p} and j 6= `.
Choose the best specification, denoted M2, using the goodness-of-fit measure.

I · · ·
X Step 3: Choose among the collection of (adjusted) models M0,· · · ,Mp .
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Remarks

X Forward stepwise selection methods involves fitting the null model and p − k models

for each iteration k = 0, · · · , p − 1, i.e. 1 +
p−1

∑
k=0

(p − k) = 1 + p(p+1)
2 models.

Example: if p = 20, the best subset selection method (resp., forward stepwise
selection) involves 1’048’576 models (resp., 211 models).

X It is not guaranteed to find the best possible model out of all 2p models, i.e. the
selection of variables can be different.

X It can be applied when p > n but only by considering the sub-models
M0, · · · ,Mn−1.
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Remarks (cont’d)

Best subset selection method and forward stepwise selection method can lead to
different choices, especially when imposing some constraints on the number of
features/explanatory variables

Variable selection with credit data
Nb of features Best subset Forward stepwise
1 rating rating
2 rating, income rating, income
3 rating, income, rating, income,

student student
4 cards, income, rating, income,

student, limit student, limit
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2.3. Backward stepwise selection

Algorithm: Backward stepwise selection

1. Let Mp denote the full model (with all features/predictors).

2. For k = p, · · · , 1:

X Consider all k models that contain all but one of the variables in Mk for a total of
k − 1 variables;

X Choose the best model, denoted Mk−1, among these k models using some
goodness-of-fit measures (e.g., R2);

3. Select a single best model using the p + 1 options M0, · · · ,Mp using
cross-validated prediction error, AIC, BIC or adjusted R2.
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In practise,

X Step 1: Start with Mp

yi = β0 +
p

∑
j=1

xi ,j βj + ui

X Step 2: Loop k = p, · · · , 1

I k = 1: estimate each (p) model and use a goodness-of-fit measure (e.g, R̄2)

yi = β0 +
p

∑
j=2

xi ,j βj + ui ,1

yi = β0 +
p

∑
j 6=2

xi ,j βj + ui ,2

...

yi = β0 +
p−1

∑
j=1

xi ,j βj + ui ,p

Choose the best specification, denoted Mp−1, using the goodness-of-fit measure
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In practise (cont’d),

X Step 2 (cont’d)

I k = p − 1: Consider all (p − 1) specifications and use a goodness-of-fit measure

yi = β0 + ∑
j 6=`

xi ,j βj︸ ︷︷ ︸
Mp

−βkxi ,k + ui ,j

where k ∈ {1, · · · , p} \ {`}.
Choose the best specification, denoted Mp−1, using the goodness-of-fit measure.

I · · ·
X Step 3: Choose among the collection of (adjusted) models M0,· · · ,Mp .
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Remarks

X Backward stepwise selection methods involves fitting the full model and k models for

each iteration k = 1, · · · , p, i.e. 1 +
p

∑
k=1

k = 1 + p(p+1)
2 models.

Example: if p = 20, the backward stepwise selection involves 211 models as in the
case of the forward stepwise selection.

X It is not guaranteed to find the best possible model out of all 2p models, i.e. the
selection of variables can be different.

X It cannot be applied when p > n, i.e. the only viable selection method in this
context is the forward stepwise approach. At the same time hybrid versions of
forward and backward stepwise selection can be implemented.
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2.4. Choosing the optimal model

The optimal model is generally chosen using two common approaches:

1. Indirect estimation of the test error by adjusting the training error for the model size
(information criteria);

2. Direct estimation of the test error by making use of a validation set or a
cross-validation approach.

Florian Pelgrin (EDHEC Business School) Part II - Lecture 2a February - June 2019 22 / 23



2 4 6 8 10

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

Number of Predictors

S
q

u
a

re
 R

o
o

t 
o

f 
B

IC

2 4 6 8 10

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

Number of Predictors

V
a

lid
a

ti
o

n
 S

e
t 

E
rr

o
r

2 4 6 8 10

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

Number of Predictors

C
ro

s
s
−

V
a

lid
a

ti
o

n
 E

rr
o

r

Figure: Credit data: Validation and Cross-validation

Note: Left panel—(square root of) BIC, Center panel—Validation set errors, Right-panel: 10-fold
Cross-validation errors
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