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3. Shrinkage (regularization) methods
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3.1. Overview

X Main idea is to constrain or to regularize the coefficient estimates, or equivalently, to
shrink the coefficient estimates towards zero

X This requires introducing some constraints (e.g., L1 versus L2 norm)...

X ... but also to pre-process data (standardized features), to apply (generally)
nonlinear optimization algorithms, and to select optimal hyperparameters.

X Interestingly some procedures (e.g., Lasso method) allow for variable selection.
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3.2. Ridge regression

Definition

Ridge regression coefficient estimates, denoted β̂
R

, solve

β̂
R
= argmin

β0,··· ,βp

 n

∑
i=1

(
yi − β0 −

p

∑
j=1

xi ,j βj

)2

+ λ
p

∑
j=1

β2
j

 .

After reparametrization using centred inputs, this is equivalent to:

β̂
R
= argmin

β

{
‖y − X β‖2

2 + λ‖β‖2
2

}
where λ ≥ 0 is a complexity/tuning parameter that controls the amount of shrinkage,
β = (β1, · · · , βp)>, and ‖β‖2

2 = ∑p
j=1 β2

j .
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Figure: Ridge regression

Note: ‖β‖2
2 = β2

1 + β2
2 ≤ s.

Source: The Elements of statistical learning, Hastie et al. (2001).
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Remarks

The larger the value of λ, the greater coefficients are shrunk toward zero:

X When λ = 0: (non-unique) unconstrained ordinary least squares estimates;

X When λ→ ∞: all coefficients → 0 but none of them is exactly zero—it does not
involve feature selection!

X If λ is too high, the optimiser seeks to minimize the parameters more than it fits the
data: need to find compromise value using cross-validation techniques.
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Definition

Equivalently, the Ridge coefficient estimates solve

β̂
R
= argmin

β0,··· ,βp

n

∑
i=1

(
yi − β0 −

p

∑
j=1

xi ,j βj

)2

s.t.
p

∑
j=1

β2
j ≤ s

where there is a one-to-one correspondence between the complexity parameter λ and the
size of the constraint s.

Note: By imposing a size constraint, the compensation issue of coefficient estimates—a
large positive coefficient is generally compensated by a large negative coefficient in a pair
of correlated variables—is avoided in the presence of many correlated variables
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Definition

The Ridge regression solutions are given by:

β̂
R
=
(
X>X + λI

)−1
X>y

where I is the p × p identity matrix.

Notes:

X `2 penalty ⇒ solution is linear w.r.t. y;

X Even if X>X is singular, adding a positive constant makes the problem nonsingular
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Key points

When lambda is close to zero, the optimiser is mostly trying to fit the data closely
whereas when lambda gets larger and larger, the optimiser is mostly trying to
minimize the values of the parameters.

The intercept is not included in the penalty.

Solutions are not scale-invariant w.r.t. inputs, i.e. inputs/features/regressors
need to be standardized.
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Representations of results

(Standardized) coefficients as a function of λ

(Standardized) coefficients as a function of

‖β̂R‖2

‖β̂‖2

where

I ‖β‖2 =

√
p

∑
j=1

β2
j ;

I β̂ is the least squares estimate of β (if available);

I β̂
R

is the Ridge estimate of β.

Note: As λ increases, ‖β̂R‖2 decreases

When λ = 0,
‖β̂R‖2

‖β̂‖2
= 1;

When λ→ ∞,
‖β̂R‖2

‖β̂‖2
”→” 0.
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Figure: Credit data: Ridge regression

Note: Left panel—Standardized coefficients as a function of λ, Right-panel: Standardized

coefficients as a function of
‖β̂R ‖2

‖β̂‖2
.
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Least squares versus Ridge estimates

X Back to the bias-variance trade-off...Suppose p is large (and even almost as large as
the sample size)

I When λ = 0 (least squares estimation, the variance is high but the bias is small;

I By varying λ, Ridge regression proceeds by trading off a small increase in bias for a
large decrease in variance

This means that Ridge regressions perform well when there is a high uncertainty
(variance) around the least squares estimates!
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3.3. Lasso regression

Definition

Lasso regression coefficient estimates, denoted β̂
L

, solve

β̂
L
= argmin

β0,··· ,βp

 n

∑
i=1

(
yi − β0 −

p

∑
j=1

xi ,j βj

)2

+ λ
p

∑
j=1

|βj |


or

β̂
R
= argmin

β

{
‖y − enβ0 − X β‖2

2 + λ‖β‖1

}
where λ ≥ 0 is a complexity/tuning parameter that controls the amount of shrinkage,
β = (β1, · · · , βp)>, en = (1, · · · , 1)>, and ‖β‖1 = ∑p

j=1 |βj |.

Florian Pelgrin (EDHEC Business School) Part II - Lecture 2a February - June 2019 14 / 39



Remarks

The role of λ is different from the one defining the Ridge regression:

X When λ = 0: (non-unique) unconstrained ordinary least squares estimates;

X When λ→ ∞: All estimates are exactly zero

X Due to the nature of `1 penalty, some estimates are exactly equal to zero when the
tuning parameter is sufficiently large—this is called sparsity and Lasso performs
variable selection.

X If λ is too high, the optimiser seeks to minimize the parameters more than it fits the
data: need to find compromise value using cross-validation techniques.

The intercept is not included in the penalty.

Solutions are not scale-invariant w.r.t. inputs, i.e. inputs/features/predictors
need to be standardized.
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Figure: Lasso regression

Note: ‖β‖1 = |β1|+ |β2| ≤ s.
Source: The Elements of statistical learning, Hastie et al. (2001).
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Figure: Credit data: Lasso regression

Note: Left panel—Standardized coefficients as a function of λ, Right-panel: Standardized

coefficients as a function of
‖β̂L‖1

‖β̂‖1
.
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Figure: Credit data: Lasso regression
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Figure: Credit data: Ridge regression

Note: Top panel—Lasso estimates, Bottom panel: Ridge estimates.
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Definition

Equivalently, the Lasso coefficient estimates solve

β̂
L
= argmin

β0,··· ,βp

n

∑
i=1

(
yi − β0 −

p

∑
j=1

xi ,j βj

)2

s.t.
p

∑
j=1

|βj | ≤ s

where there is a one-to-one correspondence between the complexity parameter λ and the
size of the constraint s.
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Interpretation

The inequality constraint can be interpreted as a budget constraint: How much are
you ready to pay ”s” for ∑p

j=1 |βj |?

X If s is large (i.e., the budget is not restrictive), then the sum can be large;

X Especially, if s is large enough, the least squares solution will fall within this budget
when p < n (and there is no variable selection)

X If s is small (i.e., the budget is restrictive), then the sum ∑p
j=1 |βj | must be small and

variable selection is effective.
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Statistical properties

Conditions for recovering the ”true” explanatory variables and some consistent
estimates:

X Irrepresentable condition: no high correlations between relevant and irrelevant
predictors

X Beta-min condition: True non-zero coefficients must be sufficiently ”large”.

Optimal λ:

X Cross-validation: λ is adaptively chosen to minimize the expected prediction error;

X Optimal λ for prediction is generally greater than the optimal λ for variable selection:
trade-off?
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Figure: Credit data: Cross-validation and Lasso regression
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3.4. Comparing Ridge and Lasso

Bayesian interpretation: Consider the (Gaussian) linear model

X f (Y | X , β): Likelihood function (data information);

X g(β | X ) ≡ g(β): Prior distribution

X Posterior distribution is given by:

p(β | X ,Y ) ∝ f (Y | X , β)g(β)
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X If g is a Gaussian distribution, the posterior mode (or the posterior mean) of β is the
Ridge regression solution;

X If g is a double-exponential (Laplace) distribution with mean zero and scale
parameter a function of λ, the posterior mode of β is the Lasso regression solution;

X The Gaussian prior distribution is flatter and flatter at zero whereas the Laplace
prior distribution picks at zero ⇒ one expects that some coefficients are (exactly)
zero by using the Laplace distribution (i.e., the Lasso regression) whereas the
coefficients are expected to be randomly distributed around zero by using the
Gaussian distribution (i.e., the Ridge regression).
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Figure: Prior distributions
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Pros and cons of Lasso regressions

Generally,

X Lasso offers interpretable, stable models, and efficient prediction at a reasonable
cost, and it allows for variable selection and solutions when p > n.

X Lasso is a nice compromise regarding the specification of the norm. Indeed, the Lq
constrained problem can be written as

β̂
Q−norm

= argmin
β

{
‖y − X β‖2

2 + λ‖β‖qq
}

where ‖β‖qq = |β1|q + · · ·+ |βp |q .
I When q < 1: less bias than Lasso but non-convexity of the minimization problem.

Variable selection can still be implemented.
I When q > 1: problem is convex but no variable selection
I When q = 1: Lasso is a compromise!
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Some rules of thumbs...

X Lasso better if the ”true model” is sparse because it shrinks the remaining
coefficients less than Ridge

X Ridge is better when the predictors are highly correlated: Ridge keeps the redundant
variables, but shrinks them whereas Lasso discards all but one.

X Trade-off (correlation) ⇒ Elastic Net regression!
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A simple comparison

Consider a linear regression model in which n = p, X is the n× n identity matrix
(orthonormal columns of X ), and there is no intercept:

yi = xi βi + ui = βi + ui i = 1, · · · , n.

Method Objective function Estimates

Least squares
p

∑
j=1

(yj − βj )
2 β̂

ls
j = yj

Ridge
p

∑
j=1

(yj − βj )
2 + λ

p

∑
j=1

β2
j β̂

R
j =

yj
1+λ

Lasso
p

∑
j=1

(yj − βj )
2 + λ

p

∑
j=1
|βj | β̂

L
j = yj − λ/2 if yj > λ/2

= yj + λ/2 if yj < λ/2
= 0 otherwise

Florian Pelgrin (EDHEC Business School) Part II - Lecture 2a February - June 2019 28 / 39



−1.5 −0.5 0.0 0.5 1.0 1.5

−
1
.5

−
0
.5

0
.5

1
.5

C
o
e
ff
ic

ie
n
t 
E

s
ti
m

a
te

Ridge

Least Squares

−1.5 −0.5 0.0 0.5 1.0 1.5

−
1
.5

−
0
.5

0
.5

1
.5

C
o
e
ff
ic

ie
n
t 
E

s
ti
m

a
te

Lasso

Least Squares

yjyj

Figure: LS, Ridge, and Lasso regressions

Source: The Elements of statistical learning, Hastie et al. (2001).
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3.5. Improving the Lasso regression

Problem 1: Right-hand side variables are identified but their coefficient estimates
are biased
X Relaxed Lasso
X Variable Inclusion and Shrinkage Algorithm (VISA)
X Adaptive Lasso
X Others: Dantzig selector, LAD-Lasso

Problem 2: Strong correlations ⇒ make use of Elastic Net rgression (main
advantages: 1. if p > n can select more than n variables; 2. Can select group of
redundant variables)

Problem 3: Group of variables—Group Lasso, Composite Absolute Penalties, Fused
Lasso, etc...

Problem 4: model extensions—generalized linear model, logistic regression,
nonlinear models.

Problem 5: Mixture of data (e.g., quantitative and qualitative data).
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Elastic net regression

Definition

Elastic net regression coefficient estimates, denoted β̂
L

, solve

β̂
L

= argmin
β0,··· ,βp

 n

∑
i=1

(
yi − β0 −

p

∑
j=1

xi ,j βj

)2

+

λ

(
α

p

∑
j=1

|βj |+ (1− α)
p

∑
j=1

β2
j

)}
or

β̂
EN

= argmin
β

{
‖y − enβ0 − X β‖2

2 + λ (α‖β‖1 + (1− α)‖β‖2)
}

where λ ≥ 0 and α ∈ [0, 1].
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Remarks:

X Elastic net mixes the Lasso and Ridge penalties

I When α = 1: Lasso regression;
I When α = 0: Ridge regression;

X Elastic net performs generally better than Lasso in the presence of correlated
features (even when α gets closer to one);

X In contrast to the Ridge regression, when p > n, elastic net can consider more than
n variables.

X In the presence of a group of relevant and redundant variables, Lasso generally tends
to discard all but one variable from this group whereas elastic net will tend to select
the entire group of features.
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Adaptive Lasso

Definition

The (two-step) adaptive Lasso estimates, denoted β̂
AL

, solve

β̂
L

= argmin
β0,··· ,βp

 n

∑
i=1

(
yi − β0 −

p

∑
j=1

xi ,j βj

)2

+ λ
p

∑
j=1

|βj |
|β̂L

j |


where β̂

L
is the Lasso estimate of β.
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Remarks:

One makes use of the Lasso estimate of β from a first stage in a prediction optimal
way (i.e., the tuning parameter is determined by cross-validation)

In a second step,one makes use again of cross-validation to select the
hyperparameter in the adaptive Lasso, i.e. regularization parameters are determined
in a sequential way.

This can be extended to a k-step adaptive Lasso.

β̂
L
j = 0⇒ β̂

AL
j = 0.

Adaptive Lasso provides a sparse solution and generally reduces the number of false
positives (i.e. the selection of irrelevant variables).
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Technical appendix
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A1. Singular Value Decomposition (SVD)

Definition

Let X denote an n× p matrix. The singular value decomposition (SVD) takes the form:

X = UDV>

where

X U is a n× p orthogonal matrix whose columns, uj j = 1, · · · , p, span the column
space of X ;

X V is a p × p orthogonal matrix whose columns, uj j = 1, · · · , p, span the row space
of X ;

X D is a p × p diagonal matrix with diagonal entries or singular values
d1 ≥ d2 ≥ · · · ≥ dp ≥ 0.
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A2. Least squares and Ridge

Using the SVD,

The least squares fitted vector, denoted ŷ ls , is

ŷ ls = X β̂
LS

= X
(
X>X

)−1
X>y

= UU>y .

The Ridge fitted vector, denoted ŷ r , is

ŷ r = X β̂
R

= X
(
X>X + λI

)−1
X>y

= UD
(
D2 + λI

)−1
DU>y

=
p

∑
j=1

uj
d2
j

d2
j + λ

u>j y

where 0 ≤ d2
j

d2
j +λ
≤ 1.
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Interpretation:

The least squares regression compute the coordinates of y w.r.t. the orthonormal
basis U, U>y .

The Ridge regression computes also these coordinates but shrinks them by the

factors
d2
j

d2
j +λ

:

I More shrinkage is applied to the columns vectors uj (basis vectors) with smaller d2
j ;

I Less shrinkage is applied to the columns vectors uj (basis vectors) with larger d2
j ;

I Why? Singular values dj correspond to ”directions” in the column space of X (the
vector space engendered by the column vectors, i.e. the explanatory variables).
Notably, small singular values corresponds to directions having small variance.
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Figure: Shrinkage of the Ridge regression

Ridge regression projects y onto the two components and then shrinks more the coefficients of
low-variance component relative to the high-variance one.
Source: The Elements of statistical learning, Hastie et al. (2001).
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