
Master in Financial Engineering (EPFL)
Financial Econometrics

Part II: Machine learning and Asset Pricing
Lecture 2: Selection of variables—Dimension reduction methods

Florian Pelgrin

EDHEC Business School

February - June 2019

Florian Pelgrin (EDHEC Business School) Part II - Lecture 2c February - June 2019 1 / 60



1 Dimension reduction methods
Overview
Principal components regression
Independent components regression
Partial least squares regression
Projection pursuit regression

Florian Pelgrin (EDHEC Business School) Part II - Lecture 2c February - June 2019 2 / 60



4. Dimension reduction methods

Florian Pelgrin (EDHEC Business School) Part II - Lecture 2c February - June 2019 3 / 60



4.1. Overview

So far...methods that control variance in two different ways:

X Subset of the original variables

X Skrinkage of coeficients toward zero

Common feature of these methods: use the original features/inputs/predictors.

Variance reduction methods (generally) transform variables.
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General principles of dimension reduction methods

X Step 1: Preprocessing data

X Step 2: Finding the components
I A set of original predictors x1,x2,· · · ,xp .

I Let z1,· · · ,zm denote m < p linear combinations of original features:

zk =
p

∑
j=1

φj ,kxj

for some constants φ1,k ,· · · ,φp,k for k = 1, · · · ,m.

I Which statistical criteria? Latent versus observed variables?
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Step 3: Linear regression model

I Fit the linear model:

yi = θ0 +
m

∑
k=1

θkzi ,k + ui , i = 1, · · · , n.

First principle: p + 1 coefficients β0,· · · ,βp −→ m+ 1 coefficients θ0, · · · , θm (with
m < p)!

I Note that
m

∑
k=1

θkzi ,k =
m

∑
k=1

θk

p

∑
j=1

φj ,kxi ,j︸ ︷︷ ︸
reduction method

=
p

∑
j=1

m

∑
k=1

θkφj ,kxi ,j

=
p

∑
j=1

βjxi ,j

where βj =
m

∑
k=1

θkφj ,k .

Second principle: Dimension reduction constrains βj estimates....
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Methods

Principal components regressions

Independent components regressions

Partial least squares regressions

Projection pursuit regressions
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4.2. Principal components regression

X Intuition

X Solving a two-dimensional case

X Interpretation of PCA

X Issues

X PCA-based regression
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Intuition

Figure: Two correlated random variables x1 and x2
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Figure: Still the same variation?
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X Figure 1: The two random variables are (highly) correlated and both variables
display variation!

X Figure 2: There is greater (resp., little) variation in the direction of z1 (resp., z2)
than in either of the original variables

Main goal: Explain Figure 1 −→ Figure 2, and especially Principal component analysis
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Solving a 2-dimensional case

X Let x = (x1, x2) denote a vector two random variables with variance-covariance (or
correlation) matrix Σ (and with mean zero);

X z1 is determined so that that a linear function of x

z1 ≡ α>1 x = a11x1 + a12x2

has maximum variance:

max
a1

V
[
a>1 x

]
⇔ max

a1

a>1 Σa1

where a1 = A>1. is the transpose of the first row of the A matrix.

However the maximum is not achieved for finite a1!
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X a1 solves the constrained maximization problem Solver

max
a1

V
[
a>1 x

]
s.t. a>1 a1 = 1

or

⇔ max
a1

a>1 Σa1

s.t. a>1 a1 = 1

Note: This is one possible normalization constraint...
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X z2 is determined so that that a linear function of x

z2 ≡ a>2 x = a21x1 + a22x2

has maximum variance subject to being uncorrelated with z1 (and with a
normalization constraint) Solver

max
a2

V
[
a>2 x

]
s.t.a>2 a2 = 1 and a>1 a2 = 0.
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More generally,

Suppose that there are p (interrelated) variables of interest

Aim: Identify a small number of uncorrelated linear combinations that explain
most of the variability of the original data.

PCA is a data-reduction technique and is based on the spectral decomposition of
the covariance or correlation matrix.
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Interpretation of principal components

Using the case p = 2, how can one interpret the principal components?

The first-order condition writes down

Σa1 = λa1

Therefore, in the case of the first principal component, the optimal objective
function is given by

a>1 Σa1 = a>1 λa1 = λ

since λ is some scalar and a>1 a1 = 1.

λ must be as large as possible ⇒ a1 is the eigenvector corresponding to the largest
eigenvalue of Σ and

V
[
a>1 x

]
= d2

1 .
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More generally, the kth principal component corresponds to the kth largest
eigenvalue of Σ.

This results from the spectral decomposition sd or the singular value
decomposition svd of Σ

The singular values dj correspond to direction in the column space of X with more

or less variance direction :

I The first principal component has maximum variance;

I Subsequent principal components have maximum variance subject to being orthogonal
to the earlier ones (decreasing contributions of ”directions”);

I The last principal component has minimum variance.
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Issues

Principal components depend on the scaling of inputs example : it is preferable to
standardize them and thus make use of the correlation matrix (except if all data has
the same unit);

Prior selection of number of components:

I Cumulative percentage of total variation : Select a cumulative percentage of total
variation that the selected principal components contributed (say 80% or 90%)
Notably, the ratio (for k ≤ p)

k

∑
i=1

di

m

∑
i=1

di

represents the proportion of the total variability explained by the first k principal
components.

I Note: For large p, SVD or spectral decomposition might involve issues related to the
curse of dimensionality, and especially the determination of (tiny) eigenvalues.
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The scree graph and the log-eigenvalue diagram:

I Scree graph: Plot the eigenvalues against the number of components (say, k) and
detect whether there is a ”break”, i.e. (after joining the different points) decide at
which k the slopes of the lines joining the plotted points are ”steep” (resp., not
”steep”) to the left (resp., right) of k.

I Log-eigenvalue diagram: Plot log-eigenvalues against the number of components.

Testing procedures

Example: example
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PCA-based regression

Estimate a linear regression models with principal components

yi = θ0 +
m

∑
k=1

θkzi ,k + ui , i = 1, · · · , n.

Proceed with (ex-post) variable (principal components) selection using
cross-validation techniques/standard techniques of variable selection.

Note that the principal components corresponds to a variance reduction of the
original p variables and are not determined ex-ante using their explanatory power for
the dependent variables. Cross-validation techniques (or variable selection
techniques) might lead to a different selection of the principal components (w.r.t.
ex-ante selection).

PCR can be viewed as an approximate factor model!
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Issues

PCR is not a feature selection method: each of the m principal components used in
the second step is a linear combination of all original p features

Principal components are determined without taking into account the correlation
with the dependent/output variable—see partial regression models.

PCR can mitigate overfitting especially when m << p.

PCR can have poor performances when data were generated in a such a way that
many principal components are required to capture adequately the response (i.e., the
relative contribution of each principal component is rather weak). In contrast, PCR
will tend to perform well when only the first few principal components are sufficient
to capture the variation of the predictors (and the relationship with the variables).

Forecasting principal components might be a difficult task!
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Figure: Selection of principal components

Note: Application of PCA for two simulated data. Left panel: data generated using n = 100 and
p = 45. Right panel: only two of the 45 predictors are used to generate data.
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Figure: Comparison PCA, Lasso and Ridge

Note: PCR, Ridge regression and Lasso regression are subsequently applied to a simulated data
set in which the first five principal components contain all relevant information. The dotted line
corresponds to the irreducible error.
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3.3. Independent components regression

Example:

Suppose that one observes x1 and x2 and that these two observations are explained
by two unobserved variables (signals) s1 and s2 as follows:

x1 = a11s1 + a12s2

x1 = a21s1 + a22s2

i.e.,

x = As

where A is an unknown matrix and s is unobserved.

Questions:
I Can one identify s?
I Can one use some information (statistical properties) of s to provide an estimate of A?
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X Especially, two key ingredients:

I Assume that s1 and s2 are statistically independent (e.g., at each time instant t);

I At least, one component of s is not Gaussian.

X Then Independent Components Analysis (ICA) provides an approach to estimate A
and to identify s.

X Note: ICA is also known as a method of blind source separation or blind signal
separation—one observes a source and wish to identity original signals (i.e.,
independent components).
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More generally, consider

xi = ai1s1 + ai2s2 + · · ·+ ainsn, for all i

i.e.,

x = As =
n

∑
i=1

ai si

where si is a column vector.

This is a generative model: observed data is generated by a process of mixing the
components si .

Without loss of generality, there is no noise, A is assumed to be a square (invertible)
matrix and all variables (x and s) have mean zero and unit variance. After
estimating A, one can compute:

s = Wx

where W = A−1.
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How does it work?

Go beyond the normality assumption: Assume that the mixing matrix, A, is
orthogonal and, s1 and s2 are gaussian. Then x1 and x2 are gaussian, uncorrelated,
and of unit variance. Their joint density is given by

f (x1, x2) =
1

2π
exp

(
−1

2

(
x2

1 + x2
2

))
The graphical representation bivariate normal shows that the density is completely
symmetric.

What is the implication for ICA? It does not contain any information on the
directions of the columns of the mixing matrix A—A cannot be estimated.
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More rigorously,

The distribution of any orthogonal transformation of the gaussian vector (x1, x2) has
exactly the same distribution as (x1, x2), and that x1 and x2 are independent.

In the case of gaussian variables, one can only estimate the ICA model up to an
orthogonal transformation.

Hence the matrix A is not identifiable for gaussian independent components.

Actually, if just one of the independent components is gaussian, the ICA model can
still be estimated!

Departure for normality is critical: Statistical criterion?
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Why independence and nongaussianity?

X The intuition relies on the central limit theorem:

I In general, the sum of two (n) independent (identically distributed) random variables is
more ”normal” (”Gaussian”) than any of the random variable.

I Combine this ”result” with the need to go beyond normality: Find some linear
combinations such that the nongaussianity is maximized!

Florian Pelgrin (EDHEC Business School) Part II - Lecture 2c February - June 2019 29 / 60



Consider the estimation of one independent component.

Let y denote a linear combination of x

y = w>x =
n

∑
i=1

wixi

where w is an unknown vector. If w is one row of the inverse of A, then y is
obviously one of the independent components

Problem is equivalent to find w ...and especially as being one row of the inverse of A.

Here comes the intuition of ”CLT”! Let z denote z = A>w , one has

y = w> x︸︷︷︸
=As

= w>As

= z>s

y is a linear combination of si with weights given by zi and z>s is ”more” Gaussian
than any of the si .
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X Optimization problem: Find w such that to maximize the nongaussianity of w>x

X Measure of nongaussianity?

I Kurtosis;
I Negentropy;
I Minimization of mutual information;
I ML-based estimation;
I Etc.

X Note: There are 2n local maxima in a n-dimensional space: two for each
independent component si and −si (defined up to multiplicative sign).
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Some statistical criteria

1. Kurtosis-based estimation

I (Excess) Kurtosis

Kurt(y ) = E
[
y4
]
− 3

{
E
[
y2
]}2

or (with unit variance)

Kurt(y ) = E
[
y4
]
− 3

I Negative (resp., positive) kurtosis corresponds to a sub-Gaussian (resp.
super-Gaussian) vector;

I Use the absolute value transformation (since identified up to a multiplicative sign
restriction);

I Two interesting properties:

Kurt(x1 + x2) = Kurt(x1) + Kurt(x2) x1 and x2 are independent

Kurt(αx1) = α4Kurt(x1).
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Example: Two-dimensional case

Let y denote

y = w>x = w>As

= z>︸︷︷︸
w>A

s = z1s1 + z2s2.

The maximization program writes

max
z1,z2

|Kurt(y)|

s.t.V(y) = 1

where

Kurt(y) = z4
1Kurt(s1) + z4

2Kurt(s2)

V(y) = 1⇔ z2
1 + z2

2 = 1

with s1 and s2 have unit variance.

(Up to a sign restriction), two corner solutions (z1 = 1, z2 = 0) and
(z1 = 0, z2 = 1)!
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2. Negentropy-based estimation

I Entropy: Degree of information that the observation of the variable provides. The more
”random” (i.e., unpredictable and unstructured) the variable is, the larger its entropy

H(y ) =

{
−∑ P(Y = yi ) log (P(Y = yi ) discrete r.v.
−
∫
f (y ) log (f (y )) continuous r.v.

I Fundamental result: A Gaussian variable has the largest entropy among all random
variables of equal variance! The Gaussian distribution is the ”most random” or the
”least structured” of all distributions.

I Negentropy or differential entropy can be defined as

J(y ) = H (yGaussian)−H(y )

Generally, this requires a nonparametric estimate of the pdf, which might turn to be
difficult in practise. Some approximations have been provided in the statistical
literature.
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3. Mutual information-based estimation

I Using the concept of differential entropy, the mutual information, denoted I , between
p (scalar) random variables is defined as follows:

I (y1, · · · , yp) =
p

∑
i=1

H(yi )−H(y ).

This is equivalent to the well-known Kullback-Leibler divergence between the joint
density and the product of its marginal densities/

I This measure is always non-negative, and zero if and only if the variables of interest
are statistically independent.

I Key advantage: Take into account the whole dependence structure and not only the
variance-covariance structure (as in PCA).
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Mutual information is a natural information-theoretic measure to capture the
independence of random variables.

Therefore the ICA problem is equivalent to find w so that the mutual information of
the (transformed) components si is minimized.

Minimizing mutual information is (roughly) equivalent to find directions in which the
negentropy is maximized. For instance, if the yi ’s (i = 1, · · · , p) are uncorrelated of
unit variance, it can be shown that the fundamental relationship between negentropy
and mutual information is (with n = p):

I (y1, · · · , yn) = C −∑
i

J(yi )

for some constant C .

Minimizing mutual information amounts of finding maximally nongaussian directions.
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3. Maximum likelihood estimation

I In the (noisy-free) ICA model, the likelihood function can be directly formulated as:

L =
T

∑
t=1

n

∑
i=1

log
{
fi

(
w>i xt

)}
+T log {|det(W )|}

where n = p, W = (w1, · · · ,wn)> denotes the matrix A−1, the fi ’s are the density
functions of the si (here assumed to be known), and xt , t = 1, · · · ,T are the
realizations of x .

I This is essentially equivalent to the minimization of mutual information.

I Another related contrast function (derived from the neural network literature) is the
output entropy (or information flow). The so-called principle of network entropy
(maximization) or infomax is equivalent to maximum likelihood estimation.
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3.4. Partial least squares regression

Motivation

PCR amounts of identifying linear combinations or directions that best represent the
features/inputs/predictors. These directions are identified in an unsupervised way,
i.e. the output/dependent variable/response does not supervise the identifications of
the principal components.

Directions that best explain the predictors are not necessarily the best ones to use
for predicting the response.

Partial Least Squares Regression (PLSR) is a dimension reduction technique that
identifies linear combinations of the original variables in a supervised way, i.e. PLSR
aims at finding directions that explain both the predictors (through the
variance-covariance matrix) and the response (through the correlation between the
dependent variable and the directions).
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How does it work?

Consider p standardized predictors. Let z1,· · · ,zm denote m < p linear combinations
of original features:

zk =
p

∑
j=1

φj ,kxj

for some constants φ1,k ,· · · ,φp,k for k = 1, · · · ,m.

The first direction z1 is computed by setting each φj ,1 equal to the coefficient from
the simple linear regression of y onto xj :

yi = xj ,iφj ,1 + uj ,i .

By definition, the OLS estimate of φj ,1 is proportional to the correlation between y
and xj .

By computing z1 =
p

∑
j=1

φj ,1xj , the highest weight is placed on variables that are most

strongly related to the response.
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To identify the second direction, z2, one must whiten the response from the first
direction, i.e. the second direction might capture the remaining information that has
not been explained by the first PLS direction. This can be done in two steps:

I The first step is thus to regress each variable on z1 and then to take the corresponding
residuals:

xj = z1βj + uj .

The corresponding residual ûj corresponds to the information unexplained by the first
direction z1.

I The second step consists of using these orthogonalized variables in the same way as z1

is computed.

This iterative procedure can be repeated m times to identify the directions
z1,· · · ,zm.

In a final step, one regress y onto these m directions!
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Algorithm: Partial Least squares regression

1. Standardize each predictor and set ŷ (0) = ȳ en and x
(0)
j = xj for j = 1, · · · , p.

2. For m = 1, · · · , p:

X zm =
p

∑
j=1

φ̂j ,mx
(m−1)
j where φ̂j ,m = 〈x (m−1)

j , y 〉 =
(
x
(m−1)
j

)>
y is the OLS estimate of

the simple linear regression of y onto x
(m−1)
j ;

X θ̂m = 〈zm, y 〉/〈zm, zm〉 is the OLS estimate of the simple linear regression of y onto
zm;

X ŷ (m) = ŷ (m−1) + θ̂mzm;

X Orthogonalize each x
(m−1)
j w.r.t. zm: x

(m)
j = x

(m−1)
j −

[
〈zm, x

(m−1)
j 〉/〈zm, zm〉

]
zm for

j = 1, · · · , p.

3. Recover the slope coefficients β̂j =
m
∑
k=1

θ̂k φ̂j ,k or regress y onto the m directions

z1, · · · , zm.
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Maximization problem

The mth PLS direction φ̂m = (φ̂m,1, · · · , φ̂m,p)
> solves:

max
α

Corr2 (y , xα)V (xα)

s.t. ‖α‖ = 1 and α>S φ̂` = 0, for ` = 1, · · · ,m− 1

where S is the sample covariance (correlation) matrix.

In contrast, the mth PCA direction vm solves:

max
α

V (xα)

s.t. ‖α‖ = 1 and α>Sv` = 0, for ` = 1, · · · ,m− 1

where the conditions α>Sv` = 0 ensure that the mth principal component is
uncorrelated with previous ones.
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There is a trade-off between the correlation component and the variance component
in the PLS regression.

However, the variance term tends generally to dominate such that PLS regression
behaves ”much like” PC regressions (and Ridge regression).

While the supervised dimension reduction of PLS generally reduces the bias at the
expense of an increasing variance (especially w.r.t. PC regression).
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Projection pursuit regression: a first pass

PC and PLS regressions

Final step corresponds to the estimation of

yi = θ0 +
m

∑
k=1

θkzi ,k + ui , i = 1, · · · , n.

where

m

∑
k=1

θkzi ,k =
m

∑
k=1

θk

p

∑
j=1

φj ,kxi ,j

=
p

∑
j=1

m

∑
k=1

θkφj ,kxi ,j

=
p

∑
j=1

βjxi ,j

with βj =
m
∑
k=1

θkφj ,k .
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Projection pursuit regression considers the following additive model:

yi = θ0 +
m

∑
j=1

fi

(
x>i βj

)
+ ui , i = 1, · · · , n

= θ0 +
m

∑
j=1

fi
(
zj
)
+ ui , i = 1, · · · , n

where fj is a sequence of m initially unknown (single valued) smooth functions (Ridge
functions).

Instead of modeling each response as a linear combination of the explanatory variables or
directions, PPR models each response as a sum of functions of linear combination of the
predictors. For a given set of data {(yi , xi )}ni=1, the minimization problem writes:

min
fj ,βj

n

∑
i=1

[
yi −

m

∑
j=1

fj (x
>
i βj )

]2

.
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PPR is expected to perform better in the presence of significant nonlinearities,
especially if nonlinearites are well approximated by Ridge function (i.e., functions
that only vary in one direction in Rp).

PPR approximations are dense in the sense that any function of p variables can be
arbitrarily closely approximated by Ridge function approximations for large enough
m.
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Technical appendix
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Appendix 1: Principal component analysis with p = 2

First principal component...

X The Lagrangian function writes down:

L(λ; a1) = a>1 Σa1 − λ(a>1 a1 − 1)

where λ is the Lagrange multiplier.

X F.O.C.

(Σ− λIp) a1 = 0

where Ip is the identity matrix of order p.

X Therefore λ is an eigenvalue of Σ and a1 is the corresponding eigenvector.

return
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Second principal component...

X The Lagrangian function writes down:

L(λ, φ; a1) = a>2 Σa2 − λ(a>2 a2 − 1)− φa>2 a1

where λ is the Lagrange multiplier.

X F.O.C.

(Σ− λIp) a2 − φa1 = 0

Therefore

a>1 (Σ− λIp) a2 − φa>1 a1 = 0

and thus φ = 0 and

(Σ− λIp) a2 = 0.

λ is an eigenvalue of Σ and a2 is the corresponding eigenvector...2

return
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Appendix 2: Singular Value Decomposition (SVD)

Definition

Let X denote an n× p matrix. The singular value decomposition (SVD) takes the form:

X = UDV>

where

X U is a n× p orthogonal matrix whose columns, uj j = 1, · · · , p, span the column
space of X ;

X V is a p × p orthogonal matrix whose columns, uj j = 1, · · · , p, span the row space
of X ;

X D is a p × p diagonal matrix with diagonal entries or singular values
d1 ≥ d2 ≥ · · · ≥ dp ≥ 0.

return
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Definition (Spectral decomposition)

Any symmetric matrix Σ ∈ Mp×p can be written as

Σ = VDV>

where D = Diag(d1, · · · , dp) denotes the diagonal matrix of eigenvalues of Σ
(descending order d1 > d2 > ... > dp) and V is an orthogonal matrix,

VV> = V>V = Ip , whose columns are the eigenvectors of length 1 (see SVD).

return
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Using the SVD of the centered matrix X , the (sample) covariance matrix has the
following decomposition

S =
X>X
n

=
1

n

(
UDV>

)> (
UDV>

)
=

1

n
VDU>UDV>

=
1

n
VD2V>

which is the eigenvalue decomposition (spectral decomposition theorem) of S .
Especially, the columns of V—so-called eigenvectors—are the principal components
or Karhunen-Loeve) directions of X (up to a scaling factor).

return
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Appendix 3: Data Preprocessing

Example: Let x1 and x2 denote two random variables. The variance-covariance matrix of
(x1, x2) (respectively, (10x1, x2)) is given by Σ1 (resp., Σ2):

Σ1 =

(
80 44
44 80

)
and Σ2 =

(
8000 440
440 80

)

The first principal component of Σ1 is 0.707x1 + 0.707x2;

The first principal component of Σ2 is 0.998x1 + 0.055x2!

return
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Appendix 4: Example PCA

Data: 50 key UK government yield curves;

Period: 2005-2007;

Objectives: Extract some principal components and provide some ”approximation”
of each individual series.
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Figure: Initial series
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Table II.2.1 Correlation matrix of selected UK spot rates

Maturity 1 yr 2 yr 3 yr 4 yr 5 yr 7 yr 10 yr 15 yr 20 yr 25 yr

1 yr 10000 00925 00877 00843 00809 00744 00674 00615 00558 00501
2 yr 00925 10000 00990 00972 00947 00891 00827 00773 00717 00657
3 yr 00877 00990 10000 00994 00979 00937 00883 00833 00781 00723
4 yr 00843 00972 00994 10000 00995 00968 00924 00880 00831 00776
5 yr 00809 00947 00979 00995 10000 00987 00955 00917 00871 00819
7 yr 00744 00891 00937 00968 00987 10000 00989 00963 00923 00877

10 yr 00674 00827 00883 00924 00955 00989 10000 00989 00957 00918
15 yr 00615 00773 00833 00880 00917 00963 00989 10000 00988 00962
20 yr 00558 00717 00781 00831 00871 00923 00957 00988 10000 00992
25 yr 00501 00657 00723 00776 00819 00877 00918 00962 00992 10000

Figure: Correlation matrix of selected UK spot rates
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Table: Eigenvalue decomposition

Component 1 2 3 4 5 6
Eigenvalue 45.524 3.424 0.664 0.300 0.062 0.019

% Variation 91.05% 6.85% 1.33% 0.60% 0.12% 0.04%

Cumulative % 91.05% 97.90% 99.22% 99.82% 99.95% 99.98%

⇒ The first

three components together explain over 99% of the variation...
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Table: Eigenvectors

Eigenvector Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

6 mth 0.0675 0.3464 0.6878 0.4409 0.3618 0.2458
1 yr 0.1030 0.3536 0.3272 0.007 -0.4604 -0.4910
...

...
...

10 yr 0.1471 0.034 -0.0970 0.1669 -0.0390 -0.0430
...

...
...

25 yr 0.1400 -0.1541 0.1535 -0.1633 0.1037 -0.1979

⇒

∆R6mth ≈ 0.0675Γ1 + 0.3464Γ2 + 0.6878Γ3
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Figure: Eigenvectors of the UK daily spot rate correlation matrix
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Appendix 5: Bivariate normal pdf

Figure: Joint distribution of two independent Gaussian variables

return

Florian Pelgrin (EDHEC Business School) Part II - Lecture 2c February - June 2019 60 / 60


	Dimension reduction methods
	Overview
	Principal components regression
	Independent components regression
	Partial least squares regression
	Projection pursuit regression

	Technical appendix
	Appendix 1: Principal component analysis with p = 2
	Appendix 2: Singular Value Decomposition (SVD)
	Appendix 3: Data Preprocessing
	Appendix 4: Example PCA
	Appendix 5: Bivariate normal pdf


