Master in Financial Engineering (EPFL) Financial Econometrics

Part II: Machine learning and Asset Pricing
Lecture 3: Support Vector Machine—An introduction through linear methods
for classification

Florian Pelgrin

EDHEC Business School

February - June 2019

- 1. Introduction
- 2 2. Linear regression for classification
- 3 3. Linear and quadratic discriminant analysis
- 4. Logistic regression
- **5** Separating hyperplanes
- 6 6. Support vector machine: A first pass

1. Introduction

1. Introduction // 1.1. Objectives

Main objectives

- Summary of the theory and applications of Support Vector Machine
 - Part I: Review fundamental concepts trough the problem of classification methods, especially using linear methods
 - √ Linear regression of an indicator matrix;
 - ✓ Linear Discriminant Analysis (LDA) and some extensions
 - √ Logistic regression
 - √ Separating Hyperplanes (Perceptron and optimal separation)
 - √ A first pass on Support Vector Machine (SVM)

- Part II: Time series predictions using SVM
 - √ Linear support vector machines with regressions
 - √ Non-separating hyperplanes
 - √ Support vector machines with kernels
 - ✓ Applications

1.2. A refresher

- Suppose that one has an outcome measurement (output feature, target) and wishes to predict it based on a set of input features (e.g., some explanatory variables)
- ullet The training set of data is $\left\{\left(x_i^{ op},y_i\right)$, $i=1,\cdots$, $n
 ight\}$.
- One implements two statistical methods:
 - √ Linear regression model;
 - √ Nearest neighbors.

Linear regression model

$$y_i = \beta_0 + \sum_{i=1}^p x_{i,k} \beta_k + u_i$$

where p is the number of input features, u denotes the error term, $x_{i,k}$ is the k-th input feature for observation i, β_0 is the intercept (also known as the bias in machine learning),and $\beta_1 \cdots, \beta_p$ are the slope parameters.

The fitted value at the i-th input x_i is

$$\widehat{y}_i \equiv \widehat{y}(x_i) = \widetilde{x}_i^{\top} \widehat{\beta}$$

where \tilde{x} includes the constant term and $\tilde{\beta}$ the intercept. At any arbitrary input x_0 , the prediction is:

$$\widehat{y}(x_0) = x_0^{\top} \widehat{\widehat{\beta}}$$

Example: Training data on a pair of inputs and a response variable coded as zero (in blue) and 1 (in orange)

- Step 1: Fit the model
- Step 2: Define a classifier using the fit of the linear regression

$$Y^{\star} = \left\{ \begin{array}{ll} 1 & \text{if } \widehat{Y} > 0.5 \\ 0 & \text{otherwise.} \end{array} \right.$$

The set $X^{\top} \widehat{\beta} = 0.5$ is a decision boundary.

• Step 3: Check for misclassification.

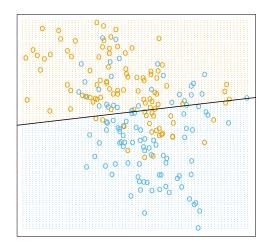


Figure: Linear regression of 0/1 response

Note: Orange (resp., blue) shaded region is the part of the input space classified as "1" (resp., "0"). The line is the decision boundary defined by $x^\top \hat{\beta} = 0.5$. Source: The Elements of statistical learning, Hastie et al. (2001).

More generally,

- The training data consists of n pairs $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$ with $x_i \in \mathbb{R}^p$ and $y_i \in \{a, -a\}$ (say, a = 1)
- Define a hyperplane by

$$\left\{x: f(x) = x^{\top}\beta + \beta_0 = 0\right\}$$

where β is (possibly) a unit vector $\|\beta\| = 1$.

• A classification rule induced by f(x) is

$$G(x) = \operatorname{sign}\left[x^{\top}\beta + \beta_0 + d\right]$$

where d denotes a constant (e.g., d = -0.5 in the example).

 Nearest neighbors: Make use of those observations (in the training set) closest in input space x to form the prediction

$$\widehat{Y}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i.$$

where $N_k(x)$ is the neighborhood of x defined by the k closest points x_i in the training sample.

Example: \widehat{Y} is the proportion of orange circles in the neighborhood and it is assigned the value 1 if a majority of neighbors are orange circles.

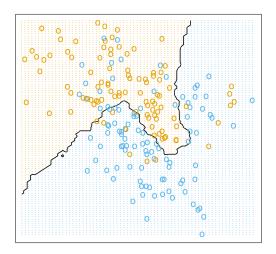


Figure: 15-nearest neighbor averaging

Note: Blue (resp., orange) points, Y^* correspond to 0 (resp., 1). The class is chosen by majority vote amongst the 15-nearest neighbors.

Source: The Elements of statistical learning, Hastie et al. (2001).

1.3. Framework

- The training data consists of *n* pairs $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$ with $x_i \in \mathbb{R}^p$.
- There are K classes, labeled $1, 2, \dots, K$
- For each class, inputs are the same and the output is an indicator response variable \Rightarrow there are K indicators Y_k , $k=1,\cdots,K$, with $Y_k=1$ if G=k else 0.
- The $n \times K$ indicator response matrix Y is $Y = (Y_1, \dots, Y_K)$.

2. Linear regression for classification

• Using an OLS estimator of the multivariate linear regression model, i.e., fitting a linear regression model to each of the columns of Y (simultaneously), one has

$$\widehat{B} = \left(X^{\top}X\right)^{-1}X^{\top}Y$$

where B is a $(p+1) \times K$ coefficient matrix, and X is a $n \times (p+1)$ matrix corresponding to the p inputs and a leading columns of 1's for the intercept.

Accordingly,

$$\widehat{Y} = X \left(X^{\top} X \right)^{-1} X^{\top} Y.$$

Classification rule: Using A new observation with input *x*

√ Step 1: Compute the fitted output

$$\widehat{f}(x)^{\top} = (1, x^{\top})\widehat{B}$$

where $\widehat{f} \in \mathbb{R}^K$.

✓ Step 2: Identify the largest component and classify

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \widehat{f}_k(x)$$

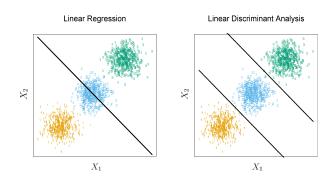


Figure: The masking problem

Source: The Elements of statistical learning, Hastie et al. (2001).

3. Linear and quadratic discriminant analysis

3.1. The decision problem

The Expected Prediction Error (EPE) is defined by:

$$\mathtt{EPE} = \mathbb{E}\left[L(G, \widehat{G}(X))\right]$$

where L denotes the loss function, $\widehat{G}(X)$ the predicted class, and $G = (G_1, \dots, G_K)$ a discrete set of classes.

One has

$$\mathtt{EPE} \quad = \quad \mathbb{E}_X \sum_{k=1}^K L(G_k, \widehat{G}(X)) \mathbb{P}(G_k \mid X).$$

and

$$\widehat{G}(X) = \mathop{\mathrm{argmin}}_{g \in G} \sum_{k=1}^K L(G_k, \widehat{G}(X)) \mathbb{P}(G_k \mid X)$$

• In a case of 0-1 loss function, the minimization problem writes

$$\widehat{G}(X) = \operatorname*{argmin}_{g \in \mathcal{G}} \left[1 - \mathbb{P}(g \mid X = x) \right]$$

or simply

$$\widehat{G}(X) = G_k \quad \text{if} \quad \mathbb{P}\left(G_k \mid X = x\right) = \max_{g \in G} \mathbb{P}\left(g \mid X = x\right).$$

 Said differently, one classifies to the most reasonable class using the conditional distribution P(G | X)—a so-called Bayes classifier.

3.2. Modeling the conditional distribution

Using the Bayes theorem:

$$\mathbb{P}(G = k \mid X = x) = \frac{f_k(x)\pi_k}{\sum_{\ell=1}^K f_\ell(x)\pi_\ell}$$

where

 \checkmark f_k is the class-conditional density of X in class G = k;

 \checkmark π_k is the prior probability of class k, with $\sum_{k=1}^K \pi_k = 1$.

Briefly speaking, having f_k is "almost equivalent" to having the conditional probability (distribution) $\mathbb{P}\left(G=k\mid X=x\right)$

- f_k can be modeled through different class densities:
 - √ Gaussian densities: Linear and quadratic discriminant analysis (LDA or QDA);
 - ✓ Flexible mixture of Gaussian densities: nonlinear decision boundaries;
 - √ Flexible nonparametric densities: kernel-based approaches;
 - √ Naive Bayes models: inputs are conditionally independent in each class, i.e. each of the class densities is the product of marginal densities.

3.3. Linear discriminant analysis

• Suppose that each class density is multivariate Gaussian:

$$f_k(x) = (2\pi)^{-\rho/2} |\Sigma_k|^{-1/2} \exp\left\{-\frac{1}{2} \left(x - \mu_k\right)^\top \Sigma_k^{-1} \left(x - \mu_k\right)\right\}$$

- LDA assumes that classes have a **common covariance matrix** $\Sigma_k = \Sigma$ for all k.
- ullet The decision boundary between two classes k and ℓ can be determined by using the log-ratio:

$$\begin{split} \log \left[\frac{\mathbb{P}\left(G = k \mid X = x\right)}{\mathbb{P}\left(G = \ell \mid X = x\right)} \right] &= \log \left[\frac{f_k(x)\pi_k}{f_\ell(x)\pi_\ell} \right] \\ &= \log \left[\frac{f_k(x)}{f_\ell(x)} \right] + \log \left[\frac{\pi_k}{\pi_\ell} \right] \end{split}$$

Especially,

$$\log \left[\frac{\mathbb{P}\left(G = k \mid X = x\right)}{\mathbb{P}\left(G = \ell \mid X = x\right)} \right] = \log \left[\frac{\pi_k}{\pi_\ell} \right] - \frac{1}{2} \left(\mu_k + \mu_\ell\right)^\top \Sigma^{-1} \left(\mu_k + \mu_\ell\right) + x^\top \Sigma^{-1} \left(\mu_k - \mu_\ell\right).$$

Remarks:

- This equation is linear in x
- The assumption " $\Sigma_k = \Sigma$ for all k" greatly simplifies the derivation: neither log of the determinant, nor quadratic term $x^{\top}\Sigma^{-1}x$ in this expression.
- Consequently, the set defined by

$$\mathbb{P}(G = k \mid X = x) = \mathbb{P}(G = \ell \mid X = x)$$

is linear in x and is an **hyperplane** of dimension p (the number of inputs).

ullet By dividing \mathbb{R}^p into regions defined by hyperplanes, one obtains a (supervised) classification

Example:

- Suppose that data are generated by three Gaussian distributions with the same covariance and different means.
- The sample is composed with 30 draws from each Gaussian distribution.
- The linear discriminant functions are defined by:

$$\delta_k(x) = x^{\top} \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^{\top} \Sigma^{-1} \mu_k + \log(\pi_k)$$

and the hyperplane by $\delta_k(x) = \delta_\ell(x)$ for $(k, \ell) = (1, 2), (1, 3)$ and (2, 3).

• The decision rule can also be written $G(x) = \underset{k}{\operatorname{argmax}} \delta_k(x)$.

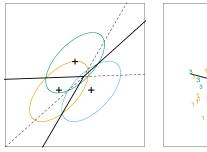


Figure: Linear discriminant analysis

Note: Left panel reports the contours of constant density (covering 95% of the probability). Right panel reports the fitted LDA decision boundaries. Source: The Elements of statistical learning, Hastie et al. (2001).

Remark: Note that π_k , μ_k and Σ must be estimated...

• An estimate of π_k is:

$$\widehat{\pi}_k = \frac{N_k}{N}$$

where N_k is the number of class-k observations;

• An estimate of μ_k is:

$$\widehat{\mu}_k = \frac{1}{N_k} \sum_{g_i = k} x_i$$

ullet An estimate of Σ is:

$$\widehat{\Sigma} = \frac{1}{N - K} \sum_{k=1}^{K} \sum_{g_i = k} (x_i - \widehat{\mu}_k) (x_i - \widehat{\mu}_k)^{\top}$$

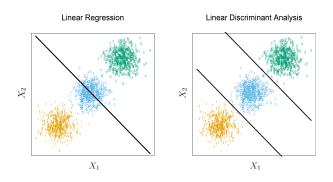


Figure: Back to the masking problem...

Source: The Elements of statistical learning, Hastie et al. (2001).

3.4. Quadratic discriminant analysis

- ullet Suppose now that the Σ_k are not assumed to be equal
- The quadratic discriminant function writes

$$\delta_k(x) = -\frac{1}{2}\log|\Sigma_k| - \frac{1}{2}(x - \mu_k)^{\top} \Sigma_k^{-1}(x - \mu_k) + \log(\pi_k)$$

• The decision boundary between two classes k and ℓ is then given by:

$$\{x:\delta_k(x)=\delta_\ell(x)\}$$

• The estimation proceeds as in the case of LDA, with the exception that separate covariance matrices must be estimated for each class (i.e., curse of dimensionality when p is large!).

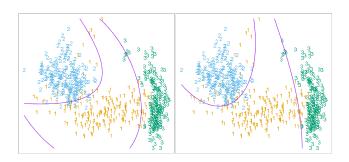


Figure: Quadratic discriminant analysis

Note: Left panel reports quadratic decisions boundaries using LDA with an extension of inputs $(x_1, x_2, x_1^2, x_2^2, x_1x_2)$. Right panel reports the decision boundaries with QDA. Source: The Elements of statistical learning, Hastie et al. (2001).

3.5. Extensions

Extension 1: Regularized discriminant analysis

Provide a reasonable solution/compromise regarding the variance-covariance matrice

$$\widehat{\Sigma}_k(\lambda) = \lambda \widehat{\Sigma}_k + (1 - \lambda) \widehat{\Sigma}$$

where $\widehat{\Sigma}$ is the (pooled) covariance matrix with LDA, $\widehat{\Sigma}_k$ is the one with QDA, and λ is a standard regularization parameter with $\lambda \in [0;1]$.

- In general, this leads to decrease the misspecification error (rate) using the training set and the test set.
- Remark: A similar treatment can be used for the pooled covariance matrix

$$\widehat{\Sigma}(\alpha) = \alpha \widehat{\Sigma} + (1 - \alpha)\sigma^2 I$$

where I is the identity matrix and σ^2I is a spherical covariance matrix.

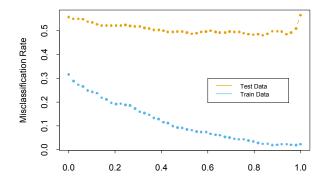


Figure: Regularized discriminant analysis

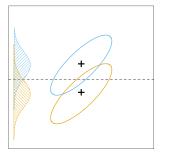
Extension 2: Reduced-rank or dimension reduction of LDA

- LDA can be viewed as an informative low-dimensional projections of data (like PCA...).
- The LDA problem can be formulated as:

Can one find a linear combination of the inputs such that the **between-class variance** is maximized relative to the **within-class variance**?

where the between-class variance is the variance of the class means (resulting from the linear combination), and the within-class is the pooled variance about the means.

• This is a generalized eigenvalue problem



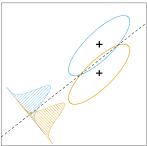


Figure: LDA as a reduced-rank problem

4. Logistic regression

• The posterior (log) odds-ratio is then modeled through linear function

$$\log \left[\frac{\mathbb{P} \left(G = 1 \mid X = x \right)}{\mathbb{P} \left(G = K \mid X = x \right)} \right] = \beta_{1,0} + \beta_1^\top x$$

$$\log \left[\frac{\mathbb{P} \left(G = 2 \mid X = x \right)}{\mathbb{P} \left(G = K \mid X = x \right)} \right] = \beta_{2,0} + \beta_2^\top x$$

$$\vdots$$

$$\log \left[\frac{\mathbb{P} \left(G = K - 1 \mid X = x \right)}{\mathbb{P} \left(G = K \mid X = x \right)} \right] = \beta_{K-1,0} + \beta_{K-1}^\top x$$

where the choice of denominator (class K) is arbitrary.

This is equivalent to

$$\mathbb{P}\left(G = k | X = x\right) = \frac{\exp\left(\beta_{k,0} + \beta_k^\top x\right)}{1 + \sum_{\ell=1}^{K-1} \exp\left(\beta_{\ell,0} + \beta_\ell^\top x\right)} \quad k = 1, \dots, K-1$$

$$\mathbb{P}\left(G = K | X = x\right) = \frac{1}{1 + \sum_{\ell=1}^{K-1} \exp\left(\beta_{\ell,0} + \beta_\ell^\top x\right)}$$

with
$$\sum_{k} \mathbb{P}(G = k | X = x) = 1$$
.

4□▶4□▶4□▶4□▶ □ ♥Q♠

- The hyperplanes are directly defined by the odds-ratio.
- The parameters are fitted by maximizing the conditional likelihood, i.e. the multinomial likelihood with probabilities $\mathbb{P}(G = k|X)$. Especially, the joint density of (X, G = k) is given by (in a generic form):

$$\mathbb{P}(X, G = k) = \mathbb{P}(X)\mathbb{P}(G = k|X)$$

• Notably, the marginal density of X is ignored and can be viewed as being estimated in a nonparametric sense (i.e., the empirical distribution places a mass 1/n at each observation.

In contrast, LDA leads to maximize the full log-likelihood, using the joint density

$$\mathbb{P}(X, G = k) = \phi(X; \mu_k, \Sigma)\pi_k$$

where $\phi(X; \mu_k, \Sigma)$ is the pdf of a multivariate normal distribution with expectation μ_k and covariance matrix Σ , and the marginal density $\mathbb{P}(X)$ is a mixture density

$$\mathbb{P}(X) = \sum_{k=1}^{K} \pi_k \phi(X; \mu_k, \Sigma)$$

that depends on the parameters of interest!

5. Separating hyperplanes

5.1. Example

- Consider 20 points in two classes in \mathbb{R}^2 .
- Linear regression classifier:
 - ✓ Regress the -1/1 Y response on $X = (X_1, X_2)$ (with an intercept):

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

√ Classification rule:

$$G(x) = \operatorname{sign}\left[x^{\top}\beta + \beta_0\right]$$

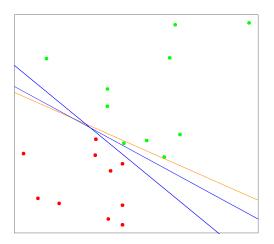


Figure: Separable classes

Note: The orange line provides the least squares solution whereas the blues lines other boundaries.

- Classifiers, which are defined by a linear combination of the features and return the sign, are called perceptrons (Rosenblatt, 1958).
- Such classifiers provide the foundations for the neural network models (see Lecture 5).

5.2. Perceptron learning algorithm

- Objective: Find a separating hyperplane by minimizing the distance of misclassified points to the decision boundary
- Questions:
 - Q1. When are points misclassified in our example? Answer: A response $y_i = 1$ is misclassified when

$$x_i^{\top} \widehat{\beta} + \widehat{\beta}_0 < 0$$

A response $y_i = -1$ is misclassified when

$$x_i^{\top} \widehat{\beta} + \widehat{\beta}_0 > 0$$

- i.e. when the sign is wrongly predicted.
- Q2. How to measure the distance to the decision boundary? Back to geometry and algebra...

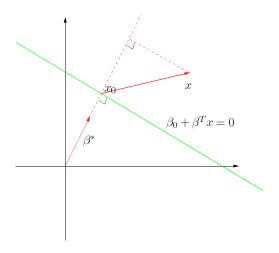


Figure: Distance to a separating hyperplane

Consider an hyperplane (affine) plan defined by

$$\mathcal{L} = \left\{ f(x) \equiv \beta_0 + \beta^\top x = 0 \right\}$$

This is a line defined by $\beta_0 + \beta_1 x_1 + \beta_2 x_2 = 0$ with $x = (x_1, x_2)$.

- Then
 - For two points $z_1,z_2\in\mathcal{L},\ \beta^{\top}(z_1-z_2)=0$ and the vector normal to L is $\beta^{\star}=\frac{\beta}{\|\beta\|};$
 - For any point x_0 , $\beta^{\top}x_0 = -\beta_0$;
 - ▶ The **signed distance** (and not the distance!) between $x \in \mathcal{L}^c$ and $x_0 \in \mathcal{L}$ is

$$\underbrace{\beta^{\star\top}(x-x_0)}_{\text{inner product}} = \underbrace{\frac{1}{\|\beta\|}}_{=\frac{1}{\|f'(x)\|}} \underbrace{\left(\beta^\top x + \beta_0\right)}_{=f(x)}.$$

The distance of interest is then:

$$-y_i\left(x_i^{\top}\beta+\beta_0\right)$$

The objective function (piecewise linear function) to minimize is:

$$D(\beta, \beta_0) = -\sum_{i \in \mathcal{M}} y_i \left(x_i^{\top} \beta + \beta_0 \right)$$

where ${\cal M}$ denotes the set of misclassified points.

Parameters can be then estimated using a stochastic gradient descent:

$$\begin{pmatrix} \beta^{(s)} \\ \beta_0^{(s)} \end{pmatrix} \leftarrow \begin{pmatrix} \beta^{(s-1)} \\ \beta_0^{(s-1)} \end{pmatrix} - \rho \begin{pmatrix} -y_i x_i \\ -y_i \end{pmatrix}$$

where ρ is the learning rate and $\begin{pmatrix} -y_i x_i \\ -y_i \end{pmatrix}$ is the gradient of the objective function for (x_i, y_i) .

Key issues:

- Data are not always separable as in Perceptron!
- When data are separable: many solutions might exist and it depends on the starting values.
- The number of iterations to achieve convergence can be quite large!
- In the presence of non separable data, convergence will not occur but this is difficult to assess (occurrence of cycles that are long to detect).

5.3. Optimal separating hyperplanes

- Suppose that there are two classes
- Objective: Separate two classes and maximize the distance to the closest point from either class (Vapnik, 1996)
- How? Using the training sample,
 - Find a maximum margin separating two classes;
 - This requires support points that lie on the boundary of the margin (no training point being inside the margin);
 - ▶ The optimal separating hyperplane bisects the region induced by the maximum margin;

Remark: Note that some points might be inside the "margin" when using the test sample.

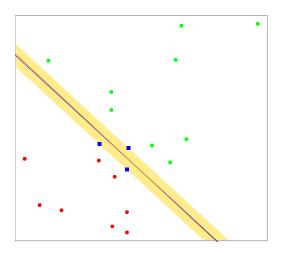


Figure: Optimal separating hyperplanes

- The maximization problem involves
 - ► A margin, i.e. a signed distance, say M;
 - ► To impose that some (training) points either lie on the boundary of the margin or do not belong to the margin:

$$y_i \left(x_i^{\top} \beta + \beta_0 \right) \ge M$$

for $i = 1, \dots, n$.

• Consequently, the optimization problem writes

$$\max_{\beta,\beta_0,\|\beta\|=1} M$$

s.t.
$$y_i \left(x_i^\top \beta + \beta_0 \right) \ge M$$
 for $i = 1, \dots, n$.

• This problem is equivalent to:

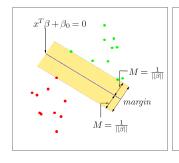
$$\begin{aligned} & \min_{\beta,\beta_0} & \frac{1}{2} \|\beta\|^2 \\ & \text{s.t.} & y_i \left(x_i^\top \beta + \beta \right) \ge 1 & \text{for } i = 1, \cdots, n. \end{aligned}$$

- This is a convex optimization problem that can be solved with either the primal approach (the Generalized Lagrangian function) or the dual approach (so-called Wolfe dual).
- The corresponding Kuhn-Tucker conditions leads to two cases: (1) x_i is on the boundary of the slab; (2) x_i lies outside the slab.

6. Support vector machine: A first pass

6.1. Overview

- Optimal separating hyperplanes: Classes are linearly separable
- But what happens when classes overlap, i.e. classes are nonseparable?
- A first solution is to determine nonlinear boundaries by using a linear boundary on a transformed version of the feature space: the so-called support vector machine problem.
- Remark: A second set of solutions is to generalize the linear discriminant analysis: the so-called flexible discriminant analysis.



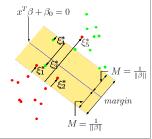


Figure: Separable and nonseparable classes

6.2. SVM classifier

Intuition

- Since the classes overlap in feature space, they cannot be separate!
- But one can still determine a maximum margin and allow for some point to be inside the margin and especially to be on the wrong side of the margin...
- The inequality constraints must be redefined to take into account the overlap.
- Especially, one cannot use :

$$y_i\left(x_i^{\top}\beta + \beta\right) \geq M$$

 \Rightarrow Need to modify M...in an additive way or a multiplicative way

- How to measure the overlap?
 - ✓ As the distance from the margin $(i = 1, \dots, n)$

$$y_i\left(x_i^{\top}\beta + \beta_0\right) \geq M - \xi_i$$

where $\xi = (\xi_1, \dots, \xi_n)$ is vector of slack variables.

- * This distance is quite natural!
- * But it leads to a nonconvex optimization problem
- √ As a relative distance

$$y_i\left(x_i^{\top}\beta + \beta_0\right) \geq M(1 - \xi_i)$$

- ★ The value ξ_i is the proportional amount by which the prediction $f(x_i) = x_i^\top \beta + \beta_0$ is on the wrong side of its margin;
- ★ The total proportional amount by which <u>all</u> predictions are on the wrong side of their margin is $\sum_{i=1}^{n} \xi_i$;
- ★ This total proportional amount can be bounded!
- ★ Misclassification occurs when $\xi > 1$

• The optimization problem writes:

$$\begin{aligned} & \min_{\beta,\beta_0} & & \frac{1}{2} \|\beta\|^2 \\ \text{s.t.} & & y_i \left(x_i^\top \beta + \beta \right) \geq 1 - \xi \quad \text{for } i = 1, \cdots, n \\ & & \xi_i \geq 0, \sum_{i=1}^n \xi_i \leq \text{constant.} \end{aligned}$$

or

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2 + c \sum_{i=1}^n \xi_i$$
s.t.
$$y_i \left(x_i^\top \beta + \beta \right) \ge 1 - \xi$$

$$\xi_i \ge 0 \quad \text{for } i = 1, \dots, n.$$

where the (implicit) cost parameter c (tuning parameter) replaces the constant term.

Remark: The separable case corresponds to $c = \infty$.

6.3. SVM as a penalization method

- The support vector machine method can be interpreted as a Penalization method
- The corresponding optimization problem writes

$$\min_{\beta_0,\beta} \sum_{i=1}^{n} [1 - y_i f(x_i)]_+ + \frac{\lambda}{2} \|\beta\|^2$$

where $[1-y_if(x_i)]_+$ indicates the positive part of $1-y_if(x_i)$ and λ is the penalty parameter.

- Remarks:
 - **①** One can show that $\lambda = 1/C$;
 - ② $L(y, f) = [1 y_i f(x_i)]_+$ is the so-called "hinge loss function"

6.4. SVM for linear regression

• When the response variable is quantitative, the minimization problem can be written:

$$\sum_{i=1}^{n} V\epsilon \left(y_{i} - f(x_{i}) \right) + \frac{\lambda}{2} \|\beta\|^{2}$$

where

$$f(x_i) = x_i^{\top} \beta + \beta_0$$

and $V\epsilon$ is an " ϵ -intensive" error measure

$$V\epsilon(z) = \left\{ egin{array}{ll} 0 & ext{if } |z| < \epsilon \ |z| - \epsilon & ext{otherwise} \end{array}
ight.$$

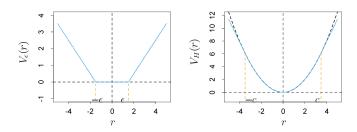


Figure: SVM for regression