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1. Introduction // 1.1. Objectives

Main objectives
@ Summary of the theory and applications of Support Vector Machine

> Part |: Review fundamental concepts trough the problem of classification methods,
especially using linear methods

v Linear regression of an indicator matrix;

V' Linear Discriminant Analysis (LDA) and some extensions

v Logistic regression

V' Separating Hyperplanes (Perceptron and optimal separation)

V' A first pass on Support Vector Machine (SVM)
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@ Part Il: Time series predictions using SVM
v’ Linear support vector machines with regressions
V" Non-separating hyperplanes
V' Support vector machines with kernels

V' Applications
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1.2. A refresher

@ Suppose that one has an outcome measurement (output feature, target) and wishes
to predict it based on a set of input features (e.g., some explanatory variables)

@ The training set of data is {(xiT,y,-) =1 ,n}.

@ One implements two statistical methods:

v’ Linear regression model;

V' Nearest neighbors.
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o Linear regression model

p
yi = Bo+ Y xikBk+uj
i-1

where p is the number of input features, u denotes the error term, x;  is the k-th
input feature for observation 7, Bo is the intercept (also known as the bias in
machine learning),and B1 - - -,Bp are the slope parameters.

The fitted value at the i-th input x; is

Vi=y(x)=x'B

where % includes the constant term and B the intercept.
At any arbitrary input xg, the prediction is:

¥(x0) = xg B
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Example: Training data on a pair of inputs and a response variable coded as zero (in
blue) and 1 (in orange)

o Step 1: Fit the model
@ Step 2: Define a classifier using the fit of the linear regression

yro [ L Y >05
o 0 otherwise.

The set XTB = 0.5 is a decision boundary.

o Step 3: Check for misclassification.
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Figure: Linear regression of 0/1 response

'0"). The line is the decision boundary defined by XTB = 0.5.
Source: The Elements of statistical learning, Hastie et al. (2001)
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More generally,

@ The training data consists of n pairs (x1,y1), (x2,¥2)," -+, (Xn, ¥n) with x; € RP and
yi € {a,—a} (say, a=1)

@ Define a hyperplane by

{X:f(x):xT/S+‘Bo:0}

where B is (possibly) a unit vector ||| = 1.

o A classification rule induced by f(x) is
G(x) = sign [XT[% + Bo + d]

where d denotes a constant (e.g., d = -0.5 in the example).
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o Nearest neighbors: Make use of those observations (in the training set) closest in
input space x to form the prediction

V=7 ¥ v

X,'ENk(X)

where N (x) is the neighborhood of x defined by the k closest points x; in the
training sample.
Example: Y is the proportion of orange circles in the neighborhood and it is assigned the
value 1 if a majority of neighbors are orange circles.
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Figure: 15-nearest neighbor averaging
vote amongst the 15-nearest neighbors.
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Note: Blue (resp., orange) points, Y* correspond to O (resp., 1). The class is chosen by majority
Source: The Elements of statistical learning, Hastie et al. (2001).
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1.3. Framework

@ The training data consists of n pairs (x1,y1), (x2,¥2), -+, (xn, yn) with x; € RP.
@ There are K classes, labeled 1,2, -, K

@ For each class, inputs are the same and the output is an indicator response variable
= there are K indicators Yy, k=1, ---, K, with Y, =1if G = k else 0.

@ The n x K indicator response matrix Y is Y = (Y1,---, Yk).
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@ Using an OLS estimator of the multivariate linear regression model, i.e., fitting a
linear regression model to each of the columns of Y (simultaneously), one has

B= (XTX) xTy

where B is a (p+ 1) X K coefficient matrix, and X is a n x (p+ 1) matrix
corresponding to the p inputs and a leading columns of 1's for the intercept.

o Accordingly,

Y =X (XTX) xTy.
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Classification rule: Using A new observation with input x

V' Step 1: Compute the fitted output
f(x)T = (1,XT)§

where f € RX.
v Step 2: ldentify the largest component and classify

G(x) = argmaxf(x)
keg
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Linear Regression

X2

Linear Discriminant Analysis

Figure: The masking problem
Source: The Elements of statistical learning, Hastie et al. (2001).
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3.1. The decision problem

@ The Expected Prediction Error (EPE) is defined by:

EPE = E [L(G, @(X))]

where L denotes the loss function, G(X) the predicted class, and G = (Gy, - - , Gk)
a discrete set of classes.

@ One has

and

G(X) = argmin Y L(Gk, G(X))P(G | X)
geG k=1
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@ In a case of 0-1 loss function, the minimization problem writes

G(X) = argnin[l —P(g | X = x)]
geG
or simply
G(X) =G, if P (Gye | X = x) = maxP (g | X = x).
g€

o Said differently, one classifies to the most reasonable class using the conditional
distribution P(G | X)—a so-called Bayes classifier.
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3.2. Modeling the conditional distribution

@ Using the Bayes theorem:

fi (x) 71
P(Gok|X=x)— XM
(6 =KIX=x=Fx Fiom

where
V' fy is the class-conditional density of X in class G = k;

V' 1 is the prior probability of class k, with ZkK=1 T = 1.

Briefly speaking, having f, is "almost equivalent” to having the conditional
probability (distribution) P (G = k | X = x)
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@ fi can be modeled through different class densities:
v Gaussian densities : Linear and quadratic discriminant analysis (LDA or QDA);
V' Flexible mixture of Gaussian densities: nonlinear decision boundaries;
v Flexible nonparametric densities: kernel-based approaches;

v" Naive Bayes models: inputs are conditionally independent in each class, i.e. each of
the class densities is the product of marginal densities.
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3.3. Linear discriminant analysis

@ Suppose that each class density is multivariate Gaussian:
_ _ 1 _
fil(x) = (21) P25 " 2 exp {—5 =) Tt (x = Vk)}

@ LDA assumes that classes have a common covariance matrix X, = X for all k.

@ The decision boundary between two classes k and ¢ can be determined by using the
log-ratio:

]P(G:k|X:x)}

8 | P G=rX=x
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o Especially,

T 1 _
Iog{ k} =5 (k) T ET (i ae)

log ]P(G:k|x:X)] E

P(G=0¢|X=x)
+x 2 (e — ) -

Remarks:

@ This equation is linear in x
@ The assumption "X, = X for all k" greatly simplifies the derivation: neither log of the
determinant, nor quadratic term xT271x in this expression.

o Consequently, the set defined by
P(G=k|X=x)=P(G=(]|X=x)

is linear in x and is an hyperplane of dimension p (the number of inputs).

@ By dividing R” into regions defined by hyperplanes, one obtains a (supervised)
classification.
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Example:

@ Suppose that data are generated by three Gaussian distributions with the same
covariance and different means.

@ The sample is composed with 30 draws from each Gaussian distribution.

@ The linear discriminant functions are defined by:
_ 1 _
81 (x) = x T e = S T g + log (i)

and the hyperplane by dx(x) = dy(x) for (k,¢) = (1,2),(1,3) and (2,3).

@ The decision rule can also be written G(x) = argmaxdy(x).
k
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Figure: Linear discriminant analysis

Note: Left panel reports the contours of constant density (covering 95% of the
probability). Right panel reports the fitted LDA decision boundaries.
Source: The Elements of statistical learning, Hastie et al. (2001).
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Remark: Note that 7y, i and X must be estimated

@ An estimate of 71y is:
Ny

where N, is the number of class-k observations

@ An estimate of iy is:

~ 1
e L

@ An estimate of X is:

1 K
7Kk;§ Vk)
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Linear Regression

X2

Linear Discriminant Analysis

Figure: Back to the masking problem...

Source: The Elements of statistical learning, Hastie et al. (2001).
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3.4. Quadratic discriminant analysis

@ Suppose now that the ¥ are not assumed to be equal

@ The quadratic discriminant function writes

1 1 _
8ic(x) = =5 log [Zx] — 5 (x = ) " By (x = pua) + log ()
@ The decision boundary between two classes k and / is then given by:

{x:dk(x) = 6,(x)}

@ The estimation proceeds as in the case of LDA, with the exception that separate
covariance matrices must be estimated for each class (i.e., curse of dimensionality
when p is large!).
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Figure: Quadratic discriminant analysis

Note: Left panel reports quadratic decisions boundaries using LDA with an extension of
inputs (xl,xz,xlz,x%,xlxz). Right panel reports the decision boundaries with QDA.
Source: The Elements of statistical learning, Hastie et al. (2001).
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3.5. Extensions

Extension 1: Regularized discriminant analysis

@ Provide a reasonable solution/compromise regarding the variance-covariance matrice
Sk(A) = AT+ (1 - M)

where 3 is the (pooled) covariance matrix with LDA, % is the one with QDA, and
A is a standard regularization parameter with A € [0; 1].

@ In general, this leads to decrease the misspecification error (rate) using the training
set and the test set.

@ Remark: A similar treatment can be used for the pooled covariance matrix
S(a) =aZ + (1 —a)o’l

where I is the identity matrix and 0?1 is a spherical covariance matrix.
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Extension 2: Reduced-rank or dimension reduction of LDA

o LDA can be viewed as an informative low-dimensional projections of data (like
PCA...).

@ The LDA problem can be formulated as:

Can one find a linear combination of the inputs such that the between-class
variance is maximized relative to the within-class variance?

where the between-class variance is the variance of the class means (resulting from
the linear combination), and the within-class is the pooled variance about the
means.

o This is a generalized eigenvalue problem
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Figure: LDA as a reduced-rank problem
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@ The posterior (log) odds-ratio is then modeled through linear function

=1|X=x)]

[ ((G KX = )) = Pro+pix
° [ ((G _l2(||))<<__X)) = Pao+Pax
log [Ip]ng:f}; |1)|()ij)X) = Pk-10 +/3;71X

where the choice of denominator (class K) is arbitrary.

@ This is equivalent to

exp (,Bk'oJr,B;(rx)
P(G=klX=x) = K1 = k=1,--- , K—-1
1"‘2[:1 exp (ﬁZ,O +Igé X)
1

1"‘2@ 1 €Xp (152,0""/5;)()

P(G=K|X=x) =

with Y, P (G = k|X = x) = 1.
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@ The hyperplanes are directly defined by the odds-ratio.

@ The parameters are fitted by maximizing the conditional likelihood, i.e. the
multinomial likelihood with probabilities IP (G = k|X). Especially, the joint density
of (X, G = k) is given by (in a generic form):

P (X, G = k) = P(X)P(G = k|X)

@ Notably, the marginal density of X is ignored and can be viewed as being estimated
in a nonparametric sense (i.e., the empirical distribution places a mass 1/n at each
observation.
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@ In contrast, LDA leads to maximize the full log-likelihood, using the joint density
]P(X, G=k)= 4)(X;}lk,2)71’k

where ¢(X; i, L) is the pdf of a multivariate normal distribution with expectation
ik and covariance matrix ¥, and the marginal density IP(X) is a mixture density

K
P(X) = ) m¢p(X; s, T)
k=1

that depends on the parameters of interest!
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5.1. Example

o Consider 20 points in two classes in IR
o Linear regression classifier:

V' Regress the -1/1 Y response on X = (X1, X2) (with an intercept):
Y =Bo+ B1 X1+ B2Xo+u

v Classification rule:

G(x) = sign [x" B+ o]
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Figure: Separable classes

Note: The orange line provides the least squares solution whereas the blues lines other
boundaries.
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o Classifiers, which are defined by a linear combination of the features and return the
sign, are called perceptrons (Rosenblatt, 1958).

@ Such classifiers provide the foundations for the neural network models (see Lecture
5).

Florian Pelgrin (EDHEC Business School) Part Il - Lecture 3 February - June 2019 42 /60



5.2. Perceptron learning algorithm

@ Objective: Find a separating hyperplane by minimizing the distance of misclassified

points to the decision boundary

@ Questions:

Q1. When are points misclassified in our example?
Answer: A response y; = 1 is misclassified when

X,'TB + BO <0
A response y; = —1 is misclassified when

X B+PBo >0
i.e. when the sign is wrongly predicted.

Q2. How to measure the distance to the decision boundary? Back to geometry and
algebra...
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o Consider an hyperplane (affine) plan defined by
£={f(x)=po+p x= o}
This is a line defined by Bo + B1x1 + Baxa = 0 with x = (x1, x2).
o Then

> For two points z1, 2z, € L, ,BT(zl — zp) = 0 and the vector normal to L is p* = ﬁ;

> For any point xg, 8 x0 = —Bo;

> The signed distance (and not the distance!) between x € £L¢ and xp € L is

1
)=y (Bxtho).
X ~———
inner product _

__1 =f(x)
TSI

» The distance of interest is then:

—Yi (XiTﬁ + ﬂo)
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@ The objective function (piecewise linear function) to minimize is:
D(B. o) == ) vi (X;Tﬁ+ﬁ0)
ieM
where M denotes the set of misclassified points.

@ Parameters can be then estimated using a stochastic gradient descent:

B ple=t) _ —YiXi
( B ) < ( pe v ) F ( ~yi >
—YiXj

1

where p is the learning rate and ( ) is the gradient of the objective function

for (x;, y;)-
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Key issues:
@ Data are not always separable as in Perceptron!

@ When data are separable: many solutions might exist and it depends on the starting
values.

@ The number of iterations to achieve convergence can be quite large!

@ In the presence of non separable data, convergence will not occur but this is difficult
to assess (occurrence of cycles that are long to detect).
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5.3. Optimal separating hyperplanes

@ Suppose that there are two classes

@ Objective: Separate two classes and maximize the distance to the closest point from
either class (Vapnik, 1996)

@ How? Using the training sample,

> Find a maximum margin separating two classes;

> This requires support points that lie on the boundary of the margin (no training point
being inside the margin);

> The optimal separating hyperplane bisects the region induced by the maximum margin;

Remark: Note that some points might be inside the "margin” when using the test
sample.
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Figure: Optimal separating hyperplanes
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@ The maximization problem involves

> A margin, i.e. a signed distance, say M,

» To impose that some (training) points either lie on the boundary of the margin or do
not belong to the margin:

vi (7 B+ o) =M

fori=1,---,n.
@ Consequently, the optimization problem writes

max
B.Bo.lIBlI=1

sty (x?/%+/30) >M fori=1,---,n
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@ This problem is equivalent to:

.1 2

min =

min 3 6]
s.t. y;(x,-—rﬁ—&—ﬁ)Zl fori=1,---,n.

@ This is a convex optimization problem that can be solved with either the primal

approach (the Generalized Lagrangian function) or the dual approach (so-called
Wolfe dual).

@ The corresponding Kuhn-Tucker conditions leads to two cases: (1) x; is on the
boundary of the slab; (2) x; lies outside the slab.
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6.1. Overview

@ Optimal separating hyperplanes: Classes are linearly separable
@ But what happens when classes overlap, i.e. classes are nonseparable?

@ A first solution is to determine nonlinear boundaries by using a linear boundary on
a transformed version of the feature space: the so-called support vector machine
problem.

@ Remark: A second set of solutions is to generalize the linear discriminant analysis:
the so-called flexible discriminant analysis.
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Figure: Separable and nonseparable classes
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6.2. SVM classifier

Intuition

@ Since the classes overlap in feature space, they cannot be separate!

@ But one can still determine a maximum margin and allow for some point to be inside
the margin and especially to be on the wrong side of the margin...

@ The inequality constraints must be redefined to take into account the overlap.

@ Especially, one cannot use :
i\lx' B+B)>M
Yi \ X =

= Need to modify M...in an additive way or a multiplicative way
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@ How to measure the overlap?

V' As the distance from the margin (i =1,---,n)
vi (X B+Bo) = M~¢;
where ¢ = (€1, -+, &n) is vector of slack variables.

* This distance is quite natural!
* But it leads to a nonconvex optimization problem

V' As a relative distance

i (X,-T,B + ﬁo) >M(1-¢;)

* The value &; is the proportional amount by which the prediction f(x;) = x;' B+ Bo is on the
wrong side of its margin;

* The total proportional amount by which all predictions are on the wrong side of their margin

n

is Y Cis
i=1

This total proportional amount can be bounded!

Misclassification occurs when ¢ > 1

*
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@ The optimization problem writes:
. 1 9
min S8
s.t. y,-(x,-T,B—l—‘B)Zl—(;‘ fori=1,---,n

n
i >0,) & < constant.
i=1

=

or
min  SBI2+cYc
B bo 2 =
.
st. Vi (x,. ﬁ+/3) >1-¢

¢i>0 fori=1,---,n.

where the (implicit) cost parameter ¢ (tuning parameter) replaces the constant term.

Remark: The separable case corresponds to ¢ = oo.
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6.3. SVM as a penalization method

@ The support vector machine method can be interpreted as a Penalization method

@ The corresponding optimization problem writes

n

. A
minY” [1-yif ()], + 2B
0.fiz1
where [1 — y;f(x;)]+ indicates the positive part of 1 — y;f(x;) and A is the penalty
parameter.
@ Remarks:

@ One can show that A =1/C;
Q@ L(y,f) =[1—yif(x;)]+ is the so-called "hinge loss function”
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6.4. SVM for linear regression

@ When the response variable is quantitative, the minimization problem can be written:

n A 2
Y Ve (yi = () + 5Bl
i=1
where
f(xi) = x;' B+ o
and Ve is an "e-intensive” error measure

Ve(z) = {

0 iflz|<e
|z| —€e otherwise
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