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1. Introduction

Question 1.1. What kinds of quantities and operations appear in relation to analysis (or

multivariable calculus) in a bounded open set U ⊂ Rn?

Some possible answers:

• Functions: continuity, partial derivatives, integrals, Lp spaces, Taylor expansions,

Fourier or related expansions

• Vector fields: gradient, curl, divergence

• Measures, distributions, flows

• Laplace operator, Laplace, heat and wave equations

• Integration by parts formulas (Gauss, divergence, Green)

• Tensor fields, differential forms

• Distance, distance-minimizing curves (line segments), area, volume, perimeter

Imagine similar concepts on a hypersurface (e.g. double torus in R3)

This course is an introduction to analysis on manifolds. The first part of the course

title has the following Wikipedia description: “Mathematical Analysis is a branch of
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mathematics that includes the theories of differentiation, integration, measure, limits,

infinite series, and analytic functions. These theories are usually studied in the context of

real and complex numbers and functions. Analysis evolved from calculus, which involves

the elementary concepts and techniques of analysis. Analysis may be distinguished from

geometry; however, it can be applied to any space of mathematical objects that has a

definition of nearness (a topological space) or specific distances between objects (a metric

space).”

Following this description, our purpose will be to study in particular differentiation,

integration, and differential equations on spaces that are more general than the standard

Euclidean space Rn. Different classes of spaces allow for different kinds of analysis:

• Topological spaces are a good setting for studying continuous functions and limits,

but in general they do not have enough structure to allow studying derivatives

• The smaller class of metric spaces admits certain notions of differentiability, but

in particular higher order derivatives are not always well defined

• Differentiable manifolds are modeled after pieces of Euclidean space and allow

differentiation and integration, but they do not have a canonical Laplace operator

and thus the theory of differential equations is limited

The class of spaces studied in this course will be that of Riemannian manifolds. These

are differentiable manifolds with an extra bit of structure, a Riemannian metric, that

allows to measure lengths and angles of tangent vectors. Adding this extra structure

leads to a very rich theory where many different parts of mathematics come together. We

mention a few related aspects, and some of these will be covered during this course (the

more advanced topics that will be covered will be chosen according to the interests of the

audience):

(1) Calculus. Riemannian manifolds are differentiable manifolds, hence the usual no-

tions of multivariable calculus on differentiable manifolds apply (derivatives, vector

and tensor fields, integration of differential forms)

(2) Metric geometry. Riemannian manifolds are metric spaces: there is a natural

distance function on any Riemannian manifold such that the corresponding metric

space topology coincides with the usual topology. Distances are realized by certain

distinguished curves called geodesics, and these can be studied via a second order

ODE (the geodesic equation).

(3) Measure theory. Any oriented Riemannian manifold has a canonical measure given

by the volume form. The presence of this measure allows to integrate functions

and to define Lp spaces on Riemannian manifolds.

(4) Differential equations. There is a canonical Laplace operator on any Riemannian

manifold, and all the classical linear partial differential equations (Laplace, heat,

wave) have natural counterparts

(5) Dynamical systems. The geodesic flow on a closed Riemannian manifold is a

Hamiltonian flow on the cotangent bundle, and the geometry of the manifold is

reflected in properties of the flow (such as complete integrability or ergodicity)
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(6) Conformal geometry. The notions of conformal and quasiconformal mappings

make sense on Riemannian manifolds, and there is enough underlying structure to

provide many tools for studying them

(7) Topology. There are several ways of describing topological properties of the un-

derlying manifold in terms of analysis. In particular, Hodge theory characterizes

the cohomology of the space via the Laplace operator acting on differential forms,

and Morse theory describes the topological type of the space via critical points of

a smooth function on it

(8) Curvature. The notion of curvature is fundamental in mathematics, and Riemann-

ian manifolds are perhaps the most natural setting for studying curvature. Related

concepts include the Riemann tensor, the Ricci tensor, and scalar curvature. There

has been recent interest in lower bounds for Ricci curvature and their applications

(9) Inverse problems. Many interesting inverse problems have natural formulations

on Riemannian manifolds, such as integral geometry problems where one tries to

determine a function from its integrals over geodesics, or spectral rigidity problems

where one tries to determine properties of the underlying space from knowledge of

eigenvalues of the Laplacian.

(10) Geometric analysis. There are many branches of mathematics that are called

geometric analysis. One particular topic is that of geometric evolution equations,

where geometric quantities evolve according to a certain PDE. One of the most

famous such equations is Ricci flow, where a Riemannian metric is deformed via its

Ricci tensor. This was recently used by Perelman to complete Hamilton’s program

for proving the Poincaré and geometrization conjectures.

2. Calculus in Euclidean spaces

Let U be any nonempty open subset of Rn (not necessarily bounded, and could be

equal to Rn). We fix standard Cartesian coordinates x = (x1, · · · , xn) and will use these

coordinates throughout this chapter. We may sometimes write xj instead of xj, and we

will also denote by vj or vj the j-th coordinate of a vector v ∈ Rn.

2.1. Functions and Taylor expansions. Let C(U) be the set of continuous functions

on U . For partial derivatives, we will write

∂jf =
∂f

∂xj
and ∂j1···jkf =

∂kf

∂xj1 · · · ∂xjk
.

We denote by Ck(U) the set of k times continuously differentiable real valued functions

on U . Thus

Ck(U) =
{
f : U → R : ∂j1···jlf ∈ C(U) whenever l ≤ k and j1, · · · , jl ∈ {1, · · · , n}

}
.

Recall also that if f ∈ Ck(U), then ∂j1···jkf = ∂jσ(1)···jσ(k)f for any permutation σ of

{1, · · · , k}.
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We also denote by C∞(U) the infinitely differentiable functions on U , that is,

C∞(U) =
⋂
k≥0

Ck(U).

Theorem 2.1 (Taylor expansion). Let f ∈ Ck(U), let x0 ∈ U , and assume thatB(x0, r) ⊂
U . If x ∈ B(x0, r), then

f(x) =
k∑
l=0

1

l!

[ ∑
j1,··· ,jl

∂j1···jlf(x0)(x− x0)j1 · · · (x− x0)jl

]
+Rk(x;x0),

where |Rk(x;x0)| ≤ η(|x− x0|)|x− x0|k for some function η with η(s)→ 0 as s→ 0.

Remark 2.2. The Taylor expansion of order 2 is given by

f(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
∇2f(x0)(x− x0) · · · (x− x0) +R2(x;x0),

where ∇f = (∂1f, · · · , ∂nf) is the gradient of f and ∇2f(x) =
(
∂jkf(x)

)n
j,k=1

is the

Hessian matrix of f .

Proof. Considering g(y) := f(x0 +y), we may assume that x0 = 0. Assume that B(0, r) ⊂
U , fix x ∈ B(0, r), and define

h : (−1− ε, 1 + ε)→ R, h(t) := g(tx),

where ε > 0 satisfies (1 + ε)|x| < r. Then h is a Ck function on (−1 − ε, 1 + ε), and

repeated use of the fundamental theorem of calculus gives

h(t) = h(t)− h(0) + h(0) = h(0) +

∫ t

0

h′(s)ds

= h(0) + h′(0)t+

∫ t

0

(h′(s)− h′(0))ds = h(0) + h′(0)t+

∫ t

0

∫ s

0

h′′(u)duds

= h(0) + h′(0)t+ h′′(0)
t2

2
+

∫ t

0

∫ s

0

(h′′(u)− h′′(0))duds

= · · ·

=
k∑
i=0

h(i)(0)
ti

i!
+

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

(
h(k)(tk)− h(k)(0)

)
dtk · · · dt1.(2.1)

Here we used that
∫ t

0

∫ t1
0
· · ·
∫ tk−1

0
dtk · · · dt1 = tk

k!
(exercise).

Now, computation shows

h′(t) = ∂jf(tx)xj, h′′(t) = ∂jlf(tx)xjxl, · · ·

and

h(k)(t) = ∂j1···jkf(tx)xj1 · · ·xjk .
Applying (2.1) with t = 1 gives the result in the theorem, where

Rk(x) =

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

[
∂j1···jkf(tkx)− ∂j1···jkf(0)

]
xj1 · · ·xjkdtk · · · dt1.
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The bound for Rk follows since ∂j1···jkf is uniformly continuous on compact sets. �

At this point it may be good to mention another convenient form of the Taylor expan-

sion, which we state but will not use. Let N = {0, 1, 2, · · · } be the set of natural numbers.

Then Nn consists of all n-tuples α = (α1, · · · , αn) where the αj are nonnegative integers.

Such an n-tuple is called a multi-index. We write |α| = α1 + · · ·+αn and xα = xα1
1 · · · xαnn .

For partial derivatives, the notation

∂α =
( ∂

∂x1

)α1

· · ·
( ∂

∂xn

)αn
will be used. We also use the notation α! = α1! · · ·αn!.

Theorem 2.3 (Taylor expansion, multi-index version). Let f ∈ Ck(U), let x0 ∈ U , and

assume that B(x0, r) ⊂ U . If x ∈ B(x0, r), then

f(x) =
∑
|α|≤k

∂αf(x0)

α!
(x− x0)α +Rk(x;x0),

where Rk satisfies similar bounds as before.

Proof. Exercise. �

2.2. Tensor fields. If f ∈ Ck(U), if x ∈ U and if v ∈ Rn is such that |v| is sufficiently

small, we write the Taylor expansion given in Theorem 2.1 in the form

f(x+ v) =
k∑
l=0

1

l!

[ n∑
j1,··· ,jl=1

∂j1···jlf(x)vj1

]
+Rk(x+ v;x).

The first few terms are

f(x+ v) = f(x) + ∂jf(x)vj +
1

2
∂jkf(x)vjvk + · · ·

Looking at the terms of various degree motivates the following definition.

Definition 2.4 (Tensor fields). An m-tensor field in U is a collection of functions u =(
uj1···jm

)n
j1,··· ,jm=1

, where each uj1···jm is in C∞(U). The tensor field u is called symmetric if

uj1···jm = ujσ(1)···jσ(m)
for any j1, · · · , jm and for any σ which is a permutation of {1, · · · ,m}.

Remark 2.5. This definition is specific to Rn, since we are deliberately not allowing any

other coordinate systems than the Cartesian one. Later on we will consider tensor fields on

manifolds, and their transformation rules under coordinate changes will be an important

feature (these will decide whether the tensor field is covariant, contravariant or mixed).

However, upon fixing a local coordinate system, all tensor fields will look essentially like

the ones defined above.

Example 2.6. (1) The 0-tensor fields in U are just the scalar functions u ∈ C∞(U)

(2) The 1-tensor fields in U are of the form u = (uj)
n
j=1, where uj ∈ C∞(U). Thus

1-tensor fields are exactly the vector fields in U ; the tensor (uj)
n
j=1 is identified

with (u1, · · · , un).
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(3) The 2-tensor fields in U are of the form u =
(
uj,k
)n
j,k=1

, where ujk ∈ C∞(U). Thus

2-tensor fields can be identified with smooth matrix functions in U . The 2-tensor

field is symmetric if the matrix is symmetric.

(4) If f ∈ C∞(U), then we have for anym ≥ 0 anm-tensor field u =
(
∂j1···jmf

)n
j1,··· ,jm=1

consisting of partial derivatives of f . This tensor field is symmetric since the mixed

partial derivatives can be taken in any order.

Again by looking at the terms in the Taylor expansion, one can also think that an

m-tensor u =
(
uj1···jm

)n
j1,··· ,jm=1

acts on a vector v ∈ Rn by the formula

v 7→ uj1···jm(x)vj1 · · · vjm .

The last expression can be interpreted as a multilinear map acting on the m-tuple of

vectors (v, · · · , v).

Definition 2.7 (Multi-linear map). If m ≥ 0, an m-linear map is any map

L : Rn × · · · × Rn → R

such that L is linear in each of its variables separately.

The following theorem is almost trivial, but for later purposes it will be good to know

that a tensor field can be thought of in two ways: either as a collection of coordinate

functions, or as a map on U that takes values in the set of multilinear maps.

Theorem 2.8 (Tensors as multilinear maps). If u =
(
uj1···jm

)n
j1,··· ,jm=1

is an m-tensor field

on U ⊂ Rn, then for any x ∈ U , there is an m-linear map u(x) defined via

u(x)(v1, · · · , vm) = uj1···jm(x)vj11 · · · vjmm , v1, · · · , vm ∈ Rn,

and it holds that uj1···jm(x) = u(x)(ej1 , · · · , ejm). Conversely, if T is a function that assigns

to each x ∈ U an m-linear map T (x), and if the function uj1···jm : x 7→ T (x)(ej1 , · · · , ejm)

are in C∞(U) for each j1, · · · , jm, then (uj1···jm) is an m-tensor field in U .

Proof. Exercise. �

To get a picture of what Theorem 2.8 really says, we consider the case of 2-tensors.

In this case, u = (ujk) can be identified with matrix-valued functions A = (ajk)
n
j,k=1 with

ajk(x) = ujk(x). For each x ∈ U , we may regard A(x) as a 2-linear map via

A(x)(v, w) = vA(x)wT =
n∑

j,k=1

ajk(x)vjwk.

It is clear that A(x) is linear in both v and w, since A(x)(av1+v2, w) = (av1+v2)A(x)wT =

aA(x)(v1, w) + A(x)(v2, w) and A(x)(v, bw1 + w2) = vA(x)(bw1 + w2)T = bA(x)(v, w1) +

A(x)(v, w2) hold for each a, b ∈ R.

2.3. Vector fields and differential forms. Let U ⊂ Rn be an open set. We wish to

consider vector fields on U and certain operations related to vector fields.
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Definition 2.9 (Vector fields). A Ck vector field in U is a map F = (F1, · · · , Fn) : U → Rn

such that all the component functions Fj are in Ck(U). The set of vector fields on U is

denoted by Ck(U,Rn).

Recall from Section 2.2 that vector fields are the same as 1-tensor fields. If u ∈ C∞(U),

the gradient of u gives rise to a vector field in U :

grad: C∞(U)→ C∞(U,Rn), grad(u) = (∂1u, · · · , ∂nu).

If F ∈ C∞(U,Rn), the divergence of F gives rise to a function in U :

div : C∞(U,Rn)→ C∞(U), div(F ) = ∂1F1 + · · ·+ ∂nFn.

The following basic identity suggests that in order to define the Laplace operator on a

space, it may be enough to have a reasonable definition of divergence and gradient.

Lemma 2.10. div ◦ grad = ∆.

Proof. div
(

grad(u)
)

= ∂1(∂1u) + · · ·+ ∂n(∂nu) = ∆u. �

We will consider further operations on vector fields in R2 and R3.

Curl in R2. Let U ⊂ R2 be open. If F ∈ C∞(U,R2), the curl of F is the function

curl(F ) := ∂1F2 − ∂2F1.

Thus curl : C∞(U,R2)→ C∞(U).

Curl in R3. Let U ⊂ R3 be open. If F ∈ C∞(U,R3), the curl of F is the vector field

curl(F ) := ∇× F = (∂2F3 − ∂3F2, ∂3F1 − ∂1F3, ∂1F2 − ∂2F1).

Lemma 2.11. In two dimensions, one has

curl ◦ grad = 0.

In three dimensions, one has

curl ◦ grad = 0, div ◦ curl = 0.

Proof. If U ⊂ R2 and u ∈ C∞(U), we have

curl
(

grad(u)
)

= ∂1(∂2u)− ∂2

(
∂1u
)

= 0.

If U ⊂ R3 and u ∈ C∞(U), we have

curl
(

grad(u)
)

=
(
∂2∂3u− ∂3∂2u, ∂3∂1u− ∂1∂3u, ∂1∂2u− ∂2∂1u

)
= 0.

Moreover, for F ∈ C∞(U,R3) we have

div
(

curl(F )
)

= ∂1(∂2F3 − ∂3F2) + ∂2(∂3F1 − ∂1F3) + ∂3(∂1F2 − ∂2F1) = 0.

�

The previous lemma can be described in terms of two sequences: if U ⊂ R2 consider

(2.2) C∞(U)
grad→ C∞(U,R2)

curl→ C∞(U)

and if U ⊂ R3 consider

(2.3) C∞(U)
grad→ C∞(U,R3)

curl→ C∞(U,R3)
div→ C∞(U).
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In both sequences, the composition of any two subsequent operators is zero. This suggests

that there may be further structure which underlies these situations and might extend

to higher dimensions. This is indeed the case, and the calculus of differential forms (or

exterior algebra) was developed to reveal this structure. We will next discuss this calculus

in a simple case.

Differential forms. The purpose will be to rewrite for instance (2.3) as a sequence

(2.4) Ω0(U)
d→ Ω1(U)

d→ Ω2(U)
d→ Ω3(U),

where Ωk(U) will be the set of differential k-forms on U ⊂ R3, and d will be a universal

operator that reduces to grad, curl, and div in the respective degrees.

Let U ⊂ Rn be open. Motivated by (2.2) and (2.3), we define

Ω0(U) := C∞(U)

and

Ω1(U) := C∞(U,Rn).

Thus Ω0(U) is the set of smooth functions in U , and any α ∈ Ω1(U) can be identified

with a vector field α = (αj)
n
j=1, where αj ∈ C∞(U). We write formally

α = (αj)
n
j=1 = αjdx

j.

Remark 2.12. For the purposes of this section it is enough to think of dxj as a formal

object. However, the proper way to think of dxj would be as a 1-form (the exterior

derivative of the function xj : U → R), i.e. as a map that assigns to each x ∈ U the linear

map dxj|x : TxU → R that satisfies dxj|x(ek) = δjk, where {e1, · · · , en} is the standard

basis of TxU ≈ Rn.

To define Ωk(U) for k ≥ 2, first define the set of ordered k-tuples

Ik := {(i1, · · · , ik) : 1 ≤ i1 < i2 < · · · < ik ≤ n}.

If I ∈ Ik, we consider the formal object

dxI = dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

Then Ωk(U) will be thought of as the set

Ωk(U) = {αIdxI : αI ∈ C∞(U)},

where the sum is over all I ∈ Ik. The number of elements in Ik is
(
n
k

)
= n!

k!(n−k)!
. We can

make the above formal definition rigorous.

Definition 2.13 (Differential form). If U ⊂ Rn, define for 0 ≤ k ≤ n

Ωk(U) := C∞
(
U,R(nk)

)
.

The elements of Ωk(U) are called differential k-forms on U , and any differential k-form

α ∈ Ωk(U) can be written as

α = (αI)I∈Ik = αIdx
I ,

where αI ∈ C∞(U) for each I.
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Remark 2.14. Note that since
(
n
k

)
=
(

n
n−k

)
, the set Ωn−1(U) can be identified with the

set of vector fields on U , and Ωn(U) with C∞(U). In fact one has

Ωn−1(U) =
{ n∑

j=1

αjdx
1 ∧ · · · ∧ ˆdxj ∧ · · · ∧ dxn;αj ∈ C∞(U)

}
Ωn(U) =

{
fdx1 ∧ · · · ∧ dxn; f ∈ C∞(U)

}
,

where ˆdxj means that dxj is omitted from the wedge product.

The above definition is correct, but to keep things simple we have avoided a detailed

discussion of the wedge product ∧. To define the d operator in (2.4) properly we need

to say a little bit more. The wedge product is an associative product on elements of the

form dxI , satisfying

dxj ∧ dxk = −dxk ∧ dxj,
and more generally if J = (j1, · · · , jk) is a k-tuple, with j1, · · · , jk ∈ {1, · · · , n} (not

necessarily ordered), we should have

dxj1 ∧ · · · ∧ dxjk = (−1)Sign(σ)dxjσ(1) ∧ · · · ∧ dxjσ(k) ,

where σ is any permutation of {1, · · · , k}. This implies two conditions:

• dxj1 ∧ · · · ∧ dxjk = 0 if (j1, · · · , jk) contains a repeated index

• dxj1 ∧ · · · ∧ dxjk can be expressed as ±dxI for a unique I ∈ Ik if (j1, · · · , jk)
contains no repeated index.

With this understanding we make the following definition.

Definition 2.15 (Exterior derivative). The exterior derivative is the map d : Ωk(U) →
Ωk+1(U) defined by

d(αIdx
I) := ∂jαIdx

j ∧ dxI .

Example 2.16. (1) If f ∈ Ω0(U) (so f ∈ C∞(U)), then df is the differential of f

written as a 1-form:

df = ∂jfdx
j.

(2) If α ∈ Ω1(U), say α = αkdx
k for some αk ∈ C∞(U), then

dα = ∂jαkdx
j ∧ dxk =

∑
1≤j<k≤n

(∂jαk − ∂kαj)dxj ∧ dxk.

(3) Any u ∈ Ωn(U) satisfies du = 0 since dxj1∧· · ·∧dxjn+1 = 0 whenever j1, · · · , jn+1 ∈
{1, · · · , n} and there will be a repeated index.

The second example above gives an n-dimensional analogue of the curl operator, as

also suggested by the following lemma:

Lemma 2.17 (The exterior derivatives in two and three dimensions). (1) Let U ⊂ R2.

If f ∈ Ω0(U), then

df = (grad(f))jdx
j.
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If α = F1dx
1 + F2dx

2 ∈ Ω1(U) and F = (F1, F2), then

dα =
(

curl(F )
)
dx1 ∧ dx2.

(2) Let U ⊂ R3. If f ∈ Ω0(U), then

df =
(

grad(f)
)
j
dxj.

If α = Fjdx
j ∈ Ω1(U) and F = (F1, F2, F3), then

dα =
(

curl(F )
)
j
dxĵ,

where

dx1̂ := dx2 ∧ dx3, dx2̂ := dx3 ∧ dx1, and dx3̂ := dx1 ∧ dx2.

Finally, if u = Fjdx
ĵ ∈ Ω2(U) and F = (F1, F2, F3), then

du =
(
(div(F ))

)
dx1 ∧ dx2 ∧ dx3.

Proof. Exercise. �

Let us now verify that d ◦ d is always zero.

Lemma 2.18. d ◦ d = 0 on Ωk(U) for any k with 0 ≤ k ≤ n.

Proof. If α = αIdx
I ∈ Ωk(U), then

dα =
n∑
k=1

∑
I∈Ik

∂kαIdx
k ∧ dxI

and

d(dα) =
n∑

j,k=1

∑
I∈Ik

∂jkαIdx
j ∧ dxk ∧ dxI .

By the properties of the wedge product, we get

d(dα) =
∑

1≤j<k≤n

∑
I∈Ik

(
∂jkαI − ∂kjαI

)
dxj ∧ dxk ∧ dxI ,

which is zero since the mixed partial derivatives are equal. �

If U ⊂ Rn is open, we therefore have a sequence

(2.5) Ω0(U)
d→ Ω1(U)

d→ · · · d→ Ωn−1(U)
d→ Ωn(U)

and the composition of any two subsequent operators is zero. This gives the desired

generalization of (2.2) and (2.3) to any dimension. In fact we have obtained much more:

as we will see during this course, differential forms turn out to be an object of central

importance in many kinds of of analysis on manifolds.

Differential forms as tensors. It will be useful to intepret differential forms as

tensor fields satisfying an extra condition.

Definition 2.19 (Alternating tensor field). An m-tensor field
(
uj1···jm

)n
j1,··· ,jm=1

in U ⊂ Rn

is called alternating if ujσ(1)···jσ(m)
= (−1)Sign(σ)uj1···jm for any j1, · · · , jm and for any σ

which is a permutation of {1, · · · ,m}.
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We understand that 0-tensor fields and 1-tensor fields are always alternating. A

2-tensor field u = (ujk)
n
j,k=1 is alternating if and only if ukj = −ujk for any j, k, i.e.

the matrix (ujk) is skew-symmetric at each point. An m-tensor field u = (uj1···jm) is

alternating if and only if uj1···jm changes sign when any two indices are interchanged

(since any permutation can be expressed as the product of transpositions). Note that for

an alternating tensor, uj1···jm = 0 whenever (j1, · · · , jm) contains a repeated index.

Theorem 2.20. If U ⊂ Rn is open and 0 ≤ k ≤ n, the set Ωk(U) can be identified with

the set of alternating k-tensor fields on U .

Proof. Consider the map

T : Ωk(U)→ {alternating k-tensors}, αdxI 7→
(
α̃j1···jk

)
,

where

α̃j1···jk :=

{
0, (j1, · · · , jk) contains a repeated index,

1√
k!

(−1)Sign(σ)αI , (j1, · · · , jk) contains no repeated index.

Here, σ is the permutation of {1, · · · , k} such that I = (jσ(1), · · · , jσ(k)) is the unique

element of Ik containing the same entries as (j1, · · · , jk). The constant 1√
k!

is a harmless

normalizing factor which will be useful later. Then α̃j1···jk is alternating by construction. It

is clear that T is injective, and surjectivity follows since any alternating tensor is uniquely

determined by the elements α̃I where I ∈ Ik. �

Cohomology. By Lemma (2.18), we observe that

u = dα for some α ∈ Ωk−1(U)⇒ du = 0.

This may be rephrased as follows:

Im
(
d|Ωk−1(U)

)
is a linear subspace of ker

(
d|Ωk(U)

)
.

We express this in one more way: if u ∈ Ωk(Ω), we say that u is closed if du = 0

and that u is exact if u = dα for some α ∈ Ωk−1(U). Thus, any exact differential form

is closed. The question of whether any closed form is exact depends on the topological

properties of U . To study this property we make the following definition.

Definition 2.21 (de Rham cohomology). The de Rham cohomology groups of U are

defined by

Hk
dR(U) = ker

(
d|Ωk(U)

)
/ Im

(
d|Ωk−1(U)

)
, 0 ≤ k ≤ n.

By this definition each Hk
dR(U) is in fact a (quotient) vector space, not just a group.

Recall that

Any closed k-form is exact if and only if Hk
dR(U) = {0}. This happens for all k ≥ 1

at least when U has very simple topology.
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Lemma 2.22 (Poincaré lemma). If U ⊂ Rn is open and star-shaped with respect to some

x0 ∈ U (meaning that for any x ∈ U the line segment between x0 and x lies in U), then

Hk
dR(U) =

{
R, k = 0,

{0}, 1 ≤ k ≤ n.

Proof. For simplicity we only do the proof for n = 2, see [8] for the general case (which is

somewhat more involved). Assume that U is star-shaped with respect to 0. We have

H0
dR(U) = ker

(
d|Ω0(U)

)
=
{
f ∈ C∞(U), grad(f) = 0

}
.

Since U is connected and star-shaped with respect to 0, ∇f = 0 on U implies that

f ≡ f(0) is constant. Thus H0
dR(U) is one-dimensional and isomorphic to R.

We next show that H1
dR(U) = {0}, that is, for any F ∈ C∞(U,R2), we have

curl(F ) = 0⇒ F = grad(f) for some f ∈ C∞(U).

Let F = (F1, F2) satisfy ∂1F2 − ∂2F1 = 0. Then f should be some kind of integral of F ,

in fact we may just take

f(x) :=

∫ 1

0

Fj(tx)xjdt, x ∈ U.

Since ∂1F2 = ∂2F1, we have

∂1f(x) =

∫ 1

0

[
∂1Fj(tx)txj + F1(tx)

]
dt

=

∫ 1

0

[
∂1F1(tx)tx1 + ∂2F1(tx)tx2 + F1(tx)

]
dt

=

∫ 1

0

d

dt

[
tF1(tx)

]
dt = F1(x).

Similarly, ∂2f(x) = F2(x), showing that F = grad(f).

Finally, we show that H2
dR(U) = {0}, which means that

f ∈ C∞(U)⇒ f = curl(F ) for some F ∈ C∞(U,R2).

As in the previous case, Fj should be integrals of f . We may define

F1(x) := −
∫ 1

0

f(tx)tx2dt and F2(x) :=

∫ 1

0

f(tx)tx1dx.

Then

∂1F2 − ∂2F1 =

∫ 1

0

[
∂1f(tx)t2x1 + ∂2f(tx)t2x2 + 2tf(tx)

]
dt

=

∫ 1

0

d

dt

[
t2f(tx)

]
dt = f(x).

�

We conclude by mentioning some facts about the de Rham cohomology groups (for

more details see [8]):
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• The de Rham cohomology groups are topological invariants : if U and V are home-

omorphic open sets in Euclidean space, then Hk
dR(U) and Hk

dR(V ) are isomorphic

as vector spaces for each k. This gives a potential way of showing that two sets U

and V are not homeomorphic; it would be enough to check that some cohomology

groups are not isomorphic

• Note however that it is possible for non-homeomorphic spaces to have the same

cohomology groups

• In many cases (e.g. if U ⊂ Rn is a bounded open set with nice boundary), the

vector spaces Hk
dR(U) are finite dimensional. The dimension of Hk

dR(U) is a known

topological invariant, namely the k-th Betti number of U .

• Very loosely speaking, the cohomology groups may give some information about

“holes” in a set. For instance, if K1, · · · , KN are disjoint closed balls in Rn, then

Hk
dR

(
Rn\ ∪Nj Kj

)
=


R, if k = 0,

RN , if k = n− 1,

{0}, otherwise

Later in this course we will discuss Hodge theory, which studies the cohomology groups

Hk
dR(M) where M is a compact manifold via the Laplace operator acting on differential

forms on M .

2.4. Riemannian metrics. An open set U ⊂ Rn is often thought to be “homogeneous”

(the set looks the same near every point) and “flat” (if U is considered as a subset of

Rn+1 lying in the hyperplane {xn+1 = 0}, then U has the geometry induced by the flat

hypersurface {xn+1 = 0}. In this section, we will introduce extra structure on U which

makes it“inhomogeneous”(the properties of the set vary from point to point) and“curved”

(U has some geometry that is different from the geometry induced by a flat hypersurface

{xn+1 = 0}).
Motivation. An intuitive way of introducing this extra structure is to think of U

as a medium where sound waves propagate. The properties of the medium are described

by a function c : U → R+, which is thought of as the sound speed of the medium. If

U is homogeneous, the sound speed is constant (c(x) = 1 for each x ∈ U), but if U is

inhomogeneous, then the sound speed varies from point to point.

Consider now a C1 curve γ : [0, 1] → U . The tangent vector γ̇(t) of this curve is

thought to be a vector at the point γ(t). If the sound speed is constant (c ≡ 1), the

length of the tangent vector is just the Euclidean length:∣∣∣γ̇(t)
∣∣∣
e

:=
[ n∑
j=1

γ̇j(t)2
] 1

2
.

In case of a general sound speed c : U → R+, one can think that at points where c is large

the curve moves very quickly and consequently has short length. Thus we may define the
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length of γ̇(t) with respect to the sound speed c by∣∣∣γ̇(t)
∣∣∣
c

:=
1

c(γ(t))

[ n∑
j=1

γ̇j(t)2
] 1

2
.

It is useful to generalize the above setup in two directions. First, in addition to

measuring lengths of tangent vectors we would also like to measure angles between tangent

vectors (in particular we want to know when two tangent vectors are orthogonal). Second,

if the sound speed is a scalar function on U , then the length of a tangent vector is

independent of its direction (the medium is isotropic). We wish to allow the medium to

be anisotropic, which will mean that the sound speed may depend on direction and should

be a matrix valued function.

In order to measures lengths and angles of tangent vectors, it is enough to introduce

an inner product on the space of tangent vectors at each point. The tangent space is

defined as follows:

Definition 2.23 (Tangent space). If U ⊂ Rn is open and x ∈ U , the tangent space at x

is defined as

TxU := {x} × Rn.

The tangent bundle of U is the set

TU :=
⋃
x∈U

TxU.

Of course, each TxU can be identified with Rn (and we will often do so), and a vector

v ∈ TxU is written in terms of its coordinates as v = (v1, · · · , vn). Now if 〈·, ·〉 is any

inner product on Rn, there is some positive definite symmetric matrix A = (ajk)
n
j,k=1 such

that

〈v, w〉 = Av · w, v, w ∈ Rn.

(The proof is left as an exercise, hint: take ajk = 〈ej, ek〉) The next definition introduces

an inner product on the space of tangent vectors at each point:

Definition 2.24 (Riemannian metric). A Riemannian metric on U is a matrix-valued

function g = (gjk)
n
j,k=1 such that each gjk is in C∞(U), and (gjk(x)) is a positive definite

symmetric matrix for each x ∈ U . The corresponding inner product on TxU is defined by

〈v, w〉g := gjk(x)vjwk, v, w ∈ TxU.

The length of a tangent vector is

|v|g := 〈v, v〉1/2g = (gjk(x)vjvk)1/2, v ∈ TxU.

The angle between two tangent vectors v, w ∈ TxU is the number θg(v, w) ∈ [0, π] defined

by

cos θg(v, w) =
〈v, w〉g
|v|g|w|g

.

We will often drop the subscript and write 〈·, ·〉 or | · | if the metric g is fixed. To

connect the above definition to the discussion about sound speeds, a scalar sound speed
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c(x) corresponds to the Riemannian metric

gjk(x) =
1

c(x)2
δjk.

Finally, we introduce some notation that will be very useful.

Notation. If g = (gjk) is a Riemannian metric on U , we write

(gjk)nj,k=1 = g−1

for the inverse matrix of (gjk)
n
j,k=1, and

|g| = det(g)

for the determinant of the matrix (gjk)
n
j,k=1. In particular, we note that gjkg

kl = δlj for

any j, l = 1, · · · , n.

2.5. Geodesics. Lengths of curves. Consider an open set U that is equipped with a

Riemannian metric g. As we saw above, one can measure lengths of tangent vectors with

respect to g, and this makes it possible to measure lengths of curves as well.

Definition 2.25 (Regular curve and its length). A smooth map γ : [a, b] → U whose

tangent vector γ̇(t) is always nonzero is called a regular curve. The length of γ is defined

by

Lg(γ) :=

∫ b

a

|γ̇(t)|gdt.

The length of a piecewise regular curve is defined as the sum of lengths of the regular

parts.

The Riemannian distance between two points p, q ∈ U is defined by

dg(p, q) := inf
{
Lg(γ); γ : [a, b]→ U is piecewise regular with γ(a) = p and γ(b) = q

}
.

Since we only use the given Riemannian metric g on U , we will often omit the sub/sup-

script g in the corresponding quantity.

Fact. L(γ) is independent of the way the curve γ is parametrized, and that we may

always parametrize γ by arc-length so that |γ̇(t)| = 1 for all t. (Proof is left as an exercise)

The previous exercise shows that we can always reparametrize a piecewise regular

curve γ by arc length, so that one will have |γ̇(t)| = 1 for all t. A curve satisfying

|γ̇(t)| ≡ 1 is called a unit speed curve (similarly a curve satisfying |γ̇(t)| ≡constant is

called a constant speed curve).

Geodesic equation. We now wish to show that any length minimizing curve satisfies

a certain ordinary differential equation.

Theorem 2.26 (Length minimizing curves are geodesics). Suppose U ⊂ Rn is open, let

g be a Riemannian metric on U , and let γ : [a, b] → U be a piecewise regular unit speed

curve. Assume that γ minimizes the distance between its endpoints, in the sense that

L(γ) ≤ L(η)
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for any piecewise regular curve η from γ(a) to γ(b). Then γ is a regular curve, and it

satisfies the geodesic equation

(2.6)
..
γ
l
(t) + Γljk

(
γ(t)

)
γ̇j(t)γ̇k(t) = 0, 1 ≤ l ≤ n,

where Γljk are the Christoffel symbols of the metric g:

Γljk :=
1

2
glm
(
∂jgkm + ∂kgjm − ∂mgjk

)
, 1 ≤ j, k, l ≤ n.

Example 2.27. If g is the Euclidean metric on U , so that gjk(x) = δjk, then all the

Christoffel symbols Γljk are zero. The geodesic equation becomes just

..
γ
l
(t) = 0, 1 ≤ l ≤ n.

Solving this equation shows that

γ(t) = tv + w

for some vectors v, w ∈ Rn. Thus Theorem 2.26 recovers the classical fact that any length

minimizing curve in Euclidean space is a line segment.

Any smooth curve that satisfies the geodesic equation (2.6) is called a geodesic, and

the conclusion of Theorem 2.26 can be rephrased so that any length minimizing curve is

a geodesic. The fact that length minimizing curves satisfy the geodesic equation gives

powerful tools for studying these curves. For instance, one can show that

• any geodesic has constant speed and is therefore regular

• given any x ∈ U and v ∈ TxU , there is a unique geodesic starting at point x in

direction v

• any geodesic minimizes length at least locally (but not always globally)

• a set U with Riemannian metric g is geodesically complete, meaning that every

geodesic is defined for all t ∈ R, if and only if the metric space (U, dg) is complete

(this is the Hopf-Rinow theorem).

Variations of curves. Let γ : [a, b] → U be a piecewise regular length minimizing

curve. We will prove Theorem 2.26 by considering families of curves (γs) where s ∈ (−ε, ε)
and γ0 = γ, and all curves γs start at γ(a) and end at γ(b). Such a family is called a

variation (or a fixed-endpoint variation) of γ. By the length minimizing property,

L(γ0) ≤ L(γs) for s ∈ (−ε, ε),

so if the dependence on s is at least C1 we obtain that d
ds
L(γs)|s=0 = 0. This fact, applied

to many different families γs, will imply that γ is smooth and solves the geodesic equation.

If (γs) is a family of curves with γ0 = γ, we think of V (t) := ∂
∂s
γs(t)|s=0 as the

“infinitesimal variation” of the curve γ that leads to the family (γs). The vector V (t)

should be thought of as an element of Tγ(t)U . The next result shows that one can reverse

this process, and obtain a variation of γ from any given infinitesimal variation V .

In this result and below, we assume that the piecewise regular curve γ is fixed and

that there is a subdivision of [a, b],

a = t0 < t1 < · · · < tN < tN+1 = b,
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such that the curves γ|(tj ,tj+1) is regular for each j with 0 ≤ j ≤ N .

Lemma 2.28 (Variations of curves). If V : [a, b] → Rn is a continuous map such that

V |(tj ,tj+1) is C∞ for each j and V (a) = V (b) = 0, then there exists ε > 0 and a continuous

map

Γ: (−ε, ε)× [a, b]→ U

such that the curves γs : [a, b]→ U , γs(t) := Γ(s, t) satisfying the following

• each γs is a piecewise regular curve with endpoints γ(a) and γ(b), and γs|(tj ,tj+1)

is regular for each j,

• γ0 = γ,

• s 7→ γs(t) is C∞ and d
ds
γs(t)|s=0 = V (t) for each t ∈ [a, b].

Proof. Define

Γ: (−ε, ε)× [a, b]→ U, Γ(s, t) := γ(t) + sV (t),

where ε is so small that Γ takes values in U . The properties follow immediately from the

definition. �

We can now compute the derivative d
ds
L(γs)|s=0 that was mentioned above. In classical

terminology, this is called the first variation of the length functional.

Lemma 2.29 (First variation formula). Let γ be a piecewise regular unit speed curve,

and let (γs) be a variation of γ associated with V as in Lemma 2.28. Then

d

ds
L(γs)|s=0 = −

N∑
j=0

∫ tj+1

tj

〈Dtγ̇(t), V (t)〉dt−
N∑
j=1

〈∆γ̇(tj), V (tj)〉,

where Dtγ̇(t) is the element of Tγ(t)U defined by(
Dtγ̇(t)

)l
:=

..
γ
l
(t) + Γljk

(
γ(t)

)
γ̇j(t)γ̇k(t), 1 ≤ l ≤ n,

and ∆γ̇(tj) := γ̇(tj+)− γ̇(tj−) is the jump of γ̇(t) at tj.

Remark 2.30. We will later give an invariant meaning to Dtγ̇(t) and interpret it as the

covariant derivative of γ̇(t) along the curve γ. However, at this point it is enough to

think of Dtγ̇(t) just as some expression that comes out when we compute the derivative
d
ds
L(γs)|s=0.

Proof. Define

I(s) := L(γs) =
N∑
j=0

∫ tj+1

tj

[
gpq
(
γs(t)

)
γ̇ps (t)γ̇

q
s(t)
] 1

2
dt.

To prepare for computing the derivative I ′(0), define two vector fields

T (t) := ∂tγs(t)|s=0 = γ̇(t), V (t) := ∂sγs(t)|s=0.

Since |γ̇0(t)| = |T (t)| ≡ 1 and (gjk) is symmetric, we have

I ′(0) =
1

2

N∑
j=0

∫ tj+1

tj

(
∂rgpq(γ(t))V r(t)T p(t)T q(t) + 2gpq(γ(t))V̇ p(t)T q(t)

)
dt.
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Recall the following integration by parts formula:∫ b

a

f(t)h′(t)e(t)dt =
(
f(t)h(t)e(t)

)∣∣∣t=b
t=a
−
∫ b

a

(
f ′(t)h(t)e(t) + f(t)h(t)e′(t)

)
dt.

Applying it to the last term above with f(t) = gpq ◦ γ(t), h(t) = V p(t) and e(t) = T q(t),

we obtain that

I ′(0) =
N∑
j=0

∫ tj+1

tj

[1

2
∂rgpq(γ)T pT q − ∂mgrq(γ)TmT q − grq(γ)Ṫ q

]
V rdt

+
N∑
j=0

[
〈V (tj+1), T (tj+1+)〉 − 〈V (tj), T (tj−)〉

]
.

Using that V (t0) = V (tN+1) = 0 and that V is continuous, the boundary term becomes

−
∑N

j=1〈∆γ̇(tj), V (tj)〉 as required. For the integrals, we use that

∂mgrq(γ)TmT q =
1

2

(
∂mgrq(γ) + ∂qgrm(γ)

)
TmT q,

which gives

−〈Dtγ̇(t), V (t)〉 = −grq(γ)
(
Ṫ q + ΓqjkT

jT k
)
V r

=
(
− grq(γ)Ṫ q +

1

2

[
∂jgkr + ∂kgjr − ∂rgjk

]
T jT k

)
V r

=
(
− grq(γ)Ṫ q +

1

2

[(
∂mgrq(γ) + ∂qgrm(γ)

)
TmT q − ∂rgpqT pT q

])
V r

=
(
− grq(γ)Ṫ q − 1

2
∂rgpqT

pT q + ∂mgrqT
mT q

)
V r.

This completes the proof. �

Proof of Theorem 2.26. Let γ : [a, b] → U be a piecewise regular unit speed curve that

minimizes the length between its endpoints. If V is any vector field as in Lemma 2.28 and

(γs) is the corresponding variation of γ, we must have

L(γ0) ≤ L(γs)

for s ∈ (−ε, ε). Therefore, d
ds
L(γs)|s=0 = 0. The first variation formula, Lemma 2.29,

then shows that

(2.7)
N∑
j=0

∫ tj+1

tj

〈Dtγ̇(t), V (t)〉dt+
N∑
j=1

〈∆γ̇(tj), V (tj)〉 = 0

for any such V .

We first show that γ solves the geodesic equation on each interval (tj, tj+1). Fix

j ∈ {0, · · · , N} and choose V such that

V (t) := ϕ(t)Dtγ̇(t),
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where ϕ is any function in C∞0
(
(tj, tj+1)

)
. This V is an an admissible choice in Lemma

2.29 and (2.7) implies that ∫ tj+1

tj

ϕ(t)|Dtγ̇(t)|2dt = 0

for any ϕ ∈ C∞0
(
(tj, tj+1)

)
. Thus we must have Dtγ̇(t)|(tj ,tj+1) = 0 for each j.

We next show that γ has no corners and is a C1 curve in [a, b]. Going back to (2.7),

we have
N∑
j=1

〈∆γ̇(tj), V (tj)〉 = 0

for any V with V (a) = V (b) = 0. Now if ∆γ̇(tj) 6= 0 for some j, then we can choose V

with V (tj) = ∆γ̇(tj) and V (tk) = 0 for k 6= j. This implies that

|∆γ̇(tj)|2 = 0,

which contradicts the assumption ∆γ̇(tj) 6= 0. This shows that we must have ∆γ̇(tj) = 0

for each j, and it follows that γ ∈ C1
(
[a, b]

)
.

Finally, since γ|(tj ,tj+1) solves the geodesic equation for each j and since γ is C1 near

each tj, the existence and uniqueness of ODE implies that γ|(tj ,tj+1) is the unique smooth

continuation of the solution γ|(tj−1,tj). Thus in fact γ solves the geodesic equation and is

smooth near each tj, and γ is a regular curve solving the geodesic equation on [a, b]. �

The previous proof shows actually more than stated in the theorem. We say that a

piecewise regular curve γ is a critical point of the length functional L if d
ds
L(γs)|s=0 = 0

for any fixed-endpoint variation of γ as in Lemma 2.28.

Theorem 2.31. The critical points of L are exactly the geodesic curves.

Proof. The proof of Theorem 2.26 shows that any critical point of L is a geodesic curve.

To see the converse, let γ be a geodesic curve so that γ is C∞ and Dtγ̇(t) = 0 in [a, b].

By the first variation formula, Lemma 2.29, any such curve satisfies d
ds
L(γs)

∣∣∣
s=0

= 0, so

any geodesic must be a critical point of L. �

Remark 2.32. Let us give a more geometric interpretation of the proof of Theorem 2.26.

Suppose that γ is a piecewise regular curve which is smooth in (tj, tj+1) for 0 ≤ j ≤ N .

The preceding proof shows that

d

ds
L(γs)|s=0 = −

N∑
j=0

∫ tj+1

tj

〈Dtγ̇(t), V (t)〉dt−
N∑
j=1

〈∆γ̇(tj), V (tj)〉,

where (γs) is a variation of γ related to V as in Lemma 2.29. Choosing

V (t) := ϕ(t)Dtγ̇(t),

where ϕ is a nonnegative function supported in (tj, tj+1) shows that

d

ds
L(γs)|s=0 = −

∫ tj+1

tj

ϕ(t)|Dtγ̇(t)|2dt ≤ 0.
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Thus if Dtγ̇(t) 6= 0 somewhere in (tj, tj+1), the derivative can be made strictly negative.

This means we can always make the curve γ shorter by deforming it in the direction of

Dtγ̇(t).

Assume now that γ solves the geodesic equation (2.6) in each segment (tj, tj+1) where

it is smooth. If one has ∆γ̇(tj) 6= 0 and if we choose V so that V (tj) = ∆γ̇(tj) and

V (tk = 0) for k 6= j, then
d

ds
L(γs)|s=0 = −|∆γ̇(t)| < 0.

This shows that a “broken geodesic” with corner at tj can always be made shorter by

deforming it in the direction of ∆γ̇(tj). This argument of “rounding the corner” was the

key point in showing that length minimizing curves are C∞.

2.6. Integration and inner products. This section will largely consist of definitions.

We explain a natural way of integrating functions with respect to a Riemannian metric g,

given by the volume form dVg. This leads to an L2 inner product first for scalar functions

and then for vector fields and tensor fields. Finally we discuss the codifferential operator δ,

which is the adjoint of the exterior derivative of d with respect to the L2 inner product on

differential forms. On 1-forms δ can be interpreted as a Riemannian divergence operator.

The operator δ will be used in the next section to define the Laplace operator.

Integration. Let U be an open set, and let g be a Riemannian metric on U . If f is a

function in (say) Cc(U), we wish to consider the integral of f over U with respect to the

metric g. The idea is that the metric g gives a way of measuring infinitesimal volumes, in

the same way that it allows to measure lengths and angles of tangent vectors.

Motivation. Since in this chapter we are restricting ourselves to using Cartesian

coordinates, the integral of f over U should be approximately given by

(2.8)

∫
U

f(x)dVolg ≈
N∑
j=1

f(xj) Volg(Qj),

where {Q1, · · · , QN} are very small congruent cubes whose sides are parallel to the Carte-

sian coordinate axes such that the cubes approximately tile U , and xj is the center of Qj.

Now if Qj has sidelength h, one should have

Volg(Qj) = Volg
(
he1|xj , · · · , hen|xj

)
,

where Volg(v1, · · · , vn) is the Riemannian volume of the parallelepiped generated by the

vj (this is the set {
∑n

j=1 tjvj : tj ∈ [0, 1]}).
The volume should have the following properties if the vj have very small (infinitesi-

mal) length:

(a): If v1, · · · , vn are orthogonal with respect to g, one should have

Volg(v1, · · · , vn) ≈ |v1|g · · · |vn|g
(b): If A is a matrix with Avj = λjvj, j = 1, · · · , n, one should have

Volg(Av1, · · · , Avn) ≈ λ1 · · ·λn Volg(v1, · · · , vn)
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(c): More generally if A is any n× n matrix, then one should have

Volg(Av1, · · · , Avn) ≈ det(A) Volg(v1, · · · , vn)

Fix now a point x ∈ U , writeG = (gjk(x))nj,k=1, and note that the set {G−1/2e1, · · · , G−1/2en}
is an g-orthonormal basis of TxU :

〈G−1/2ej, G
−1/2ek〉g = gpq(x)

(
G−1/2ej

)p(
G−1/2ek

)q
= G(G−1/2ej) · (G−1/2ek)

= G−1/2GG−1/2ej · ek = ej · ek = δjk.

Thus the volume of an infinitesimal parallelepiped should be

Volg
(
he1|x, · · · , hen|x

)
≈ hn Volg

(
G1/2(G−1/2e1)|x, · · · , G1/2(G−1/2en)|x

)
≈ hn|g(x)|1/2,

where |g(x)| = det(gjk(x)). Going back to (2.8), this would give∫
U

f(x)dVolg(x) ≈
N∑
j=1

f(xj)|g(xj)|1/2hn
h→0→

∫
U

f(x)|g(x)|1/2dx.

The above discussion motivates the following definitions:

Definition 2.33 (Riemannian volume and integration). Let U ⊂ Rn be open, and let g

be a Riemannian metric on U . If f ∈ Cc(U), we define the integral of f on U by∫
U

f(x)dVolg(x) :=

∫
U

f(x)|g(x)|1/2dx.

The Riemannian volume of a measurable set E ⊂ U is

Volg(E) :=

∫
E

|g(x)|1/2dx.

If 1 ≤ p <∞, the Lp norm of f is

‖f‖Lp(U,dVg) :=
(∫

U

|f |pdVg
)1/p

,

where for notational simplicity, we write Vg for Volg. The space Lp(U, dVg) is the com-

pletion of Cc(U) in the Lp norm. It is easy to show that Lp(U, dVg) is a Banach space

whenever 1 ≤ p <∞.

Remark 2.34. The quantity dVg is usually called the volume form of the Riemannian

manifold (U, g). To justify this terminology, one should interpret dVg as the differential

n-form (element of Ωn(U)) given by

dVg = |g|1/2dx1 ∧ · · · ∧ dxn.

One can equivalently think of dVg as a measure, i.e. (using the Riesz representation

theorem for measures) as a linear operator acting on functions in Cc(U) by

f 7→
∫
U

fdVg.
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In the present setting where U ⊂ Rn, this measure is absolutely continuous with respect

to Lebesgue measure (dVg(x) = |g(x)|1/2dx).

Inner products on L2. The most important case of Lp spaces during this course is

p = 2. In fact, L2(U, dVg) is a Hilbert space with the following inner product.

Definition 2.35. If u, v ∈ L2(U, dVg), we define

(u, v)L2 :=

∫
U

uvdVg.

We now wish to define an L2 inner product for vector fields and tensor fields on U as

well. The case of vector fields comes naturally: if F,G ∈ Cc(U,Rn) are two vector fields,

so that F (x), G(x) ∈ TxU for each x ∈ U , the g-inner product of F (x) and G(x) is

(2.9) 〈F (x), G(x)〉g = gjk(x)F j(x)Gk(x).

The L2-inner product of F and G is then defined by

(F,G)L2 :=

∫
U

〈F (x), G(x)〉gdVg(x)

=

∫
U

gjk(x)F j(x)Gk(x)|g(x)|1/2dx.

Next consider the case of 1-forms. Let α and β be two 1-forms in U whose coordinate

functions are in Cc(U), meaning that α = αjdx
j and β = βkdx

k, where αk, βk ∈ Cc(U).

If α(x) denotes the expression αj(x)dxj, in analogy with (2.9) it seems natural to define

the g-inner product

(α, β)L2 :=

∫
U

〈α(x), β(x)〉gdVg(x)

=

∫
U

gjk(x)αj(x)βk(x)|g(x)|1/2dx.(2.10)

Motivated by (2.10), one can define the L2 inner product of two tensor fields with

components in Cc(U). In particular, this gives an L2 inner product on differential forms

since k-forms can be identified with certain (alternating) k-tensor fields by Theorem 2.20.

Definition 2.36. Let u =
(
uj1···jm

)n
j1,··· ,jm=1

and v =
(
vk1···km

)n
k1,··· ,km=1

be two tensor

fields such that each uj1···jm and vk1···km is in Cc(U). The L2 inner product of u and v is

(u, v)L2 :=

∫
U

gj1k1(x) · · · gjmkm(x)uj1···jmvk1···km |g(x)|1/2dx.

If α and β are differential k-forms whose component functions are in Cc(U), we denote by

(α, β)L2 := (α̃, β̃)L2

the inner product of the corresponding tensor fields as in Theorem 2.20.
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Recall that if α = αIdx
I is a k-form, Theorem 2.20 identifies α with the k-tensor α̃

defined by

α̃j1···jk :=

{
0, (j1, · · · , jk) contains a repeated index,

1√
k!
εj1···jkαR(j1,··· ,jk), (j1, · · · , jk) contains no repeated index,

where R(j1, · · · , jk) = (jσ(1), · · · , jσ(k)) and σ is the unique permutation of {1, · · · , k}
such that j1 < j2 < · · · < jk (thus R puts the indices in inreasing order) and εj1,··· ,jk =

(−1)Sign(σ).

Notice that if α and β are 1-forms, this inner product is equal to (2.10).

Example 2.37. Let U ⊂ Rn be open and let g be the Euclidean metric, so gjk = δjk.

Then |g(x)| = 1 and gjk = δjk. If α = αjdx
j and β = βkdx

k are two 1-forms with

αj, βk ∈ Cc(U), and if ~α = (α1, · · · , αn) and ~β = (β1, · · · , βn) are the corresponding

vector fields, then

(α, β)L2 =

∫
U

n∑
j=1

αjβjdx =

∫
U

~α · ~βdx.

Moreover, if u =
(
uj1···jm

)n
j1,··· ,jm=1

and v =
(
vk1···km

)n
k1,··· ,km=1

are two vector fields with

components in Cc(U), then

(u, v)L2 =

∫
U

n∑
j1,··· ,jm=1

uj1···jmvj1···jmdx.

Codifferential. Our next purpose is to consider the exterior derivative d : Ωk(U)→
Ωk+1(U) and to compute its formal adjoint operator in the L2 inner product on forms.

Below, we write Ωk
c (U) for the set of compactly supported k-forms in U (thus α = αIdx

I

is in Ωk
c (U) if αI ∈ C∞c (U) for each I).

Theorem 2.38 (Codifferential). Let U ⊂ Rn be open and let g be a Riemannian metric

on U . For each k with 0 ≤ k ≤ n, there is a unique linear operator

δ : Ωk(U)→ Ωk−1(U)

having the property

(2.11) (dα, β)L2 = (α, δβ)L2 , α ∈ Ωk−1
c (U), β ∈ Ωk(U).

The operator δ satisfies δ ◦ δ = 0 and δ|Ω0(U) = 0. It is a linear first order differential

operator acting on component functions, and on 1-forms it is given by

(2.12) δβ := −|g|−1/2∂j
(
|g|1/2gjkβk

)
, β = βkdx

k ∈ Ω1(U).

The proof is based on the integration by parts formula

(2.13)

∫
U

u(∂jv)dx = −
∫
U

(∂ju)vdx, u ∈ C1(U), v ∈ C1
c (U).
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Proof. We begin with the case k = 1. Let β = βdx ∈ Ωk(U). To compute δβ satisfying

(2.11), we take α ∈ Ω0
c(U) = C∞c (U) and compute

〈dα, β〉 =

∫
U

〈dα, β〉dVg =

∫
U

gjk∂jαβk|g|1/2dx

= −
∫
U

α|g|−1/2∂j
(
|g|1/2gjkβk

)
dVg.

Thus (2.11) will be satisfied for k = 1 if we define δ : Ω1(U)→ Ω0(U) by (2.12).

Let us now show that for any k, there is an operator δ : Ωk(U)→ Ωk−1(U) such that

(2.11) holds. Let α ∈ Ωk−1
c (U) and β ∈ Ωk(U). Using the definitions and integration by

parts, we obtain

〈dα, β〉 =

∫
U

〈∂iαIdxi ∧ dxI , βJdxJ〉gdVg

=

∫
U

(∂iαI)βJ〈dxi ∧ dxI , dxJ〉g|g|1/2dx

= −
∫
U

αI |g|−1/2∂i

[
|g|1/2〈dxi ∧ dxI , dxJ〉gβJ

]
dVg.

Write γI := −|g|− 1
2∂i

[
|g|1/2〈dxi ∧ dxI , dxJ〉gβJ

]
. It follows that

〈dα, β〉L2 =

∫
U

αIγ
IdVg.

We wish to find γ = γLdx
L ∈ Ωk−1(U) such that αIγ

I = 〈α, γ〉g. This can be done by

lowering indices. First let α̃ = (α̃i1···ik−1
) and γ̃ = (γ̃i1···ik−1) be the alternating tensor

fields corresponding to αI and γI , so for instance γ̃i1···ik−1 := 1√
(k−1)!

εi1···ik−1γR(i1,··· ,ik−1).

Let

γ̃l1···lk−1
:= gl1i1 · · · glk−1ik−1

γ̃i1···ik−1

and let γ = γLdx
L be the (k − 1)-form corresponding to γ̃. Then

〈α, γ〉g = 〈α̃, γ̃〉g = gi1l1 · · · gik−1lk−1α̃i1···ik−1

[
gl1p1 · · · glk−1pk−1

γ̃p1···pk−1
]

= α̃i1···ik−1
γ̃i1···ik−1 =

1

(k − 1)!
αR(i1···ik−1)γ

R(i1···ik−1) = αIγ
I .

Combining the above arguments, we have proved that

(dα, β)L2 = (α, γ)L2

for all α ∈ Ωk−1
c (U). Here γ ∈ Ωk−1(U) is determined uniquely by this identity, thus

setting δβ := γ satisfies (2.12). Insepcting the above argument shows that δβ = γLdx
L,

where for L = (l1, · · · , lk−1),

γL = −gl1i1 · · · glk−1ik−1
|g|−

1
2∂i
[
|g|1/2〈dxi ∧ dxi1 ∧ · · · ∧ dxik−1 , dxJ〉gβJ

]
.

Thus δ is a first order operator acting on the component functions βJ .

It is clear that δ|Ω0(U) = 0, and the condition δ ◦ δ = 0 follows from (2.11) and the

fact that d ◦ d = 0. �
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If U ⊂ Rn is an open set, in Section 2.3, we studied the sequence

(2.14) Ω0(U)
d→ Ω1(U)

d→ · · · d→ Ωn−1(U)
d→ Ωn(U),

where d ◦ d = 0. This sequence does not depend on any Riemannian metric on U .

However, if we introduce a Riemannian metric g on U , then Theorem 2.38 shows that

there is another sequence

(2.15) Ω0(U)
δ← Ω1(U)

δ← · · · δ← Ωn−1(U)
δ← Ωn(U),

where δ ◦ δ = 0. As we will explain later, the sequences (2.14) and (2.15) and the

corresponding cohomology groups turn out to be dual to each other: this is related to

Poincaré duality.

2.7. Laplace-Beltrami operator. In this section we will see that on any open set

equipped with a Riemannian metric, there is a canonical second order elliptic opera-

tor, called the Laplace-Beltrami operator, which is an analogue of the usual Laplacian in

Rn.

Motivation. Let first U be a bounded domain in Rn with smooth boundary, and

consider the Laplace operator

(2.16) ∆ =
n∑
j=1

∂2

∂x2
j

.

Solutions of the equation ∆u = 0 are called harmonic functions, and by standard results

for elliptic PDE, for any f ∈ H1(U), there is a unique solution u ∈ H1(U) of the Dirichlet

problem

(2.17)

{
−∆u = 0 in U,

u = f on ∂U.

The last line means that u− f ∈ H1
0 (U).

One way to produce the solution of (2.17) is based on variational methods and Dirich-

let’s principle (see [5]). We define the Dirichlet energy

E(v) :=
1

2

∫
U

|∇v|2dx, v ∈ H1(U).

If we define the admissible class

Af :=
{
v ∈ H1(U) : v = f on ∂U

}
,

then the solution of (2.17) is the unique function u ∈ Af which minimizes the Dirichlet

energy:

E(u) ≤ E(v) for all v ∈ Af .
The heuristic idea is that the solution of (2.17) represents a physical system in equilibrium,

and therefore should minimize a suitable energy functional. The point is that one can

start from the energy functional E(·) and conclude that any minimizer u must satisfy

∆u = 0, which gives another way to define the Laplace operator.
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From this point on, let U ⊂ Rn be open and let g be a Riemannian metric on U .

Although there is no immediately obvious analogue of (2.16) that would take into account

the metric g, there is a natural analogue of the Dirichlet energy. It is given by

E(v) :=
1

2

∫
U

|dv|2dV, v ∈ H1(U).

Here |dv| is the Riemannian length of the 1-form dv, and dV is the volume form.

We wish to find a differential equation which is satisfied by minimizers of E(·). Sup-

pose u ∈ H1(U) is a minimizer which satisfies E(u) ≤ E(u + tϕ) for all t ∈ R and all

ϕ ∈ C∞c (U). We have

E(u+ tϕ) =
1

2

∫
U

〈d(u+ tϕ), d(u+ tϕ)〉dV

= E(u) + t

∫
U

〈du, dϕ〉dV + t2E(ϕ).

Since Iϕ(t) := E(u+ tϕ) is a smooth function of t for fixed ϕ, and since Iϕ(0) ≤ Iϕ(t) for

|t|-small, we must have I ′ϕ(0) = 0. This shows that if u is a minimizer, then∫
U

〈du, dϕ〉dV = 0

for any choice of ϕ ∈ C∞c (U). By the properties of the codifferential δ, this implies that∫
U

(δdu)ϕdV = 0

for all ϕ ∈ C∞c (U). Thus any minimizer u has to satisfy the equation

δdu = 0 in U.

We have arrived at the definition of the Laplace-Beltrami operator.

Definition 2.39 (Laplace-Beltrami operator). The Laplace-Beltrami operator on (U, g)

is defined by

∆gu := −δdu.

Lemma 2.40. The Laplace-Beltrami operator has the expression

∆gu = |g|−1/2∂j
(
|g|1/2gjk∂ku

)
,

where, as before, |g| = det(gjk) is the determinant of g.

Proof. Exercise. �

Remark 2.41. There are differing sign conventions for the Laplace-Beltrami operator.

Honoring the title of this course, we have chosen the convention which is perhaps most

common in analysis and makes the Laplace-Beltrami operator for Euclidean metric equal

to
∑n

j=1
∂2

∂x2j
. However, it is very common in geometry define the Laplace-Beltrami op-

erator with the opposite sign, which has the benefit that the operator becomes positive.

Moreover, in probability theory a factor of 1
2

is often included in the definition. In this

course we will stick to the analysts’ convention so that ∆g = −δd.
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The existence of a canonical Laplace operator associated to a Riemannian metric

implies that one has analogues of the classical linear PDE:

• ∆gu = 0 (Laplace)

• ∂tu−∆gu = 0 (heat)

• ∂2
t u−∆gu = 0 (wave)

• i∂tu+ ∆gu = 0 (Schrödinger)

Therefore in physical terms, any Riemannian manifold will support a theory for electro-

statics, heat flow, acoustic wave propagation, and quantum mechanics. Note also that

the theory of geodesics leads to a version of classical mechanics, and there are many rela-

tions between the classical and quantum picture (i.e. between the geodesic flow and the

Laplace-Beltrami operator).

3. Calulus on Riemannian manifolds

In this chapter we will discuss the calculus concepts from Chapter 2 in the more

general setting of smooth or Riemannian manifolds. Thus, instead of working on open

sets U ⊂ Rn, we wish to perform calculus operations on spaces such as

• surfaces in R3 (spheres, tori, double tori, etc)

• n-dimensional, possibly complicated hypersurfaces S ⊂ Rn+k

• groups of transformations (GL(n), SO(n), U(n) etc)

Our aim is to present the material briefly, giving the definitions but omitting the proofs

of their basic properties (for proofs see for instance [6, 7]).

3.1. Smooth manifolds. We briefly recall the definition and basic theory of smooth

manifolds.

Definition 3.1 (Smooth manifold). A smooth n-dimensional manifold is a topological

space M , assumed to be Hausdorff and second countable, together with an open cover

{Uα} and homeomorphisms ϕα : Uα → Ũα such that each Ũα is an open set in Rn, and

ϕβ ◦ ϕ−1
α : ϕα

(
Uα ∩ Uβ

)
→ ϕβ

(
Uα ∩ Uβ

)
is a smooth map whenever Uα ∩ Uβ is nonempty.

Any family
{

(Uα, ϕα)
}

as above is called an atlas. Any atlas gives rise to a maximal

atlas, called a smooth structure, which is not strictly contained in any other atlas. We

assume that we are always dealing with the maximal atlas. The pairs (Uα, ϕα) are called

charts, and the maps ϕα are called local coordinate systems. One usually writes x = ϕα
and identifies points p ∈ Uα with points x(p) = ϕα(p) ∈ Ũα in Rn.

Definition 3.2 (Smooth manifold with boundary). A smooth n-dimensional manifold

with boundary is a topological space M , assumed to be Hausdorff and second countable,

together with an open cover {Uα} and homeomorphisms ϕα : Uα → Ũα such that each Ũα
is an open set in Rn

+ :=
{
x ∈ Rn : xn ≥ 0

}
, and ϕβ ◦ ϕ−1

α : ϕα
(
Uα ∩ Uβ

)
→ ϕβ

(
Uα ∩ Uβ

)
is a smooth map whenever Uα ∩ Uβ is nonempty.

Here, if A ⊂ Rn we say that a map F : A → Rn is smooth if it extends to a smooth

map Ã→ Rn, where Ã is an open set in Rn containing A.
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If M is a manifold with boundary, we say that p is a boundary point if ϕ(p) ∈ ∂Rn
+

for some chart ϕ, and an interior point if ϕ(p) ∈ int(Rn
+) for some ϕ. We write ∂M for

the set of boundary points and M int for the set of interior points. Since M is not assumed

to be embedded in any larger space, these definitions may differ from the usual ones in

point set topology.

To clarify the relations between the definitions, note that a manifold is always a

manifold with boundary (the boundary being empty), but a manifold with boundary is a

manifold if and only if the boundary is empty (left as exercise). However, we will loosely

refer to manifolds both with and without boundary as “manifolds”.

We have the following classes of manifolds:

• A closed manifold is compact, connected, and has no boundary.

– Examples: the sphere Sn, the torus Tn = Rn/Zn
• An open manifold has no boundary and no component is compact.

– Examples: open subsets of Rn, proper open subsets of a closed manifold

• A compact manifold with boundary is a manifold with boundary which is compact

as a topological space.

– Examples: the closures of bounded open sets in Rn with smooth boundary, the

closures of open sets with smooth boundary in closed manifolds

Smooth maps. We recall the definition of smooth maps between manifolds.

Definition 3.3 (Smooth map). Let f : M → N be a map between two manifolds. We

say that f is smooth near a point p if ψ ◦f ◦ϕ−1 : ϕ(U)→ ψ(V ) is smooth for some charts

(U,ϕ) of M and (V, ψ) of N such that p ∈ U and f(U) ⊂ V .

We say that f is smooth in a set A ⊂M if it is smooth near any point of A. The set

of all maps f : M → N which are smooth in A is denoted by C∞(A,N). If N = R, we

write C∞(A,N) = C∞(A).

Tangent bundle. If U ⊂ Rn is open, we defined the tangent space TxU = {x} ×Rn

to be a copy of Rn sitting at x. Any v ∈ TxU can be thought of as an infinitesimal

direction where one can move from x, and there is a corresponding directional derivative

∂v : C∞(U)→ R, ∂vf(x) := v · ∇f(x).

Then ∂v is a linear operator satisfying ∂v(fg) = (∂vf)g+ f(∂vg). Such an object is called

a derivation. It turns out that derivations can be identified with vectors in the tangent

space, and this leads to a definition of tangent spaces on abstract manifolds.

Definition 3.4 (Derivation). Let p ∈M . A derivation at p is a linear map v : C∞(M)→
R which satisfies the Leibniz rule v(fg) = (vf)g(p) + f(p)(vg). The tangent space TpM is

the vector space consisting of all derivations at p. Its elements are called tangent vectors.

The tangent space TpM is an n-dimensional vector space when dim(M) = n. If x is

a local coordinate system in a neighborhood U of p, we define the coordinate vector fields

∂j for each q ∈ U as the derivations

(3.1) ∂j|qf :=
∂

∂xj

(
f ◦ x−1

)(
x(q)

)
, j = 1, · · · , n.
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Then {∂j|q} is a basis of TqM , and any v ∈ TqM may be written as v = vj∂j.

The tangent bundle is the disjoint union

TM :=
∨
p∈M

TpM.

The tangent bundle has the structure of a 2n-dimensional manifold defined as follows.

For any chart (U, x) of M , we represent elements of TqM for q ∈ U as v = vj(q)∂j|q, and

define a map ϕ̃ : TU → R2n,

ϕ̃(q, v) =
(
x(q), v1(q), · · · , vn(q)

)
.

The charts (TU, ϕ̃) are called the standard charts of TM and they define a smooth struc-

ture on TM and they define a smooth structure on TM .

Since the tangent bundle is a smooth manifold, the following definition makes sense:

Definition 3.5 (Vector field). A vector field on M is a smooth map X : M → TM such

that X(p) ∈ TpM for each p ∈M .

Cotangent bundle. The dual space of a vector space V is

V ∗ :=
{
u : V → R : u is linear

}
.

The dual space of TpM is denoted by T ∗pM and is called the cotangent space of M at p.

Let x be local coordinates in U and let ∂j be the coordinate vector fields that span TqM

for q ∈ U . We denote by dxj the elements of the dual basis of T ∗qM , so that any ξ ∈ T ∗qM
can be written as ξ = ξjdx

j. The dual basis is characterized by

dxj(∂k) = δjk.

The cotangent bundle is the disjoint union

T ∗M =
∨
p∈M

T ∗pM.

This becomes a 2n-dimensional manifold by defining for any chart (U,ϕ) of M a chart

(T ∗U, ϕ̃) of T ∗M by

ϕ̃(q, ξjdx
j) =

(
ϕ(q), ξ1, · · · , ξn

)
.

Definition 3.6 (Differential 1-form). A 1-form on M is a smooth map α : M → T ∗M

such that α(p) ∈ T ∗pM for each p ∈M .

Tensor bundles. If V is a finite dimensional vector space, the space of (covariant)

k-tensors on V is

T k(V ) :=
{
u : V × · · · × V︸ ︷︷ ︸

k copies

→ R, u is linear in each variable}.

The k-tensor bundle on M is the disjoint union

T kM =
∨
p∈M

T k
(
TpM

)
.
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If x are local coordinates in U and dxj is the basis for T ∗qM , then each u ∈ T k(TqM) for

q ∈ U can be written as

u = uj1···jkdx
j1 ⊗ · · · ⊗ dxjk .

Here ⊗ is the tensor product

⊗ : T k(V )× T s(V )→ T k+s(V ), (u0, u1) 7→ u0 ⊗ u1,

where for v0 ∈ V k and v1 ∈ V s, we define(
u0 ⊗ u1

)
(v0, v1) := u0(v0)u1(v1).

It follows that the elements dxj1 ⊗ · · · ⊗ dxjk span T k
(
TqM

)
. Similarly as above, T kM

has the structure of a smooth manifold of dimension n+ nk.

Definition 3.7 (Tensor field). A k-tensor field on M is a smooth map u : M → TM such

that u(p) ∈ T k
(
TpM

)
for each p ∈M .

Exterior powers. The space of alternating k-tensor is

Λk(V ) :=
{
u ∈ T k(V ) : u(v1, · · · , vk) = 0 if vi = vj for some i 6= j

}
.

To describe a basis for Λk(TpM), we introduce the wedge product

∧ : Λk(V )× Λs(V )→ Λk+s(V )

(ω0, ω1) 7→ ω0 ∧ ω1 :=
(k + s)!

k!s!
Alt
(
ω0 ⊗ ω1

)
,

where Alt : T k(V )→ Λk(V ) is the projection to alternating tensors defined as follows

Alt(T )(v1, · · · , vk) =
1

k!

∑
σ∈Sk

Sign(σ)T
(
vσ(1), · · · , vσ(k)

)
.

Here, we use Sk for the group of permutations σ of {1, · · · , k} and Sign(σ) for the signature

of σ ∈ Sk.
The following properties of the wedge product can be checked from the definition:

Lemma 3.8 (Computation law for wedge product). The wedge product is associative,

i.e. ω1 ∧ (ω2 ∧ω3) = (ω1 ∧ω2)∧ω3 for any alternating tensors ωi. Moreover, if ω1, · · · , ωk
are 1-tensors, then

(3.2) ωσ(1) ∧ · · · ∧ ωσ(k) = (−1)Sign(σ)ω1 ∧ · · · ∧ ωk, σ ∈ Sk
and for any v1, · · · , vk ∈ V one has

(3.3)
(
ω1 ∧ · · · ∧ ωk

)
(v1, · · · , vk) = det

ω1(v1) · · · ω1(vk)
...

. . .
...

ωk(v1) · · · ωk(vk)

 .
Proof. Exercise. �

If x is a local coordinate system in U , then a basis of Λk(TpM) is given by{
dxj1 ∧ · · · ∧ dxjk

}
1≤j1<j2<···<jk≤n

.
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One can prove that Λk(M) is a smooth manifold of dimension n+
(
n
k

)
.

Definition 3.9 (Differential k-form). A k-form on M is a smooth map ω : M → TM

such that ω(p) ∈ Λk(TpM) for each p ∈M .

Smooth sections. The above constructions of the tangent bundle, cotangent bundle,

tensor bundles, and exterior powers are all examples of vector bundles with base manifold

M . We will not need a precise definition here, but just note that in each case there is a

natural vector space over any point p ∈M (called the fiber over p).

Definition 3.10 (Smooth section). A smooth section of a vector bundle E over M is a

smooth map s : M → E such that for each p ∈ M , s(p) belongs to the fiber over p. The

space of smooth sections of E is denoted by C∞(M,E).

We have the following terminology:

• C∞(M,TM) is the set of vector fields on M ;

• C∞(M,T kM) is the set of k-tensor fields on M ;

• Ω1(M) = C∞(M,T ∗M) is the set of differential 1-forms on M ;

• Ωk(M) = C∞(M,Λk(M)) is the set of differential k-forms on M .

Let x be local coordinates in a set U , and let ∂j and dxj be the coordinate vector fields

and 1-forms in U , which span TqM and T ∗qM , respectively, for q ∈ U . In these local

coordinates,

• a vector field X has the expression X = Xj∂j
• a 1-form α has the expression α = αjdx

j

• a k-tensor field u can be written as

u = uj1···jkdx
j1 ⊗ · · · ⊗ dxjk

• a k-form ω has the form

ω = ωIdx
I ,

where I = (i1, · · · , ik) and dxI = dxi1 ∧ · · · ∧ dxik , with the sum being over all I

such that 1 ≤ i1 < i2 < · · · < ik ≤ n

Here, the component functions Xj, αj, uj1···jk and ωI are all smooth real valued functions

in U .

We mention briefly how the local coordinate formula for a k-tensor field u is obtained.

If (U, x) is a local coordinate chart and {∂j} are the associated coordinate vector fields,

one can write any v ∈ TqM for q ∈ U as v = vk∂k|q for some (v1, · · · , vn) ∈ Rn. Thus by

linearity

uq(v1, · · · , vk) = uq(v
j1
1 ∂j1|q, · · · , v

jk
k ∂jk |q) = uq(∂j1|q, · · · , ∂jk |q)v

j1
1 · · · v

jk
k .

If we define

uj1···jk(q) := uq(∂j1|q, · · · , ∂jk |q),
then the above computation and the definition of tensor product imply

uq(v1, · · · , vk) =
(
uj1···jk(q)dx

j1|q ⊗ · · · ⊗ dxjk |q
)
(v1, · · · , vk).
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This proves that the local coordinate representation of a tensor field u is obtained just by

evaluating u at coordinate vector fields.

Example 3.11. Some examples of the smooth sections that will be encountered in this

text are:

• Vector fields: the gradient vector field grad(f) for f ∈ C∞(M), coordinate vector

fields ∂j in a chart U

• One-forms: the exterior derivative df for f ∈ C∞(M)

• 2-tensor fields: Riemannian metrics g, Hessians Hess(f) for f ∈ C∞(M), Ricci

curvature Rab

• 4-tensor fields: Riemann curvature tensor Rabcd

• n-forms: the volume form dV in an n-dimensional Riemannian manifold (M, g)

Change of coordinates. We next consider the transformation laws for vector and

tensor fields under changes of coordinates. It is convenient to phrase these in terms of

more general pullbacks or pushforwards by smooth maps between manifolds. We begin

with pushforwards of tangent vectors.

Definition 3.12 (Push-forward). Let F : M → N be a smooth map. The push-forward

by F is the map acting on TpM for any p ∈M by

F∗ : TpM → TF (p)N, F∗v(f) = v
(
f ◦ F

)
for f ∈ C∞(N).

The map F∗ is also called the derivative or tangent map of F , and we sometimes denote

it by DF .

We now compute how F∗ transforms vector fields in local coordinates.

Lemma 3.13. Let F : M → N be a smooth map and let X be a vector field in M . If

(U, y) and (V, z) are coordinate charts near p in M and near F (p) in N , respectively, and

if Y and Z are corresponding coordinate representative of X and F∗X so that

X(q) = Y j
(
y(q)

)
∂yj |q, F∗X(r) = Zk

(
z(r)

)
∂zk |r,

then

Zk
(
z(F (q))

)
= ∂yj F̃

k
(
y(q)

)
Y j
(
y(q)

)
,

where F̃ = z ◦ F ◦ y−1.

Proof. Given q ∈ U with F (q) ∈ V , the tangent vector F∗X|F (q) is a derivation acting on

f ∈ C∞(N) and we have

F∗X|F (q)f = X|q(f ◦ F ) = Y j(y(q))∂yj |q
(
f ◦ z−1 ◦ F̃ ◦ y

)
= Y j(y(q))∂yj

(
(f ◦ z−1) ◦ F̃

)
(y(q))

= Y j(y(q))∂zk(f ◦ z−1)
(
z(F (q))

)
∂yj F̃

k(y(q))

= ∂yj F̃
k(y(q))Y j(y(q))∂zk |F (q)f.

�
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Remark 3.14. Applying Lemma 3.13 to the inclusion map F = i : M → N shows that

the representatives Y and Z of a vector field X in two coordinate charts (U, y) and (V, z)

with U ∩ V 6= ∅ are related by

(3.4) Zk
(
z(q)

)
= ∂yj

(
z ◦ y−1

)k(
y(q)

)
Y j
(
y(q)

)
, q ∈ U ∩ V.

This provides an alternative way to define vector fields on a manifold: if to each coordinate

chart (U, y) on M one associates a vector field Y in y(U) ⊂ Rn, and if the vector fields

Y and Z for any two coordinate charts (U, y) and (V, z) with U ∩ V 6= ∅ satisfying (3.4),

then there is a vector field X in M whose coordinate representation in any chart (U, y)

is Y . If (3.4) holds, we say that the coordinate representations Y transform as a vector

field in M .

We now move to tensor fields. If F : M → N is a smooth map, we can associate to

a tensor field u ∈ C∞(N, T kN) a corresponding tensor field F ∗u ∈ C∞(M,T kM) in the

following way.

Definition 3.15 (Pullback). Let F : M → N be a smooth map. The pullback by F

acting on k-tensor fields is the map F ∗ : C∞(N, T kN)→ C∞(M,T kM) given by(
F ∗u

)
p
(v1, · · · , vk) = uF (p)(F∗v1, · · · , F∗vk) for v1, · · · , vk ∈ TpM.

It is easy to see that F ∗u is indeed a tensor field on M and that F ∗ has the following

properties.

Lemma 3.16 (Basic properties of F ∗). Let F : M → N be a smooth map, let f ∈ C∞(N),

let u0 and u1 be tensor fields in N , and let ω0 and ω1 be differential forms in N . Then

• F ∗(fu0) = (f ◦ F )F ∗u0

• F ∗(u0 ⊗ u1) = F ∗u0 ⊗ F ∗u1

• F ∗ preserves alternating tensors and thus induces a map on differential forms,

F ∗ : Ωk(N)→ Ωk(M), 0 ≤ k ≤ n

• F ∗(ω0 ∧ ω1) = F ∗ω0 ∧ F ∗ω1.

Proof. Left as an exercise. �

In terms of local coordinates, the pullback acts by

• F ∗f = f ◦ F if f is a smooth function (0-form)

• F ∗(αjdxj) = (αj ◦ F )d(xj ◦ F ) = (αj ◦ F )dF j if α is a 1-form and it has the

following expression for higher order tensors:

Lemma 3.17. Let F : M → N be a smooth map and let u be a k-tensor field in N . If

(U, y) and (V, z) are coordinate charts near p in M and near F (p) in N , respectively, and

if (yi1···ik) and (zj1···jk) are corresponding coordinate representations of F ∗u and u so that

F ∗u(q) = yi1···ik
(
y(q)

)
dyi1 ⊗ · · · ⊗ dyik |q,

u(r) = zj1···jk
(
z(r)

)
dzj1 ⊗ · · · ⊗ dzjk |r,

then

yi1···ik |y(q) =
(
∂yi1 F̃

j1
)
· · ·
(
∂yik F̃

jk
)
|y(q),
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where F̃ = z ◦ F ◦ y−1.

Proof. Given q ∈ U with F (q) ∈ V , we have

yi1···ik
(
y(q)

)
= F ∗u|q(∂yi1 , · · · , ∂yik ) = u|F (q)(F∗∂yi1 , · · · , F∗∂yi1 )

Lemma 3.13
= u|F (q)

(
∂yi1 F̃

j1(y(q))∂zj1 , · · · , ∂yik F̃ jk(y(q))∂zjk
)

= ∂yi1 F̃
j1(y(q)) · · · ∂yik F̃ jk(y(q))zj1···jk(z(F (q))).

�

Remark 3.18. We have defined F∗ acting on vector fields and F ∗ acting on k-tensor

fields. If F : M → N is a diffeomorphism, one can define in general F∗ = (F−1)∗ and

F ∗ = (F−1)∗, and thus for a diffeomorphism F the pushforward and pullback are defined

both on vector and tensor fields.

Exterior derivative. The exterior derivative d is a first order differential operator

mapping differential k-forms to k + 1-forms. It can be defined first on 0-forms (that is,

smooth functions f) by the local coordinate expression

df :=
∂f

∂xj
dxj.

In general, if ω = ωIdx
I is a k-form, we define

dω := dωI ∧ dxI .

Lemma 3.19. The definition of d is independent of the choice of local coordinates, and

d : Ωk(M)→ Ωk+1(M) is a linear map for 0 ≤ k ≤ n. The operator d has the properties

• d2 = 0

• d|Ωn(M) = 0

• d(ω ∧ θ) = dω ∧ θ + (−1)kω ∧ dθ for a k-form ω and s-form θ

• F ∗(dω) = dF ∗ω.

Proof. Left as an exercise. �

Partition of unity. A major reason for including the condition of second countability

in the definition of manifolds is to ensure the existence of partitions of unity. These make

it possible to make constructions in local coordinates and then glue them together to

obtain a global construction.

Lemma 3.20 (Partition of unity). Let M be a manifold and let {Uα} be an open cover.

There exists a family of C∞ functions {χα} on M such that 0 ≤ χα ≤ 1, supp(χα) ⊂
Uα, any point of M has a neighborhood which intersects only finitely many of the sets

supp(χα), and furhter ∑
α

χα = 1 in M.

The partition {χα} as in Lemma 3.20 is called a smooth partition of unity subordinate

to the open cover {Uα}.
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Integration on manifolds. The natural objects that can be integrated on an n-

dimensional manifold are the differential n-forms. This is due to the transformation law

for n-forms in Rn under smooth diffeomorphisms F in Rn,

F ∗(dx1 ∧ · · · ∧ dxn) = dF 1 ∧ · · · ∧ dF n

= (∂j1F
1) · · · (∂jnF n)dxj1 ∧ · · · ∧ dxjn

= (detDF )dx1 ∧ · · · ∧ dxn.

This is almost the same as the transformation law for integrals in Rn under changes of

variables, the only difference being that in the latter the factor | detDF | instead detDF

appears. To define an invariant integral, we therefore need to make sure that all changes

of coordinates have positive Jacobian.

Definition 3.21 (Orientation). If M admits a smooth nonvanishing n-form, we say that

M is orientable. An oriented manifold is a manifold together with a given nonvanishing

n-form.

If M is oriented with a given n-form Ω, a basis {v1, · · · , vn} of TpM is called positive if

Ω(v1, · · · , vn) > 0. There are many n-forms on an oriented manifold which give the same

positive bases; we call any such n-form an orientation form. If (U,ϕ) is a connected coor-

dinate chart, we say that this chart is positive if the coordinate vector fields {∂1, · · · , ∂n}
form a positive basis of TqM for all q ∈M .

A map F : M → N between two oriented manifolds is said to be orientation preserving

if it pulls back an orientation form on N to an orientation form of M . In terms of local

coordinates given by positive charts, one can see that a map is orientation preserving if

and only if its Jacobian determinant is positive.

Example 3.22. The standard orientation of Rn is given by the n-form dx1 ∧ · · · ∧ dxn,

where x are the Cartesian coordinates.

If ω is a compactly supported n-form in Rn, we may write ω = fdx1 ∧ · · · ∧ dxn for

some smooth compactly supported function f . Then the integral of ω is defined by∫
Rn
ω :=

∫
Rn
f(x)dx1 · · · dxn.

If ω is a smooth n-form in a manifold M whose support is compactly contained in U for

some positive chart (U,ϕ), then the integral of ω over M is defined by∫
M

ω :=

∫
ϕ(U)

(ϕ−1)∗ω.

Finally, if ω is a compactly supported n-form in a manifold M , the integral of ω over M

is defined by ∫
M

ω :=
∑
j

∫
Uj

χjω,

where {Uj} is some open cover of supp(ω) by positive charts, and {χj} is a partition of

unity subordinate to the cover {Uj}.
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It is easy to see that the above definition of integral is independent of the choice of

positive charts and the partition of unity (Exercise).

The following result is a basic integration by parts formula which implies the usual

theorems of Gauss and Green.

Theorem 3.23 (Stokes theorem). If M is an oriented manifold with boundary and if ω

is a compactly supported (n− 1)-form on M , then∫
M

dω =

∫
∂M

i∗ω,

where i : ∂M →M is the natural inclusion.

Here, if M is an oriented manifold with boundary, then ∂M has a natural orientation

defined as follows: for any point p ∈ ∂M , a basis {E1, · · · , En−1} of Tp(∂M) is defined

to be positive if {Np, E1, · · · , En−1} is a positive basis of TpM where N is some outward

pointing vector field near ∂M (that is, there is a smooth curve γ : [0, ε) → M with

γ(0) = p and γ̇(0) = −Np). One can show that any manifold with boundary has an

outward pointing vector field, and that the above definition gives a valid orientation on

∂M .

3.2. Riemannian manifolds. Riemannian metrics. If u is a 2-tensor on M , we say

that u is symmetric if u(v, w) = u(w, v) for any tangent vectors v, w and that u is positive

definite if u(v, v) > 0 unless v = 0.

Definition 3.24 (Riemannian metric). A Riemannian metric on a manifold M is a

symmetric positive definite 2-tensor field g on M . The pair (M, g) is called a Riemannian

manifold.

If g is a Riemannian metric on M , then gp : TpM × TpM → R is an inner product on

TpM for any p ∈M . As before, we shall write

〈v, w〉 := g(v, w), |v| := 〈v, v〉
1
2 .

In local coordinates, a Riemannian metric is just a positive definite symmetric matrix.

To see this, let (U, x) be a chart on M , and write v, w ∈ TqM for q ∈ U in terms of the

coordinate vector fields ∂j as v = vj∂j and w = wk∂k. Then

g(v, w) = g(∂j, ∂k)v
jwk.

This shows that g has the local coordinate expression

g = gjkdx
j ⊗ dxk,

where gjk := g(∂j, ∂k) and the matrix (gjk)
n
j,k=1 is symmetric and positive definite. We will

also write (gjk)nj,k=1 for the inverse matrix of (gjk) and |g| = det(gjk) for the determinant.

Example 3.25. Some examples of Riemannian manifolds:
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(1) Euclidean space. If U is a bounded open set in Rn, then (U, g0) is a Riemannian

manifold, where g0 is the Euclidean metric for which g0(v, w) = v · w is the Eu-

clidean inner product of v, w ∈ TpU ≈ Rn. In Cartesian coordinates, g0 is just the

identity matrix.

(2) If U is as above, then more generally (U, g) is a Riemannian manifold if g(x) =(
gjk(x)

)n
j,k=1

is any family of positive definite symmetric matrices whose elements

depend smoothly on x ∈ U .

(3) If U is a bounded open set in Rn with smooth boundary, then (Ū , g) is a com-

pact Riemannian manifold with boundary if g(x) is a family of positive definite

symmetric matrices depending smoothly on x ∈ Ū .

(4) Hypersurfaces. Let S be a smooth hypersurface in Rn such that S = f−1(0) for

some smooth function f : Rn → R which satisfies ∇f 6= 0 when f = 0. Then S is

a smooth manifold of dimension n − 1, and the tangent space TpS for any p ∈ S
can be identified with {v ∈ Rn : v · ∇f(p) = 0}. Using this identification, we

define an inner product gp(v, w) on TpS by taking the Euclidean inner product of

v and w interpreted as vectors in Rn. Then (S, g) is a Riemannian manifold, and

g is called the induced Riemannian metric on S (this metric being induced by the

Euclidean metric in Rn).

(5) Immersed manifold. Let f : M → N be an immersion, i.e. f is smooth with

dfp : TpM → Tf(p)N being injective for all p ∈M . If N has a Riemannian structure

h, then f induces a Riemannian structure g on M by defining for each p ∈M ,

gp(v, w) := hf(p)

(
f∗(v), f∗(w)

)
= hf(p)

(
dfp(v), dfp(w)

)
for all v, w ∈ TpM . Since dfp is injective, gp(·, ·) is positive definite. It is easy

to see that g is a symmetric positive definite 2-tensor field and this Riemannian

metric is called the metric induced by f , and f is an isometric immersion.

(6) Model spaces. The model spaces of Riemannian geometry are the Euclidean space

(Rn, g0), the sphere (Sn, g), where Sn is the unit sphere in Rn+1 and g is the induced

Riemannian metric, and the hyperbolic space (Hn, g), which may be realized by

taking Hn to be the unit ball in Rn with metric gjk(x) = 4
(1−|x|2)2

δjk.

The Riemannian metric allows to measure lengths and angles of tangent vectors on

a manifold, the length of a vector v ∈ TpM being |v| and the angle between two vectors

v, w ∈ TpM being the number θ(v, w) ∈ [0, π] which satisfies

(3.5) cos θ(v, w) :=
〈v, w〉
|v||w|

.

Physically, one may think of a Riemannian metric g as the resistivity of a conducting

medium (the conductivity matrix (γjk) of the medium corresponds formally to (|g| 12 gjk)),
or as the inverse of sound speed squared in a medium where acoustic waves propagate

(if a medium U ⊂ Rn has scalar sound speed c(x), then a natural Riemannian metric is

gjk(x) = c(x)−2δjk). In the latter case, regions where g is large (resp. small) correspond to

low velocity regions (resp. high velocity regions). We will later define geodesics, which are
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length minimizing curves on a Riemannian manifold, and these tend to avoid low velocity

regions as one would expect.

The following result ensures the existence of Riemannian metric on a given smooth

manifold.

Theorem 3.26 (Existence of Riemannian metric). Every smooth manifold admits a Rie-

mannian metric.

Proof. Let {Uα} be an open covering of M . By Lemma 3.20, we may assume that {Uα}
is a locally finite open covering of M , i.e. each point p ∈ M has a neighborhood Vp such

that Vp ∩ Uα 6= ∅ for at most finitely many α and we may find {χα} subordinate to {Uα}
such that χα satisfies the conditions in Lemma 3.20.

It is clear that we can define a Riemannian metric gα on each Uα: simply take the

metric induced by the local coordinate. Then we glue all the gα to form a Riemannian

metric g by

g(v, w) :=
∑
α

χα(p)gαp (v, w) for all p ∈M and v, w ∈ TpM.

It is easy to verify that this construction defines a Riemannian metric on M . �

As in Section 2.5, a smooth curve γ : [a, b] → M is said to be regular if γ′(t) 6= 0 for

all t ∈ [a, b]. For a regular curve γ : [a, b]→M , we define its length as

Lg(γ) =

∫ b

a

|γ′(t)|gdt.

The length of a piecewise regular curve is defined as the sum of lengths of the regular

parts. For each pair of points p, q ∈ M , the Riemannian distance dg(p, q) between p and

q is defined to be the infimum of the lengths of all piecewise regular curves joining p and

q.

The following basic result implies that it makes sense to apply all the concepts of the

theory of metric space to a connected Riemannian manifold (M, g).

Theorem 3.27 (Riemannian manifold as metric spaces). Let (M, g) be a connected

Riemannian manifold (with or without boundary). Then (M,dg) is metric space whose

metric topology is the same as the given manifold topology.

The proof of Theorem 3.27 requires the following technical result.

Lemma 3.28. Let (M, g) be a Riemannian manifold (with or without boundary) and let

dg be its Riemannian distance function. Suppose U is an open subset of M and p ∈ U .

Then p has a coordinate neighborhood V ⊂ U with the property that there are positive

constants C0, C1 satisfying the following inequalities:

i). If q ∈ V , then dg(p, q) ≤ C0dg0(p, q), where g0 is the standard Euclidean metric on

V ;

ii). If q ∈M\V , then dg(p, q) ≥ C1.

Proof. Exercise. �
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Proof of Theorem 3.27. It is immediate from the definition of dg that dg(p, q) = dg(q, p) ≥
0 and dg(p, p) = 0. On the other hand, suppose p, q ∈ M are distinct. Let U ⊂ M be

an open set that contains p but not q, and choose a coordinate neighborhood V of p

contained in U and satisfying the conclusion of Lemma 3.28. Then Lemma 3.28 ii) shows

that dg(p, q) ≥ C1 > 0.

The triangle inequality follows from the fact that an admissible curve from p to q can be

combined with one from q to r (possibly changing the starting time of the parametrization

of the second) to yield one from p to r whose length is the sum of the lengths of the two

given curves (This is one reason for defining distance using piecewise regular curves instead

of just regular ones). This completes the proof that dg turns M into a metric space.

It remains to show that the metric topology is the same as the manifold topology.

Suppose first that U ⊂ M is open in the manifold topology. For each p ∈ U , we can

choose a coordinate neighborhood V of p contained in U with positive constants C0, C1

satisfying the conclusions of Lemma 3.28. The contrapositive of part ii) of Lemma 3.28

says dg(p, q) < C1 ⇒ q ∈ V ⊂ U , which means that the metric ball of radius C1 is

contained in U . Thus U is open in the metric topology induced by dg.

On the other hand, suppose U ′ is open in the metric topology. Given p ∈ U ′, choose

δ > 0 such that the dg-metric ball of radius δ around p is contained in U ′. Let V be any

neighborhood of p that is open in the manifold topology and satisfies the conclusions of

Lemma 3.28, with corresponding constants C0.C1 (We are not claiming that V ⊂ U ′).

Choose ε small enough that C0ε < δ. Lemma 3.28 i) shows that if q is a point of V such

that dg0(p, q) < ε, then dg(p, q) ≤ C0ε < δ and thus q lies in the metric ball of radius δ

about p, and hence in U ′. Since the set {q ∈ V : dg0(p, q) < ε} open in the given manifold

topology, this shows that U ′ is also open in the manifold topology. �

Thanks to the preceding theorem, it makes sense to apply all the concepts of the

theory of metric spaces to a connected Riemannian manifold (M, g). For example, we

say that M is (metrically) complete if every Cauchy sequence in M converges. A subset

A ⊂M is bounded if there is a positive constant C such that dg(p, q) ≤ C for all p, q ∈ A;

if this is the case, the diameter of A is the smallest such constant:

diam(A) := sup{dg(p, q) : p, q ∈ A}.

Since every compact metric space is bounded, every compact connected Riemannian man-

ifold (with or without boundary) has finite diameter.

Isometries. Let (M, g) and (N, h) be two Riemannian manifolds. We say that a map

F is a Riemannian isometry from (M, g) to (N, h) if F : M → N is a diffeomorphism and

F ∗h = g, or more precisely,

gp(v, w) = hF (p)(F∗v, F∗w), v, w ∈ TpM.

Being Riemannian isometric is an equivalence relation in the class of Riemannian man-

ifolds, and one thinks of Riemannian isometric manifolds as being identical in terms of

their Riemannian structure.
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Proposition 3.29 (Isometry Invariance of the Riemannian Distance Function). Suppose

(M, g) and (N, h) are connected Riemannian manifolds with or withoutvboundary, and

F : M → N is a Riemannian isometry. Then

dh(F (x), F (y)) = dg(x, y)

for all x, y ∈M .

Proof. This is immediate from the definition. �

Let (X, dX) and (Y, dY ) be two metric spaces. A homeomorphism F : (X, dX) →
(Y, dY ) is called a distance-preserving homeomorphism (or isometry) if

dY (F (x), F (x′)) = dX(x, x′)

for all x, x′ ∈ X. The previous theorem says that a Riemannian isometry is always a

distance-preserving homeomorphism. The converse is actually also true:

Theorem 3.30 (Mayers and Steeurid). Suppose (M, g) and (N, h) are connected Rie-

mannian manifolds with or without boundary, and F : M → N is a distance-preserving

homeomorphism. Then F is a Riemannian isometry.

Raising and lowering indices. On a Riemannian manifold (M, g), there is a canon-

ical way of converting tangent vectors into cotangent vectors and vice versa. We define a

map

[ : TpM → T ∗pM, v 7→ v[

by requiring that v[(w) = 〈v, w〉. This map, called the flat operator, is an isomorphism,

which is given in local coordinate by

(vj∂j)
[ = vjdx

j, where vj := gjkv
k.

We say that v[ is the cotangent vector obtained from v by lowering indices with respect

to the metric g. The inverse of this map is the sharp operator

] : T ∗pM → TpM, ξ 7→ ξ]

given in local coordinate by

(ξjdx
j)] = ξj∂j, where ξj := gjkξk.

We say that ξ] is obtained from ξ by raising indices with respect to the metric g.

Innear product of tensors. If (M, g) is a Riemannian manifold, we can use the

Riemannian metric g to define inner products of tensors in a canonical way. The inner

product of cotangent vectors is defined via the sharp operator by

〈α, β〉 := 〈α], β]〉.

In local coordinates, one has 〈α, β〉 = gjkαjβk and gjk = 〈dxj, dxk〉.
More generally, if u and v are k-tensors with local coordinate representations u =

ui1···ikdx
i1 ⊗ · · · ⊗ dxik , we can define

(3.6) 〈u, v〉 := gi1j1 · · · gikjkui1···ikvj1···jk .
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This definition turns out to be independent of the choice of coordinates, and it gives a

valid inner product on k-tensors. This inner product is natural in the sense that for any

diffeomorphism F onto M ,

F ∗
(
〈u, v〉g

)
= 〈F ∗u, F ∗v〉F ∗g.

Orthonormal frames. If U is an open subset of M , we say that a set {E1, · · · , En} of

vector fields in U is a local orthonormal frame if {E1(q), · · · , En(q)} forms an orthonormal

basis of TqM for any q ∈ U .

Lemma 3.31 (Existence of local orthonormal frame). If (M, g) is a Riemannian manifold,

then for any point p ∈M , there is a local orthonormal frame in some neighborhood of p.

Proof. Left as exercise. Applying the Gram-Schmidt orthonormalization procedure to a

basis {∂j} of coordinate vector fields. �

If {Ej} is a local orthonormal frame, then the dual frame {εj}, which is characterized

by εj(Ek) = δjk gives an orthonormal basis of T ∗qM for any q near p. The inner product

in (3.6) is the unique inner product on k-tensor fields such that {εi1 ⊗ · · · ⊗ εik} gives an

orthonormal basis of T k
(
TqM

)
for q near p whenever {εj} is a local orthonormal frame

of 1-forms near p.

If {Ej}nj=1 is any smooth local frame for TM on an open subset U ⊂ M and {εi}ni=1

is its dual coframe, we can write g locally in U as

g = gijε
iεj,

where gij(p) = gp(Ei|p, Ej|p), the matrix-valued function (gij) is symmetric and smooth.

If {Ej} is orthonormal, then gp(Ei|p, Ej|p) = δij, in which case g has the local expression

g = (ε1)2 + · · ·+ (εn)2,

where (εi)2 denotes the symmetric product εiεi = εi ⊗ εi.
Volume form, integration, and Sobolev spaces. From this point on, all Rie-

mannian manifolds will be assumed to be oriented in order for the volume form to be

defined. Clearly near any point p in (M, g), there is a positive local orthonormal frame

(that is, a local orthonormal frame {Ej} which gives a positive orthonormal basis of TqM

for q near p).

Lemma 3.32 (Existence of volume form). Let (M, g) be a Riemannian n-manifold.

There is a unique n-form on M , denoted by dVg and called the volume form, such that

dVg(E1, · · · , En) = 1 for any positive local orthonormal frame {Ej}. In local coordinates

dVg = |g|
1
2dx1 ∧ · · · ∧ dxn.

The volume form is natural in the sense that F ∗(dVg) = dVF ∗g for any orientation pre-

serving diffeomorphism F .

Proof. Exercise. �

If f is a function on (M, g), we can use the volume form to obtain an n-form fdVg.

The integral of f over M is then defined to be the integral of the n-form fdVg. Thus, on
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a Riemannian n-manifold there is a canonical way to integrate functions (instead of just

n-forms).

Codifferential. Using the inner product on k-forms, we can define the codifferential

operator δ as the adjoint of the exterior derivative via the relation

(δu, v) = (u, dv),

where u ∈ C∞(M,Λk) and v ∈ C∞c (int(M),Λk−1). Applying Theorem 2.38 in coordinate

neighborhood covering M and using a partition of unity, we obtain the following

Theorem 3.33 (Codifferential). Let (M, g) be a Riemannian n-manifold. For each k ∈ N
with 0 ≤ k ≤ n, there is a unique linear operator

δ : Ωk(M)→ Ωk−1(M)

having the property

(3.7) (du, v)L2 = (u, δv)L2 , u ∈ Ωk−1
c (M), v ∈ Ωk(M).

The operator δ satisfies δ ◦ δ = 0 and δ|Ω0(M) = 0. In any local coordinates (U, x), it

is a linear first order differential operator acting on component functions, and on 1-form

β = βjdx
j, it is given by

(3.8) δβ := −|g|−
1
2∂j
(
|g|

1
2 gjkβk

)
, β = βkdx

k ∈ Ω1(U).

It follows that δα is related to the divergence of vector fields by δα = − div(α]), where

the divergence is defined in local coordinates by

div(X) := |g|−
1
2∂j
(
|g|

1
2Xj

)
.

Laplace-Beltrami operator. On any Riemannian manifold there is a canonical

second order elliptic operator, called the Laplace-Beltrami operator, which is an analogue

of the usual Laplacian in Rn. As in Section 2.7, we can start from the Dirichlet energy

functional

E(v) =
1

2

∫
M

|dv|2dVg, v ∈ H1(M).

Since E(v) = 1
2
(dv, dv)L2 , the same argument as in Section 2.7 shows that any minimizer

u of the Dirichlet energy functional satisfies the equation

δdu = 0.

We have arrived at the definition of the Laplace-Beltrami operator.

Definition 3.34 (Laplace-Beltrami operator). If (M, g) is a Riemannian manifold (with

or without boundary), the Laplace-Beltrami operator is defined by

∆gu := −δdu.

The next result is immediate

Lemma 3.35. In local coordinates,

∆gu = |g|−
1
2∂j
(
|g|

1
2 gjk∂ku

)
,

where, as before, |g| = det(gjk) is the determinant of g.
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4. A brief introduction to Hodge theory

Let (M, g) be a compact oriented Riemannian manifold with dimension dimM = n.

In this section we introduce a Laplace operator acting on differential forms in M , prove the

Hodge decomposition for differential forms that generalizes the Helmholtz decomposition

for vector fields, and study the topology of M by identifying the de Rham cohomology

groups with spaces of harmonic differential forms.

Recall that we defined the Laplace-Beltrami operator ∆g acting on scalar functions

in M by looking at minimizers of the Dirichlet energy functional

E(u) =

∫
M

|du|2dVg = (du, du)L2 , u ∈ H1(M).

One has the trivial inequality

‖u‖2
H1(M) ≤ E(u) + ‖u‖2

L2 , u ∈ H1(M).

This show that E(u) controls all derivatives of u, which leads to the fact that g is an

elliptic operator.

Now if u is a k-form in M with k ≥ 1, we have seen two tpyes of derivatives of u: the

exterior derivative du ∈ Ωk+1(M) and also the codifferential δu ∈ Ωk−1(M). We could

introduce an energy functional

E(k)(U) := (du, du)L2 + (δu, δu)L2 , u ∈ H1(M,ΛkM).

By the Gaffney’s inequality, this energy functional controls all first order derivatives of

the k-form u.

Now, if u is a minimizer of E(k) in H1(M,ΛkM), then for any ϕ ∈ H1
c (M,ΛkM), we

have

0 =
d

dt
E(k)(u+ tϕ)|t=0

=
d

dt

(
E(k)(u) + 2t

[
(du, dϕ) + (δu, δϕ)

]
+ t2E(k)(ϕ)

)
|t=0

=
(
(dδ + δd)u, ϕ

)
.

This is true for any such ϕ, and so a minimizer must satisfy

(dδ + δd)u = 0.

Definition 4.1 (Hodge Laplacian). If 0 ≤ k ≤ n, we define the Hodge Laplacian to be

the map ∆: Ωk(M)→ Ωk(M) satisfying

−∆ = dδ + δd.

Example 4.2. If U ⊂ R3 is an open set and u = ujdxj is a 1-form in U , then direct

computation gives

(dδ + δd)u = (−∆uj)dx
j.

This holds for k-forms in Rn as well. Namely, if U ⊂ Rn is open and if u = uIdx
I is a

k-form in U , then

∆u = (∆uI)dx
I ,
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where ∆uI is the Euclidean Laplacian of uI ∈ C∞.

Next we study the solvability of the equation −∆u = f on k-forms.

Definition 4.3. Let H−1(M,ΛkM) be the dual space of H1(M,ΛkM), i.e. the space

of bounded linear functions on H1(M,ΛkM). Given f ∈ H−1(M,ΛkM), we say that

u ∈ H1(M,ΛkM) is a weak solution of

−∆u = f in M

if

(du, dv)L2 + (δu, δv)L2 = f(v) for all v ∈ H1(M,ΛkM).

Theorem 4.4. Fix k with 0 ≤ k ≤ n.

(1) Weak Solutions. There is a coutable set {λj}∞j=1 ⊂ R with

0 ≤ λ1 ≤ λ2 ≤ · · · → ∞

such that whenever λ ∈ C\{λ1, λ2, · · · }, the equation

(−∆− λ)u = f

has a unique weak solution u ∈ H1(M,ΛkM) for any f ∈ H−1(M,ΛkM).

(2) Kernel of −∆. The space

Hk := ker
(
∆|H1(M,ΛkM) = {u ∈ H1(M,ΛkM) : ∆u = 0}

)
is finite dimensional and its elements are C∞.

(3) Elliptic regularity. There is a bounded linear map

G : L2(M,ΛkM)→ H2(M,ΛkM)

such that

−∆Gu = (I − Pk)u, u ∈ L2(M,ΛkM),

where Pk is the orthogonal projection from L2(M,ΛkM) onto Hk. For j ≥ 0, G is

a bounded map

Hj(M,ΛkM)→ Hj+2(M,ΛkM).

The finite dimensional space Hk is called the space of harmonic k-forms, and it has

the following characterization.

Theorem 4.5 (Characterization of harmonic forms). For 1 ≤ k ≤ n, we have

Hk = {u ∈ Ωk(M) : du = δu = 0}

and when k = 0, it holds

H0 = {u ∈ C∞(M) : u is constant on each component of M}.

In particular, dim(H0) is the number of connected component of M .

Proof. content... �

The next result is a powerful generazation of the Helmhotz decomposition, which

allows to decompose a vector field F in Rn into curl-free and divergence-free components,
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i.e.

F = ∇p+W,

where p is a scalar function and ∇ ·W = 0. The Helmholtz decomposition corresponds

to the next theorem in the case of 1-forms.

Theorem 4.6 (Hodge decomposition). Any u ∈ L2(M,ΛkM) admits a decomposition

u = dδGu+ δdGu+ Pku,

where the three components are L2-orthogonal.

The Hodge decomposition of u ∈ L2(M,ΛkM) can also be written as

u = dα + δβ + γ,

where α = δGu ∈ H1(M,Λk−1M), β = dGu ∈ H1(M,Λk+1M) and γ = Pku ∈ Hk is a

harmonic k-form (and hence C∞).

Proof of Theorem 4.6. Let u ∈ L2(M,ΛkM). By Theorem 4.4, we have

−∆(Gu) = (I − Pk)u.

The decomposition follows since −∆ = dδ + δd. The orthogonality follows since

(dα, δβ)L2 = (d2α, β)L2 = 0

and since any harmonic form γ is L2-orthogonal to any dα or δβ because of the equation

dγ = δγ = 0.

�

Let M be a compact smooth manifold. We define the de Rham cohomology groups

for 0 ≤ k ≤ n by

Hk
dR(M) := ker(d|Ωk(M))/ Im(d|Ωk−1(M)).

These are vector spaces. If F : M → N is a diffeomorphism between two compact smooth

manifolds, the property dF ∗ = F ∗d immediately implies that F ∗ induces an isomorphism

between the vector space Hk
dR(N) and Hk

dR(M). Thus the de Rham cohomology groups

are diffeomorphic invariants, it is not hard to show that they are actually topological and

even homotopy invariants and hence do not depend on the particular smooth structure

that M has.

The next theorem, due to Hodge, shows that if one assigns a Riemannian metric g

on M , then Hk
dR(M) can be identified with the space of harmonic k-forms. This shows,

in particular, that the dimension of Hk is independent of g and in fact is a topological

invariant.

Theorem 4.7 (Hodge isomorphism). If 0 ≤ k ≤ n, then any equivalence class in Hk
dR(M)

has a unique harmonic representative. The map

Jk : Hk → Hk
dR(M), u 7→ [u]

is an isomorphism.
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Proof. Let ω ∈ Ωk(M) satisfy dω = 0, and let [ω] ∈ Hk
dR(M) be the corresponding

equivalence class. We need to show that [ω] = [u] for a unique u ∈ Hk. To show the

existence, write the Hodge decomposition for ω:

ω = dδGω + δdGω + Pkω.

Note that dω = 0, it follows that (ω, dα) = 0 for all α, and in particular,

0 = (ω, δdGω) = (dδGω + δdGω + Pkω, δdGω) = ‖δdGω‖2.

Thus δdGω = 0, which implies that

ω = u+ dδGω,

where u = Pkω is harmonic. This shows that [ω] = [u] for some harmonic u. To show the

uniqueness, we note that if [u1] = [u2] with ui harmonic for i = 1, 2, then u1 − u2 = dα

for some α, but then

‖u1 − u2‖2 = (u1 − u2, dα) =
(
δ(u1 − u2), α

)
= 0,

which implies that u1 = u2. The fact that Jk is an isomorphism follows immediately from

the above facts. �

As an immediate consequence, we have the following corollary.

Corollary 4.8 (Betti numbers). Let M be a compact oriented smooth manifold. The de

Rham cohomology groups of M are finite dimensional vector spaces, and their dimensions

are given by

bk(M) := dim
(
Hk

dR(M)
)

= dim
(

ker(∆g|Ωk(M))
)
,

where g is any Riemannian metric on M .

Next we discuss the Poincaré duality, which states that there is a natural isomorphism

between Hk
dR(M) and Hn−k

dR (M) whenever 0 ≤ k ≤ n. In terms of Betti numbers, this

implies that bk(M) = bn−k(M). The isomorphism is given by the Hodge star operator.

Theorem 4.9 (Hodge star operator). Let (M, g) be an oriented Riemannian manifold of

dimension n. There is a unique linear operator, called the Hodge star operator,

∗ : Ωk(M)→ Ωn−k(M)

which satisfies the following identity for u, v ∈ Ωk(M)

(4.1) u ∧ ∗v = 〈u, v〉dV.

It has the following properties:

(1) ∗∗ = (−1)k(n−k) on k-forms

(2) ∗1 = dV

(3) ∗(ε1∧· · ·∧εk) = εk+1∧· · ·∧εn, whenever (ε1, · · · , εn) is a positive local orthonormal

frame on T ∗M

(4) The codifferential has the expression

δ = (−1)(k−1)(n−k)−1 ∗ d ∗ on k-forms.
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