Correction Serie 11/12

May 22, 2019

Exercise 7. Soit s la symétrie par rapport au plan affine d'equation

$$
P: x+2 y+3 z=4 .
$$

1. Calculer la matrice (dans la base canonique) de la partie linéaire s_{0} de s et le vecteur \vec{v} tel que

$$
s=t_{\vec{v}} \circ s_{0} .
$$

Denote by P_{0} the plane that passes through the origin,

$$
P_{0}: x+2 y+3 z=0 .
$$

Let v_{1} and $v_{2} \in \mathbb{R}^{3}$ be two vectors that lie in the plane, such that v_{1} is orthogonal to v_{2}. Choose for example

$$
v_{1}=\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
1 \\
-5 \\
3
\end{array}\right)
$$

Normalizing yields

$$
v_{1}^{\prime}=\frac{1}{\sqrt{10}}\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right), \quad v_{2}^{\prime}=\frac{1}{\sqrt{35}}\left(\begin{array}{c}
1 \\
-5 \\
3
\end{array}\right) .
$$

Let v_{3} be a third vector in \mathbb{R}^{3} that lies orthogonal to the other two vectors. Choose

$$
v_{3}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

with normalization

$$
v_{3}^{\prime}=\frac{1}{\sqrt{14}}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

We obtain an orthonormal basis $\mathcal{B}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$ for which the matrix of the symmetry s_{0} is equal to

$$
M_{s_{0}, \mathcal{B}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] .
$$

In order to express the matrix of s_{0} in the canonical basis $\mathcal{B}_{0}=\left\{e_{1}, e_{2}, e_{3}\right\}$, we let A be the base change matrix from \mathcal{B} to \mathcal{B}_{0}, that contains the coefficients of the vectors v_{i}^{\prime} in the basis \mathcal{B}_{0} in its columns,

$$
A=\left(\begin{array}{ccc}
\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{35}} & \frac{1}{\sqrt{14}} \\
0 & -\frac{5}{\sqrt{35}} & \frac{1}{\sqrt{14}} \\
-\frac{1}{\sqrt{10}} & \frac{\sqrt[3]{35}}{\sqrt{35}} & \frac{3}{\sqrt{14}}
\end{array}\right) .
$$

It holds that

$$
M_{s_{0}, \mathcal{B}_{0}}=A * M_{s_{0}, \mathcal{B}} * A^{t}=\frac{1}{7}\left(\begin{array}{ccc}
6 & -2 & -3 \\
-2 & 3 & -6 \\
-3 & -6 & -2
\end{array}\right) .
$$

It remains to describe the translation vector t_{v} for which $s=t_{v} \circ s_{0}$ holds. This is a vector that is orthogonal to the plane P_{0}, respectively P. Hence v is of the form $(\alpha, 2 \alpha, 3 \alpha)$. The point of this form that is contained in the plane P is equal to

$$
\alpha+2(2 \alpha)+3(3 \alpha)=4 \Rightarrow \alpha=\frac{2}{7}
$$

This point $Q=(\alpha, 2 \alpha, 3 \alpha)=\left(\frac{2}{7}, \frac{4}{7}, \frac{6}{7}\right)$ needs to stay fixed under the action of s. Hence if we write $s=t_{v} \circ s_{0}$, we note that Q gets sent to $-Q$ by s_{0}, and hence we need to apply two tranlations $t_{\left(\frac{2}{7}, \frac{4}{7}, \frac{6}{7}\right)}$ for $-Q$ to be sent back to Q. Summing up, we get $t_{v}=t_{\left(\frac{4}{7}, \frac{8}{7}, \frac{12}{7}\right)}$.
2. Que vaut s^{2019} ?

Since s is simply a symmetry along a plane, applying s twice gives back the identity, and hence applying $s 2019$ times gives back s.
3. Même question pour la composée $s^{\prime}=t_{(1,1,1)} \circ s$.

It holds that

$$
s^{\prime}=t_{(1,1,1)} \circ s=t_{(1,1,1)} \circ t_{v} \circ s_{0}
$$

where the vector v is a vector orthogonal to the plane of symmetry by the first question. We want to decompose the translation $t_{(1,1,1)}$ into a translation by a vector u that is orthogonal to the plane of symmetry and a translation by a vector w that lies in the plane of symmetry. Then

$$
s^{\prime}=t_{w} \circ \underbrace{t_{u} \circ t_{v} \circ s_{0}}_{\tilde{s}}=t_{w} \circ \tilde{s},
$$

where \tilde{s} is a symmetry along a plane and \tilde{s} commutes with the translation t_{w}. In order to decompose the vector $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ into the two vectors u and w, we write $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\alpha v_{1}+\beta v_{2}+\gamma v_{3}$, where v_{1} and v_{2} form a basis of the plane P_{0}, and v_{3} is a vector orthogonal to it. We get $\alpha=\frac{1}{5}, \beta=-\frac{1}{35}$ and $\gamma=\frac{3}{7}$, and hence

$$
w=\alpha v_{1}+\beta v_{2}=\left(\begin{array}{c}
\frac{4}{7} \\
\frac{1}{7} \\
-\frac{2}{7}
\end{array}\right) \quad u=\gamma v_{3}=\left(\begin{array}{c}
\frac{3}{7} \\
\frac{6}{7} \\
\frac{9}{7}
\end{array}\right) .
$$

So

$$
s^{\prime}=t_{\left(\frac{4}{7}, \frac{1}{7},-\frac{2}{7}\right)} \circ \underbrace{t_{\left(\frac{3}{7}, \frac{6}{7}, \frac{9}{7}\right)} \circ t_{\left(\frac{4}{7}, \frac{8}{7}, \frac{12}{7}\right)} \circ s_{0}}_{=: \tilde{s}} .
$$

Since t_{w} and \tilde{s} commute, it holds that

$$
\left(s^{\prime}\right)^{2019}=\left(t_{w} \circ \tilde{s}\right)^{2019}=t_{w}^{2019} \circ(\tilde{s})^{2019}=t_{2019 *\left(\frac{4}{7}, \frac{1}{7},-\frac{2}{7}\right)} \circ \tilde{s} .
$$

Exercise 8. Soient $a, b, c, d, e, f \in \mathbb{R}$. On considère la transformation de l'espace donnée dans la base canonique par $\varphi(x, y, z)=(X, Y, Z)$ avec

$$
\begin{aligned}
X & =\frac{1}{d}(2 x-2 y+a z)+1 \\
Y & =\frac{1}{d}(x+b y+2 z)+e \\
Z & =\frac{1}{d}(c x-y+2 z)+f
\end{aligned}
$$

1. Décrire l'ensemble des $(a, b, c, d, e, f) \in \mathbb{R}^{5}$ tels que φ est un vissage.

Let $\varphi=t_{v} \circ \varphi_{0}$, where φ_{0} is the linear part, which is a rotation in the case of a vissage, and t_{v} is a translation by a vector that is not orthogonal to the axis of rotation. The matrix corresponding to the linear part is

$$
M_{\varphi_{0}}=\frac{1}{d}\left(\begin{array}{ccc}
2 & -2 & a \\
1 & b & 2 \\
c & -1 & 2
\end{array}\right)
$$

and the translation vector is

$$
t_{v}=\left(\begin{array}{l}
1 \\
e \\
f
\end{array}\right)
$$

In order for φ_{0} to be a rotation, this matrix needs to be orthogonal and of determinant 1 . The ortogonality condition poses the following restrictions on the variables a, b, c, d, e, f :

$$
\frac{1}{d^{2}}\left(\begin{array}{ccc}
2 & -2 & a \\
1 & b & 2 \\
c & -1 & 2
\end{array}\right) *\left(\begin{array}{ccc}
2 & 1 & c \\
-2 & b & -1 \\
a & 2 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

It follows that

- $8+a^{2}=d^{2}$
- $2-2 b+2 a=0$
- $2 c+2+2 a=0$
- $2-2 b+2 a=0$
- $5+b^{2}=d^{2}$
- $c-b+4=0$
- $2 c+2+2 a=0$
- $c-b+4=0$
- $c^{2}+5=d^{2}$

From these equations we get

$$
a=1, b=2, c=-2, d= \pm 3 .
$$

Using the fact that the determinant of $M_{\varphi_{0}}$ needs to be 1 , it follows that $d=+3$.
The axis of rotation is defined to be

$$
D_{0}=\operatorname{ker}\left(\varphi_{0}-\mathrm{Id}\right)=\operatorname{ker}\left(\frac{1}{3}\left(\begin{array}{ccc}
-1 & -2 & 1 \\
1 & -1 & 2 \\
-2 & -1 & -1
\end{array}\right)\right)
$$

The vector $\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$ is contained in the kernel, and hence $D_{0}=\mathbb{R}\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$. The isometry φ is a vissage if the vector v, by which we translate is not orthogonal to D_{0}, i.e. if $-1+e+f \neq 0 \Rightarrow e+f \neq 1$.
2. Même question en demandant que φ soit une anti-rotation.

The only difference to the first part is that in the case of an anti-rotation, the determinant of $M_{\varphi_{0}}$ is equal to -1 and so $d=-3$. The translation vector can be any vector, and the axis of rotations stays the same.
3. Si φ n'est pas un vissage montrer que $\varphi^{6}=\operatorname{Id}_{\mathbb{R}^{3}}$.

If φ is no vissage, it is either a rotation or an anti-rotation. Consider the case of a rotation first. The angle θ can be determined via

$$
\cos \theta=\frac{1}{2}\left(\operatorname{tr}\left(M_{\varphi_{0}}\right)-\operatorname{det}\left(M_{\varphi_{0}}\right)\right)=\frac{1}{2}(2-1)=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3} .
$$

Hence rotating 6 times results in the identity.
In case of an antirotation, we get

$$
\cos \theta=\frac{1}{2}\left(\operatorname{tr}\left(M_{\varphi_{0}}\right)-\operatorname{det}\left(M_{\varphi_{0}}\right)\right)=\frac{1}{2}(-2-(-1))=-\frac{1}{2} \Rightarrow \theta=\frac{2 \pi}{3} .
$$

Hence applying this 6 times results in the identity.

