Artificial Neural Networks: Lecture 12Johanni BreaUse Cases of Deep Reinforcement LearningEPFL, Lausanne, Switzerland

Outline of today:

- A3C, DQN and decorrelation for deep RL
- RL in the ATARI domain
- Replay Memory and Backward Planning in tabular environments
- Forward Planning in model-based RL (board games): Minimax vs. Monte Carlo Tree Search
- Alpha Zero
- Limitations of deep RL

Reading for this lecture:

Sutton and Barto 2018 Reinforcement Learning

- Ch 16, 8, (optional 17)

Further (optional) reading for this lecture: See references in the slides.

Asynchronous Advantage Actor Critic (A3C) Deep Q-Learning (DQN) And Decorrelation for Deep RL

Review: Actor-Critic Policy Gradient

Asynchronous game play and entropy regularization

1) Minibatches allow to leverage parallelization e.g. GPU **Problem: Minibatches for Actor-Critic Policy Gradient?** Proposed solution: Interact with N environments in parallel. 2) Policy can become deterministic too quickly, e.g.

$$\pi(a=1|s) = \frac{\exp(w_1s)}{\sum_i \exp(w_is)}$$

Proposed solution: add entropy $H(\pi)$ to cost function (regularization to keep differences between w's small).

A3C = Asynchronous (interaction with N environments) **A**dvantage (TD-error = advantage of chosen action) (policy network) Actor (value network) Critic

- $\approx 1 \text{ if } w_1 \gg w_i$

Atari Video Games (preprocessing)

g(t) = grayscaled(downsampled(o(t))

o(t) = original

s(t) = (g(t), ..., g(t-3))input to convnet

Learning Atari Games with A3C

- 8x8x32 stride 4 => 4x4x64 stride 2 => 3x3x64 => 512 => 4 18
- 16 parallel threads on CPU per game for up to 4 days to reach superhuman performance in 57 games

=> 3x3x64 => 512 => 4 - 18 ne for up to 4 days e in 57 games

Deep Q-Network

- $Q_a(s)$ = same network as on previous slide (different interpretation) $\hat{Q}_a(s)$ = copy of $Q_a(s)$ with old parameters (target network) 1: for all steps do
- select action a_t with ϵ -greedy policy using $Q_a(s_t)$ 2:
- 3:
- Store transition (s_t, a_t, r_t, s_{t+1}) in replay memory 1M transitions 4:
- Sample random minibatch (s_i, a_i, r_i, s_{i+1}) from replay memory 5:
- 6:
- Every C steps reset $\hat{Q} = Q$. 7: 8: end for

$$\mathcal{L}(x) = \begin{cases} |x| & x > 1\\ x^2 & \text{otherwise} \end{cases}$$

Decorrelation for Deep RL

Classification: uncorrelated sampling of training data

RL: Subsequent inputs often highly correlated

Possible solutions

1) Parallel interaction with N independent environments (A3C) 2) Sampling from replay memory (DQN)

Replay Memory and Planning in Tabular Environments

31	32	33	34	35	36
25	26	27	28	29	30
19	20	21	22	23	24
13	14	15	16	17	18
7	8	9	10	11	12
1	2	3	4	5	6

		\triangle

1		1	

1		1	

1		1	

1		1	

1		1	

1		1	

		\square

		\triangle

_

- + Convergence
- + Minimal memory/computation
- Sample inefficiency

Can we do better?

Yes. 1. Organize memory in table, i.e. estimate $P_{s \to s'}^a = N_{s \to s'}^a / N_s^a$ with counts $N_{s \rightarrow s'}^{a}$ and N_{s}^{a} 2. Prioritize backups cleverly.

		$\sum_{i=1}^{n}$

		\triangle
		\triangle

	-	

_		
_		
		7

-		
		7
-		

-		
		7
-		

-		
		7
-		

-		
		7
-		

-		
		7
-		

-		
		7
-		

-		
		7
-		

-		
		7
-		

-		
		7
-		

-		
		7
-		

-		
		7
-		

-		
		7
-		

-		
		7
-		

-		
		7
-		

		7

		7

		7

Summary and Conclusions

- 1. Methods that estimate and use $P^a_{s \to s'}$ for planning are called model-based.
- 2. The **Dyna Architecture** visualizes, how model-based methods could work.
- 3. Prioritized sweeping is a **backward-focusing** planning method.
- 4. Application of insights to DQN: **Prioritized-DQN** samples replay memory better than uniform random (https://arxiv.org/abs/1511.05952).

OUIZ:

[] SARSA is a model-based RL algorithm because Q(s, a) is learned. [] DQN is a model-based algorithm because of its use of a replay memory. [] Prioritized sweeping is a model-based algorithm because it uses $N_{s \rightarrow s'}^a / N_s^a$ to backup the Q-values.

[] Uniform sampling from replay memory or parallel interaction with independent environments reduces the variance of the gradient estimator. [] Prioritized DQN further reduces the variance of the gradient estimator. [] Prioritized DQN learns faster than DQN, because the samples lead to better propagation of changes in Q-values. [] To detect the motion of objects in ATARI games 4 subsequent frames form the input of DQN and A3C.

Two player board games (Go, Chess, Shogi)

What is special about board games?

- $P^a_{s \to s'}$ is perfectly known => planning methods can be applied
- State space is large Chess ~ $10^{40} - 10^{50}$ positions Go 19x19 ~ 10^{170} positions (number of atoms on earth) ~ 10^{50}
- Action space is not small
- Chess $\sim 10 30$ actions per position • Go $\sim 100 - 361$ actions per position

Should we use prioritized sweeping? No.

Backups only along visited positions. No generalization to other positions.

Classical approaches 1: MiniMax (with alpha-beta pruning)

function MAX-VALUE (s, α, β) if terminal(s) return V(s) $v = -\infty$ for all c in next-states(s) do $v' = \text{MIN-VALUE}(c, \alpha, \beta)$ if v' > v, v = v'if $v' \geq \beta$ return vif $v' > \alpha, \alpha = v'$ end for return vend function

- Typically used in chess engines (e.g. StockFish)
- V(s) typically hand-crafted evaluation function of board position, e.g. a queen is more valuable than a pawn

function MIN-VALUE (s, α, β) if terminal(s) return V(s)

 $v = \infty$

for all c in next-states(s) do $v' = MAX-VALUE(c, \alpha, \beta)$ if v' < v, v = v'if $v' \leq \alpha$ return vif $v' < \beta, \beta = v'$ end for return v

end function

Example on blackboard

http://inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/apps/ab_tree_practice/

Classical approaches 2: Monte Carlo Tree Search (MCTS)

- Typically used in go engines (e.g. MoGo, FueGo, Zen) No hand-crafted evaluation function of board positions needed (slow) convergence to minimax solution

AlphaZero: the MCTS variant

Most important modifications:

1.
$$PUCB(s, a) = Q(s, a) + cP(s, a)$$

Prior prolematical prior prior

2. Update of Q(s, a) with estimated win probability V(s) computed by a separate output of the neural net instead of just rollout values.

bability (focus) by neural net

AlphaZero: the neural network

1) Input: 17 planes (8 + 8 + 1)8 planes for own stones in last eight board positions 8 planes for opponent stones in last eight board positions plane (all 0 or all 1) to indicate if white or black is to play 2) Deep res-net with batch-normalization (79 layers) 3) Output: policy head P(s, a) value head V(s)

Training: Uniform sampling of 2048 positions s from last 500 000 games to form a minibatch. Loss:

^{*a*} Action probability from MCTS

AlphaZero: success story

700 000 steps (minibatches of size 4096) using >5000 TPU
OUIZ:

[] MiniMax and Monte Carlo Tree Search require $P^a_{s \to s'}$. [] MCTS requires a value function to evaluate the leafs. [] AlphaZero uses a learned value function to update the leaf values. [] The probability of selecting a move in AlphaZero is given by the output of the policy neural network.

[] The probability of selecting a move in AlphaZero is determined by MCTS. [] The output of the policy network is used in the selection phase of MCTS.

[] Instead of a hand-crafted value function used in chess engines with MiniMax, one could learn the value function through self-play like AlphaZero.

hard.html

From games to reality: what if the model is unknown?

Very active research:

- Oh et al. 2017 https://arxiv.org/abs/1707.03497 Learn abstraction with neural network & MCTS-like planning
- Corneil, Gerstner, Brea 2018, https://arxiv.org/abs/1802.04325 Learn abstraction with neural network & prioritized sweeping
- Nagabandi et al. 2017 https://arxiv.org/abs/1708.02596 Learn continuous dynamics in simulated robotics domain
- Weber et al. 2017 https://arxiv.org/abs/1707.06203 Learn abstraction and rollout strategy

General problem: errors accumulate in planning with imperfect model

1707.03497 ork & MCTS-like planning //arxiv.org/abs/1802.04325 ork & prioritized sweeping org/abs/1708.02596 lated robotics domain bs/1707.06203