
Johanni Brea
EPFL, Lausanne, Switzerland Artificial Neural Networks: Lecture 12

 Use Cases of Deep Reinforcement Learning
Outline of today:
- A3C, DQN and decorrelation for deep RL
- RL in the ATARI domain
- Replay Memory and Backward Planning

in tabular environments
- Forward Planning in model-based RL (board games):

Minimax vs. Monte Carlo Tree Search
- Alpha Zero
- Limitations of deep RL

Reading for this lecture:

Sutton and Barto 2018 Reinforcement Learning

- Ch 16, 8, (optional 17)

See references in the slides.

Further (optional) reading for this lecture:

Asynchronous Advantage Actor Critic (A3C)
Deep Q-Learning (DQN)
And Decorrelation for Deep RL

Review: Actor-Critic Policy Gradient

advance push
left

actions

value

TD-error

- Estimate V(s)
- learn via TD error

TD-error (n-steps) e.g. n = 3

Estimate of total return

baseline

Asynchronous game play and entropy regularization

1) Minibatches allow to leverage parallelization e.g. GPU
 Problem: Minibatches for Actor-Critic Policy Gradient?
 Proposed solution: Interact with N environments in parallel.

2) Policy can become deterministic too quickly, e.g.

A3C = Asynchronous (interaction with N environments)
 Advantage (TD-error = advantage of chosen action)

Actor (policy network)
Critic (value network)

Proposed solution: add entropy to cost function
(regularization to keep differences between w’s small).

Atari Video Games (preprocessing)

o(t) = original g(t) = grayscaled(
downsampled(o(t))

s(t) = (g(t), …, g(t-3))
input to convnet

Learning Atari Games with A3C

● 8x8x32 stride 4 => 4x4x64 stride 2 => 3x3x64 => 512 => 4 - 18
● 16 parallel threads on CPU per game for up to 4 days
 to reach superhuman performance in 57 games

Deep Q-Network
 = same network as on previous slide (different interpretation)
 = copy of with old parameters (target network)

standard preprocessing

1M transitions

Decorrelation for Deep RL

Classification:
uncorrelated sampling

of training data

RL:
Subsequent inputs often

highly correlated

Possible solutions

1) Parallel interaction
with N independent
environments (A3C)

2) Sampling from replay
memory (DQN)

Replay Memory and Planning
in Tabular Environments

standard tabular Q-Learning

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard tabular Q-Learning

standard Q-Learning

+ Convergence

+ Minimal memory/computation

– Sample inefficiency

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory standard Q-Learning

with replay memory

with replay memory

– Inefficient updates

– Needs more memory/computation

+ Sample efficiency

standard Q-Learning

standard Q-Learning

+ Convergence

+ Minimal memory/computation

– Sample inefficiency

Can we do better?

Yes.

1. Organize memory in table, i.e.
estimate Pa

s→s ′ = Na
s→s ′/N

a
s

with counts Na
s→s ′ and Na

s

2. Prioritize backups cleverly.

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

prioritized sweeping

Prioritized sweeping

+ Convergence

– Needs more memory/computation

+ Highest sample efficiency

Dyna Architecture

Summary and Conclusions

1. Methods that estimate and use Pa
s→s ′ for planning are called

model-based.

2. The Dyna Architecture visualizes, how model-based methods
could work.

3. Prioritized sweeping is a backward-focusing planning method.

4. Application of insights to DQN:
Prioritized-DQN samples replay memory better than uniform
random (https://arxiv.org/abs/1511.05952).

https://arxiv.org/abs/1511.05952

Quiz:

[] SARSA is a model-based RL algorithm because Q(s, a) is learned.
[] DQN is a model-based algorithm because of its use of a replay memory.
[] Prioritized sweeping is a model-based algorithm because it uses
 to backup the Q-values.
[] Uniform sampling from replay memory or parallel interaction with independent
 environments reduces the variance of the gradient estimator.
[] Prioritized DQN further reduces the variance of the gradient estimator.
[] Prioritized DQN learns faster than DQN, because the samples lead to
 better propagation of changes in Q-values.
[] To detect the motion of objects in ATARI games
 4 subsequent frames form the input of DQN and A3C.

Two player board games (Go, Chess, Shogi)

What is special about board games?

● is perfectly known => planning methods can be applied
● State space is large
 Chess ~ 1040 – 1050 positions
 Go 19x19 ~ 10170 positions
 (number of atoms on earth) ~ 1050

● Action space is not small
 Chess ~ 10 – 30 actions per position

● Go ~ 100 – 361 actions per position

Should we use prioritized sweeping? No.

Backups only along visited positions.
No generalization to other positions.

Classical approaches 1: MiniMax (with alpha-beta pruning)

● Typically used in chess engines (e.g. StockFish)
● V(s) typically hand-crafted evaluation function of board position,
 e.g. a queen is more valuable than a pawn

Example on
blackboard

http://inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/apps/ab_tree_practice/

Classical approaches 2: Monte Carlo Tree Search (MCTS)

● Typically used in go engines (e.g. MoGo, FueGo, Zen)
● No hand-crafted evaluation function of board positions needed
● (slow) convergence to minimax solution

Example UCT
on blackboard

AlphaZero: the MCTS variant

Prior probability (focus)
learned by neural net

2. Update of Q(s, a) with estimated win probability V(s) computed by
a separate output of the neural net instead of just rollout values.

1.

Most important modifications:

http://inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/apps/ab_tree_practice/

AlphaZero: the neural network

1) Input: 17 planes (8 + 8 + 1)
 8 planes for own stones in last eight board positions
 8 planes for opponent stones in last eight board positions
 plane (all 0 or all 1) to indicate if white or black is to play

2) Deep res-net with batch-normalization (79 layers)
3) Output: policy head P(s, a) value head V(s)

Training:
Uniform sampling of 2048 positions s from last 500 000 games to
form a minibatch. Loss:

Result of game Action probability from MCTS

AlphaZero: success story

700 000 steps (minibatches of size 4096) using >5000 TPU

Quiz:

[] MiniMax and Monte Carlo Tree Search require .
[] MCTS requires a value function to evaluate the leafs.
[] AlphaZero uses a learned value function to update the leaf values.
[] The probability of selecting a move in AlphaZero is given by the output of
 the policy neural network.
[] The probability of selecting a move in AlphaZero is determined by MCTS.
[] The output of the policy network is used in the selection phase of MCTS.

[] Instead of a hand-crafted value function used in chess engines with MiniMax,
 one could learn the value function through self-play like AlphaZero.

Success stories and limitations of deep reinforcement learning

video games

Mnih et al. (2015), Nature

Success stories and limitations of deep reinforcement learning

video games

Mnih et al. (2015), Nature

board games

Silver et al. (2017), Arxiv:1712.01815

Success stories and limitations of deep reinforcement learning

video games

Mnih et al. (2015), Nature

board games

Silver et al. (2017), Arxiv:1712.01815

simulated robotics

Heess et al. (2017), Arxiv:1707.02286

Success stories and limitations of deep reinforcement learning

Deep Reinforcement Learning

Doesn’t Work Yet

https://www.alexirpan.com/2018/02/14/rl-

hard.html

Success stories and limitations of deep reinforcement learning

video games

Mnih et al. (2015), Nature

board games

Silver et al. (2017), Arxiv:1712.01815

simulated robotics

Heess et al. (2017), Arxiv:1707.02286

Humans learn much faster

x
20 min 20000 min

Lake et al. (2016), Behav. and brain sc.

From games to reality: what if the model is unknown?

Very active research:

- Oh et al. 2017 https://arxiv.org/abs/1707.03497
 Learn abstraction with neural network & MCTS-like planning
- Corneil, Gerstner, Brea 2018, https://arxiv.org/abs/1802.04325
 Learn abstraction with neural network & prioritized sweeping
- Nagabandi et al. 2017 https://arxiv.org/abs/1708.02596
 Learn continuous dynamics in simulated robotics domain
- Weber et al. 2017 https://arxiv.org/abs/1707.06203
 Learn abstraction and rollout strategy

General problem: errors accumulate in planning with imperfect model

