Measuring systems

Lecturer: Andras Kis

In class demo: RTD and photodetector

USB connector

Arduino UNO board

Conditioning circuit

In class demo: RTD and photodetector

Data analysis (recording, averaging, etc.)

Arduino UNO board

Conditioning circuit

Measurement chain

Measuring systems

- Sensors and their conditioning
- Modeling sensors
- Noise estimation and reduction
- Data acquisition
- Data analysis and treatment
- Comparison betweeen different measurement results

References

- Georges Asch, Acquisition de données, Dunod, 2003
- Ph. Robert, TE vol 17, Systèmes de mesure

- Transparencies
- Exercises + solutions

Organisation

- Room BC 01
- Exercises
 - 11 problem sets
 - Discussions during the exercises
 - Work at home
- Written mock exam (end November or early December) –
 bonus (max +1 on the final exam)
- Written exam
- Prerequisits: Electrotechnique 1 and 2
- Needed for: TP Measuring systems

Expected work load

- 1 credit = 30 work hours (source: EPFL, CRAFT)
- 3 credits x 30 = 90 hours total
 - 10 h preparation for the exam
 - =80h
 - -3x14 lectures + exercises
 - =38 h for individual work at home
 - = 2.5-3 h/week

Chapter 1: Sensors and conditioning circuits

Sensors and conditioning circuits

- Introduction
 - Transducer: sensor, actuator
- Passive sensors and their conditioning
 - Temperature RTD (resistance temperature detector)
 - Displacement capacitive sensors
 - Displacement inductive sensors
 - Light intensity photoconductors
- Active sensors and their conditioning
 - Temperature thermocouple (thermoelectric effect)
 - Light intensity photovoltaic cell photovoltaic effect
 - Displacement piezoelectric gauge

Transducer

A transducer is an element that converts one physical quantity into another physical quantity

- Mercury thermometer (temperature displacement)
- Accelerometer (acceleration voltage)
- Electrode in a battery (ion electrical charge)
- Motor (electrical current mechanical moment)
- LED (electrical current light)

Sensor - actuator

- A sensor is a transducer that converts a physical quantity into an electrical quantity:
 - Resistance thermometer (temperature resistance)
 - Photodetector (light current)

- An actuator is a transducer that converts an electrical quantity into a non-electrical quantity
 - Piezo actuator (charge displacement)
 - Resistive heater (current heat)
 - LED (current light)

Sensors

- Sensitivity **S**: response in magnitude
- Transfer function: frequency response
- Noise: sensitivity to perturbations (internal and external)

Passive and active sensors

• Passive sensors - require an external power source

Examples:

- Resistive thermometer
- Capacitive displacement sensor
- Active sensors generate the electrical signal from the measured quantity

Examples:

- Thermocouples thermoelectric effect
- Accelerometers piezoelectric effect

Passive sensors

Passive sensors

Measured quantity	Sensitive characteristic	Device
Temperature	Resistance	RTD (resistance temperature detector)
Mechanical (Force, pression, acceleration, vibrations, sound level, displacement)	Resistance, capacitance, inductance	potentiometer, microphone LVDT (linear variable differential transformer), accelerometer, strain gauge
Light intensity	Resistance	photoconductor phototransistor

Resistive temperature sensors (RTD)

 Resistance of a metal as a function of temperature:

$$R = R_0 \cdot f\left(T - T_0\right)$$

R − Resistance at temperature *T*

 R_0 – Resistance at temperature T_0

• For platinum (PT100):

$$R(T) = R_0 (1 + A(T - T_0) + B(T - T_0)^2)$$

T – temperature in °C

 $T_0 = 0$ °C

 $R_0 = 100 \Omega$

 $A = 3.9 \times 10^{-3} \, ^{\circ}\text{C}^{-1}$

 $B = -5.775 \times 10^{-7} \, ^{\circ}\text{C}^{-2}$

Linear but low sensitivity

Wound wire

Resistive temperature sensors (Thermistors)

- Ceramics or polymers
- Generally described by Steinhart-Hart equation:

$$\frac{1}{T} = A + B[\ln(R)] + C[\ln(R)]^3$$

T – Temperature in Kelvin

• Example: Omega 44006

$$R_{T=25^{\circ}C} = 10000 \Omega$$

 $A = 1.032 \times 10^{-3} \, ^{\circ}C^{-1}$
 $B = 2.208 \times 10^{-4} \, ^{\circ}C^{-1}$
 $C = 1.276 \times 10^{-7} \, ^{\circ}C^{-1}$

Non-linear but high sensitivity

Semiconducting diode thermometers

- Si, Ge, etc.
 - pn junctions
 - Inexpensive and (mostly)
 linear
 - Limited temperature range (-50 – 150 °C)

Lakeshore DT 400

Conditioning circuits for resistive sensors

Voltage divider

$$U_{out} = U_0 \frac{R_{sensor}}{R_{load} + R_{sensor}}$$

For
$$R_{load} = R_{sensor} = R$$
:

$$U_{out} = \frac{U_0}{2}$$

Conditioning circuits for resistive sensors

Wheatstone bridge

$$U_{out} = \left[\frac{R_{sensor}}{R_{sensor} + R} - \frac{R}{2R}\right]U_0$$

For
$$R_{sensor} = R$$
:
$$U_{out} = 0$$

Displacement sensor - resistive

Potentiometer

- Resistor with a sliding contact
- Acts as a voltage divider

$$U_{out} = \frac{R_x}{R} U_0$$

Displacement sensor - inductive

LVDT (Linear Variable Differential Transformer)

Mutual inductance – differential transformer

$$u_1 = R_1 i_1 + L_1 \frac{di_1}{dt} + (M'' - M') \frac{di_2}{dt}$$

$$u_2 = -(R_2' + R_2'')i_2 - (L_2' + L_2'')\frac{di_2}{dt} + (M''-M')\frac{di_1}{dt}$$

$$\underline{U}_1 = (R_1 + j\omega L_1)\underline{I}_1 + j\omega(M''-M')\underline{I}_2$$

$$\underline{U}_2 = -(R'_2 + R''_2 + j\omega L'_2 + j\omega L''_2)\underline{I}_2 + j\omega (M'' - M')\underline{I}_1$$

Voltage on L_2 ' due to current i_2 :

$$L_2' \frac{di_2}{dt}$$

Voltage on L_2 ' due to current i_1 :

$$M'\frac{di_1}{dt}$$

For
$$R_c >>$$
, $i_2 \approx 0$

$$\underline{U}_{2} = \frac{j\omega[M''(x) - M'(x)]}{R_{1} + j\omega L_{1}}\underline{U}_{1}$$

Mutual inductance – differential transformer

$$\underline{U}_{2} = \frac{j\omega \left[M''(x) - M'(x)\right]}{R_{1} + j\omega L_{1}} \underline{U}_{1}$$

$$M'(x) = M(0) + ax + bx^{2} + \dots \text{ for } x > 0$$

$$M''(x) = M(0) - ax + bx^{2} + \dots \text{ for } x < 0$$

2nd order approximation:

$$M''(x) - M'(x) = -2ax$$

We get a linear relationship:

$$\underline{U}_{2} = \frac{-2j\omega \cdot a\underline{U}_{1}}{R_{1} + j\omega L_{1}}\underline{X}$$

Capacitive displacement sensor

Capacitance

$$C = \varepsilon \frac{A}{d}$$

• Microphone: sound (external pressure variations) cause the membrane to vibrate (displacement dx)

Conditioning for capacitive sensors

Pressure sensor

Principle: change in resistance upon mechanical deformation

$$R_{initial} = \rho \frac{l}{S}$$

$$R_{strained} = (\rho + \Delta \rho) \frac{l + \Delta l}{S + \Delta S}$$

- R resistance
- ρ resistivity
- l length
- S cross-sectional area

Source: Wikipedia

$$\frac{\Delta R}{R} = K \frac{\Delta l}{l}$$

$$K \sim 2-4$$

$$U_{0} = f(U_{0}, \Delta R/R)$$

$$R_{sensor} = R + \Delta R$$

$$U_{out} = f(U_{0}, \Delta R/R)$$
?

• Let strain ε be the relative change in length and stress σ the force F per cross-sectional area S:

$$\varepsilon = \frac{\Delta l}{l} \qquad \sigma = \frac{F}{S}$$

- Strain and stress are related through the Young's modulus Y and Poisson ratio v
 - In the direction parallel to the stress: $\mathcal{E}_{\parallel} = \frac{\sigma}{Y}$
 - Perpendicular to the stress: $\mathcal{E}_{\perp} = \nu \mathcal{E}_{||} = \nu \frac{\sigma}{Y}$

Surface change:

$$\frac{\Delta S}{S} = -2\nu \frac{\Delta l}{l}$$

• Resistance change:

$$\frac{\Delta R}{R} = \frac{\Delta \rho}{\rho} + \frac{\Delta l}{l} - \frac{\Delta S}{S}$$

$$\frac{\Delta R}{R} = (1 + 2\nu) \frac{\Delta l}{l} + \frac{\Delta \rho}{\rho}$$

Dominant terms

Metals: first term (geometry)
Semiconductors: second term

AXIAL STRESS APPLICATIONS

Force sensor

Based on a strain sensor attached to a test object

Sensors for force, pressure, acceleration

Force F

 $F = f(\varepsilon)$

Pressure $P = P_1 - P_2$

$$P_1 > P_2$$
$$P = f(\varepsilon)$$

Acceleration *a*

$$a = \Delta x \cdot \frac{k}{m} = f(\varepsilon)$$

Some applications for accelerometers

inflator

AIR BAG

nitrogen gas

crash sensor

Airbag

Image stabilisation

Nintendo Wii

iPhone etc.

MEMS-based accelerometer

 Micro-Electro-Mechanical systems: integration of electronics and mechanical elements: sensors and actuators

Microelectromechanical systems (MEMS)

 Micro-Electro-Mechanical systems: integration of electronics and mechanical elements: sensors and actuators

Movement of the beam controlled by springs with spring constant *k*

ADXL202 accelerometer Analog Devices website

Microelectromechanical systems (MEMS)

Force on a mass *m* subject to acceleration *a*:

$$F = ma$$

Restoring force from the spring:

$$F = k \cdot \Delta x$$

So the deflection is:
$$\Delta x = \frac{m}{k}a$$

It is read out by measuring the electrical capacitace between the « fingers »

$$C = C(x)$$

Light intensity measurements

Photoconductor

- Highly resistive semiconductor (for example CdS)
- Under illumination, electron-hole pairs are excited and the resistance decreases
- Requires a voltage source to operate in a similar way to RTDs

Light intensity measurements

- Phototransistor
 - npn or pnp junction
 - Light absorbed in the base-collector junction generates electrons that are injected into the base and amplified by the transistor's current gain
 - Higher responsivity (A/W) but longer response time and higher dark currents than photodiodes

Active sensors

Temperature – Thermoelectric effect

Seebeck effect – temperature difference results in a potential difference

 $T_A < T_B \rightarrow e^-$ in B are more energetic than in A e^- move from B to A \rightarrow more electrons in A $\rightarrow U_{AB} > 0$

• Thomson effect – heat transport due to electrical current

 e^{-} move from B to A \rightarrow energy loss \rightarrow temperature increase in the middle of the conductor

 e^- move from A to B \rightarrow energy is absorbed \rightarrow temperature decrease in the middle

Temperature – Thermoelectric effect

Peltier effect

- The energy of an electron depends on the temperature, work function (type of the conductor) and local electromagnetic field
- By passing from 1 to 2, the energy of an electron is modified, resulting in heat being absorbed (cooling) or generated (heating)

- Thermoelectric effect common name for these three effects
- Sensor: thermocouple
- Actuator: Peltier element

Thermocouple

Practical devices have built-in cold junction compensation

Thermocouples vs. RTD

Characteristic	Thermocouples	RTD
Range	Up to 2300°C	Up to 500°C
Speed	Fast (<1 s)	Slow (>1 s)
Precision	Low (~1 °C)	High (<<1 °C)

Displacement – Piezoelectric effect

Occurs in materials with no inversion symmetry

Before polarisation

$$q = d\sigma$$
 After polarisation

q – induced charge

d – piezoelectric coefficient

 σ – mechanical stress

Displacement – Piezoelectric effect

- Sources of mechanical stress
 - Force, deformation, vibration, sound
- Materials
 - Quartz, ceramics (PZT), PVDF (Polyvinylidene fluoride)
- Applications
 - Force and pressure sensors
 - Accelerometers
 - Microphones

Displacement – Piezoelectric effect

Force sensor

Accelerometer

Light intensity measurements - Photodiode

- Light is absorbed in a pn junction
- Photoexcited charge carriers are separated in the internal electric field
- Voltage is generated
- Non-linear response

Key Points

- There is a large number of sensors and measurement principles
- Passive sensors based on measurements of R, L, C; require a power supply
- Active sensors directly use the measured quantity for generating the signal
- The signal is obtained with the use of a conditioning circuit
- When choosing an appropriate sensor, keep in mind the operating principle, the measurement range, possible sources of errors