
Real Time Embedded Systems

"System On Programmable Chip"

NIOSII Architecture & Interrupt services

Some Avalon Peripherals

René Beuchat

Laboratoire d'Architecture des Processeurs

rene.beuchat@epfl.ch

03/2007-02/2013

EPFL/LAP/RB -E2013

2

http://moodle.msengineering.ch/course/view.php?id=12

NIOS II

• General Features

• Embedded system NIOSII/Avalon Architecture

• NIOS II Core Architecture

• NIOS II Memory Architecture

• Programming Model Registers

• Exceptions Model

• Instructions

• Custom Instructions

03/2007-02/2013
3

EPFL/LAP/RB -E2013

NIOS II

• Some Avalon Peripherals:

PIO

Timer

Performance Counter

03/2007-02/2013
4

EPFL/LAP/RB -E2013

NIOS II - General Features

The Nios II processor is a general-purpose RISC processor
core, providing:

• Full 32-bit instruction set, data path, and address space

• 32 general-purpose registers

• 32 external interrupt sources

• Single-instruction 32 × 32 multiply and divide producing
a 32-bit result

• Dedicated instructions for computing 64-bit and 128-bit
products of multiplication

• Floating-point instructions for single-precision floating-
point operations

• Single-instruction barrel shifter

03/2007-02/2013
5

EPFL/LAP/RB -E2013

NIOS II - General Features

• Access to a variety of on-chip peripherals, and interfaces
to off-chip memories and peripherals

• Hardware-assisted debug module enabling processor
start, stop, step and trace under integrated development
environment (IDE) control

• Software development environment based on the GNU
C/C++ tool chain and Eclipse IDE

• Integration with Altera's SignalTap® II logic analyzer,
enabling real-time analysis of instructions and data long
with other signals in the FPGA design

• Instruction set architecture (ISA) compatible across all
Nios II processor systems

03/2007-02/2013
6

EPFL/LAP/RB -E2013

NIOS II - General Features

• A Nios II processor system is equivalent to a
microcontroller or “computer on a chip” that
includes a CPU and a combination of
peripherals and memory on a single chip.

• The term “Nios II processor system” refers to a
Nios II processor core, a set of on-chip
peripherals, on chip memory, and interfaces to
off-chip memory, all implemented on a single
Altera® chip.

• Like a microcontroller family, all Nios II
processor systems use a consistent instruction
set and programming model.

03/2007-02/2013
7

EPFL/LAP/RB -E2013

NIOS II –
Embedded system NIOSII/Avalon Architecture

03/2007-02/2013
8

EPFL/LAP/RB -E2013

NIOS II –
Embedded system NIOSII/Avalon Architecture

Implementation variables generally fit

one of three trade-off patterns:

•more-or-less of a feature;

• inclusion-or-exclusion of a feature;

•Hardware implementation or software

emulation of a feature.

03/2007-02/2013
9

EPFL/LAP/RB -E2013

NIOS II –
Embedded system NIOSII/Avalon Architecture

An example of each trade-off follows:

• More or less of a feature —For example, to fine-tune performance,
you can increase or decrease the amount of instruction cache
memory. A larger cache increases execution speed of large
programs, while a smaller cache conserves on-chip memory
resources.

• Inclusion or exclusion of a feature —For example, to reduce cost,
you can choose to omit the JTAG debug module. This decision
conserves onchip logic and memory resources, but it eliminates the
ability to use a software debugger to debug applications.

• Hardware implementation or software emulation —For example,
in control applications that rarely perform complex arithmetic, you can
choose for the division instruction to be emulated in software.
Removing the divide hardware conserves on-chip resources but
increases the execution time of division operations.

03/2007-02/2013
10

EPFL/LAP/RB -E2013

11

NIOS II – Core Architecture

03/2007-02/2013

11

EPFL/LAP/RB -E2013

12

NIOS II – Core Architecture

The Nios II architecture defines the following user-visible

functional units:

 Register file, r0..r31, ctl0..ctl5

 Arithmetic logic unit

 Interface to custom instruction logic

 NO FLAGS (N, Z, V, C) available

 Exception controller

 Interrupt controller

 Instruction bus

 Data bus

 Instruction and data cache memories

 Tightly coupled memory interfaces for instructions and data

 JTAG debug module

03/2007-02/2013

12

EPFL/LAP/RB -E2013

NIOS II –
Programming Model Registers

03/2007-02/2013
13

EPFL/LAP/RB -E2013

14

NIOS II –
Programming Model Registers : ctl0..5

Control registers are accessed differently than the

general-purpose registers. The special instructions

rdctl and wrctl provide the only means to read

and write to the control registers.

03/2007-02/2013

14

EPFL/LAP/RB -E2013

NIOS II – Interruptions (hardware) at processor level

03/2007-02/2013

15
EPFL/LAP/RB -E2013

ctl3

ctl4

ctl0

ctl1 ctl2

breakInter.

16

NIOS II –
Programming Model Registers : ctl0

status (ctl0)

The value in the status register controls the state

of the Nios II processor. All status bits are cleared

after processor reset.

PIE: Processor Interrupt Enable bit

03/2007-02/2013

EPFL/LAP/RB -E2013

17

NIOS II –
Programming Model Registers : ctl1

estatus (ctl1)

The estatus register holds a saved copy of the

status register during exception processing. One bit

is defined: EPIE. This is the saved values of PIE.

The exception handler can examine estatus to

determine the preexception status of the

processor. When returning from an interrupt, the

eret instruction causes the processor to copy

estatus back to status, restoring the pre-exception

value of status.

03/2007-02/2013

17

EPFL/LAP/RB -E2013

18

NIOS II –
Programming Model Registers : ctl2

bstatus (ctl2)

The bstatus register holds a saved copy of the

status register during debug break processing.

One bit is defined: BPIE. This is the saved value of

PIE.

When a break occurs, the value of the status

register is copied into bstatus. Using bstatus, the

status register can be restored to the value it had

prior to the break.

03/2007-02/2013

18

EPFL/LAP/RB -E2013

19

NIOS II –
Programming Model Registers : ctl3

ienable (ctl3)

The ienable register controls the handling of

external hardware interrupts.

Each bit of the ienable register corresponds to one

of the interrupt inputs, irq0 through irq31.

A bit value of 1 means that the corresponding

interrupt is enabled; 0 interrupt is disabled.

03/2007-02/2013

19

EPFL/LAP/RB -E2013

20

NIOS II –
Programming Model Registers : ctl4

ipending (ctl4)

The value of the ipending register indicates which

interrupts are pending.

A value of 1 in bit n means that the corresponding

irqn input is asserted, and that the corresponding

interrupt is enabled in the ienable register.

The effect of writing a value to the ipending

register is undefined.

03/2007-02/2013

20

EPFL/LAP/RB -E2013

21

NIOS II –
Programming Model Registers : ctl5

cpuid (ctl5)

The cpuid register holds a static value that

uniquely identifies the processor in a multi-

processor system.

The cpuid value is determined at system

generation time.

Writing to the cpuid register has no effect.

03/2007-02/2013

21

EPFL/LAP/RB -E2013

NIOS II – Exceptions Model

Exception Controller

• The Nios II architecture provides a simple, non-
vectored exception

• controller to handle all exception types. All
exceptions, including hardware interrupts, cause
the processor to transfer execution to a single
exception address. The exception handler at
this address determines the cause of the
exception and dispatches an appropriate
exception routine.

• The exception address is specified at system
generation time.

03/2007-02/2013
22

EPFL/LAP/RB -E2013

NIOS II – Exceptions Model

Exception Types

• Nios II exceptions fall into the following

categories:

■ Hardware interrupt

■ Software trap

■ Unimplemented instruction

■ Other

03/2007-02/2013
23

EPFL/LAP/RB -E2013

NIOS II – Interruptions (hardware)

Integral Interrupt Controller

• The Nios II architecture supports 32 external

hardware interrupts.

• The processor core has 32 level-sensitive

interrupt request (IRQ) inputs, irq0 through

irq31, providing a unique input for each interrupt

source.

• IRQ priority is determined by software. The

architecture supports nested interrupts.

03/2007-02/2013
24

EPFL/LAP/RB -E2013

NIOS II – Interruptions (hardware)

• The software can enable and disable any interrupt
source individually through the ienable control register,
which contains an interrupt-enable bit for each of the
IRQ inputs.

• Software can enable and disable interrupts globally
using the PIE bit of the status control register.

• A hardware interrupt is generated if and only if all three
of these conditions are true:
 The PIE bit of the status register (ctl0) is 1

 An interrupt-request input, irq<n>, is asserted

 The corresponding bit n of the ienable register (ctl3) is 1

• The interrupt handler has to read the ipendig (ctl4)
register to determine the interrupting source

03/2007-02/2013
25

EPFL/LAP/RB -E2013

NIOS II – Interruptions (hardware)

Interrupt Vector Custom Instruction

Obsolete,

now VIC (Vector Interrupt Controller)

• The Nios II processor core offers an

interrupt vector custom instruction which

accelerates interrupt vector dispatch.

• Include this custom instruction to reduce

program’s interrupt latency.

03/2007-02/2013
26

EPFL/LAP/RB -E2013

NIOS II – Interruptions (hardware)

• The interrupt vector custom instruction is based
on a priority encoder with one input for each
interrupt connected to the Nios II processor.

• The cost of the interrupt vector custom
instruction depends on the number of interrupts
connected to the Nios II processor.

• The worse case is a system with 32 interrupts. In
this case, the interrupt vector custom instruction
consumes about 50 logic elements (LEs).

03/2007-02/2013
27

EPFL/LAP/RB -E2013

NIOS II – Interruptions (hardware), ISR

• A software exception routine determines which
of the pending interrupts has the highest priority,
and then transfers control to the appropriate
Interrupt Service Routine (ISR).

• The ISR must stop the interrupt from being
visible (either by clearing it at the source or
masking it using ienable) before returning and/or
before re-enabling PIE.

• The ISR must also save estatus (ctl1) and ea
(exception return address, r29) before re-
enabling PIE.

03/2007-02/2013
28

EPFL/LAP/RB -E2013

NIOS II – Exceptions

• Interrupts can be re-enabled by writing 1

to the PIE bit, thereby allowing the current

ISR to be interrupted.

• Typically, the exception routine adjusts

ienable so that IRQs of equal or lower

priority are disabled before reenabling

interrupts.

03/2007-02/2013
29

EPFL/LAP/RB -E2013

NIOS II – Exceptions

Software Trap

• When a program issues the trap
instruction, it generates a software trap
exception. A program typically issues a
software trap when the program requires
servicing by the operating system.

• The exception handler for the operating
system determines the reason for the trap
and responds appropriately.

03/2007-02/2013
30

EPFL/LAP/RB -E2013

NIOS II – Exceptions

Unimplemented Instruction

• When the processor issues a valid instruction
that is not implemented in hardware, an
unimplemented instruction exception is
generated.

• The exception handler determines which
instruction generated the exception.

• If the instruction is not implemented in hardware,
control is passed to an exception routine that
emulates the operation in software.

03/2007-02/2013
31

EPFL/LAP/RB -E2013

NIOS II – Exceptions

Other Exceptions

• The previous sections describe all of the exception types
defined by the Nios II architecture at the time of
publishing. However, some processor implementations
might generate exceptions that do not fall into the above
categories.

• For example, a future implementation might provide a
memory management unit (MMU) that generates access
violation exceptions. Therefore, a robust exception
handler should provide a safe response (such as issuing
a warning) in the event that it cannot exactly identify the
cause of an exception.

03/2007-02/2013
32

EPFL/LAP/RB -E2013

NIOS II – Exceptions

Determining the Cause of Exceptions

• The exception handler must determine the

cause of each exception and then transfer

control to an appropriate exception

routine.

• Remember: There is only one address for

interrupts handler for all exceptions for the

NIOS II processor often the case for

RISC processors.

03/2007-02/2013
33

EPFL/LAP/RB -E2013

NIOS II – Exceptions handling

03/2007-02/2013
34

EPFL/LAP/RB -E2013

35

NIOS II – Exceptions handling

• If the EPIE bit of the estatus register (ctl1) is 1 and the value of
the ipending register (ctl4) is non-zero, the exception was caused
by an external hardware interrupt.

• Otherwise, the exception might be caused by a software trap or
an unimplemented instruction. To distinguish between software
traps and unimplemented instructions, read the instruction at
address ea–4 (the Nios II data master must have access to the
code memory to read this address). If the instruction is trap, the
exception is a software trap. If the instruction at address ea-4 is
one of the instructions that can be implemented in software, the
exception was caused by an unimplemented instruction.

• If none of the above conditions apply, the exception type is
unrecognized, and the exception handler should report the
condition.

03/2007-02/2013

35

EPFL/LAP/RB -E2013

36

NIOS II – Exceptions handling

Nested Exceptions

• Exception routines must take special

precautions before:

 Issuing a trap instruction

 Issuing an unimplemented instruction

Re-enabling hardware interrupts

• Before allowing any of these actions, the

exception routine must save estatus (ctl1) and

ea (r29), so that they can be restored properly

before returning.

03/2007-02/2013

36

EPFL/LAP/RB -E2013

37

NIOS II – Exceptions handling

Returning from an Exception

• The eret instruction is used to resume execution from

the pre-exception address. Except for the et register

(r24), the exception routine must restore any registers

modified during exception processing before returning.

• When executing the eret instruction, the processor:

• 1. Copies the contents of estatus (ctl1) to status (ctl0)

• 2. Transfers program execution to the address in the

ea register (r29)

03/2007-02/2013

37

EPFL/LAP/RB -E2013

38

NIOS II – Exceptions handling

Return Address

• The return address requires some consideration when returning
from exception processing routines. After an exception occurs, ea
contains the address of the instruction after the point where the
exception was generated.

• When returning from software trap and unimplemented instruction
exceptions, execution must resume from the instruction following
the software trap or unimplemented instruction. Therefore, ea
contains the correct return address.

• On the other hand, hardware interrupt exceptions must resume
execution from the interrupted instruction itself. In this case, the
exception handler must subtract 4 from ea to point to the
interrupted instruction.

03/2007-02/2013

38

EPFL/LAP/RB -E2013

NIOSII – ISR Interrupt Service Routine performances

• Performance related to ISR (Interrupt Service Routine)

processing. The following three key metrics determine

ISR performance:

• Interrupt latency —the time from when an interrupt is

first generated to when the processor runs the first

instruction at the exception address.

• Interrupt response time —the time from when an

interrupt is first generated to when the processor runs

the first instruction in the ISR.

• Interrupt recovery time —the time taken from the last

instruction in the ISR to return to normal processing.

03/2007-02/2013
39

EPFL/LAP/RB -E2013

NIOSII - Performance for ISRs

• Because the Nios II processor is highly configurable,

there is no single typical number for each metric.

• This section provides data points for each of the Nios II

cores under the following assumptions:

• All code and data are stored in on-chip memory.

• The ISR code does not reside in the instruction cache.

• The software under test is based on the Altera-provided

HAL exception handler system.

• The code is compiled using compiler optimization level

"–O3", or higher optimization.

03/2007-02/2013
40

EPFL/LAP/RB -E2013

41

NIOSII - Performance for ISRs

03/2007-02/2013

41

EPFL/LAP/RB -E2013

IRQ

Main ISR

ISR_n

Nb Clk

Running progr. Running progr.

NIOSII - HAL API for ISRs (Legacy call)

■ alt_irq_register()

■ alt_irq_disable()

■ alt_irq_enable()

■ alt_irq_disable_all()

■ alt_irq_enable_all()

■ alt_irq_interruptible()

■ alt_irq_non_interruptible()

■ alt_irq_enabled()

03/2007-02/2013
42

EPFL/LAP/RB -E2013

NIOSII - ISRs

• An ISR has to be provided for every interrupt source
enabled

• The prototype for the ISR function is:

• It will be saved in an array of ISR with the associated
context, at id index

• context is a pointer to something useful for the
associated ISR (pointer on a struct)

• id is the irq number

03/2007-02/2013
43

EPFL/LAP/RB -E2013

void isr (void* context, alt_u32 id);

NIOSII - HAL API for ISRs

• ISRs run in a restricted environment. A large number of

the HAL API calls are not available from ISRs. For

example, accesses to the HAL file system are not

permitted.

• As a general rule, when writing your own ISR, never

include function calls that can block waiting for an

interrupt.

• In particular, do not call printf() from within an ISR

unless you are certain that stdout is mapped to a non-

interrupt-based device driver. Otherwise, printf() can

deadlock the system, waiting for an interrupt that never

occurs because interrupts are disabled.

03/2007-02/2013
44

EPFL/LAP/RB -E2013

NIOSII - ISRs

• isr is a pointer to the function that is called in response to
IRQ number id. The two input arguments provided to this
function are the context pointer and id. Registering a null
pointer for isr results in the interrupt being disabled.

• The HAL registers the ISR by the storing the function
pointer, isr, in a lookup table. The return code from
alt_irq_register() is zero if the function succeeded, and
nonzero if it failed.

• If the HAL registers the ISR successfully, the associated
Nios II interrupt (as defined by id) is locally enabled on
return from alt_irq_register().

• Hardware-specific initialization might also be required.

• When a specific IRQ occurs, the HAL looks up the IRQ in
the lookup table and dispatches the registered ISR.

03/2007-02/2013
45

EPFL/LAP/RB -E2013

46

NIOSII – ISRs (alt_irq_table.h)

id *handler *context

0 ^ISR_0 ^context_0

1 ^ISR_1 ^context_1

2 ^ISR_2 ^context_2

… ^ISR_... ^context_...

ALT_NIRQ-1 ^ISR_n ^context_n

03/2007-02/2013

46

EPFL/LAP/RB -E2013

From the IRQ_n, the main ISR

dispatcher has to found the particular

ISR to run and to provide a specific

context pointer.

This information is initialize in an

array of structure:

struct ALT_IRQ_HANDLER {

void (*handler)(void*, alt_u32);

void *context;

} alt_irq[ALT_NIRQ];

Handler is a pointer to the function to

call by the main ISR handler

The corresponding ISR will receive

context and id value

NIOSII – Registering an ISR

Before the software can use an ISR, it must be registered it by calling

The prototype has the following parameters:

■ id is the hardware interrupt number for the device, as defined in
system.h. Interrupt priority corresponds inversely to the IRQ
number. Therefore, IRQ0 represents the highest priority interrupt
and IRQ31 is the lowest.

■ context is a pointer used to pass context-specific information to the
ISR, and can point to any ISR-specific information. The context
value is opaque to the HAL; it is provided entirely for the benefit of
the user-defined ISR.

03/2007-02/2013
47

EPFL/LAP/RB -E2013

int alt_irq_register (

alt_u32 id,

void* context,

void (*isr)(void*, alt_u32));

NIOSII - Registering an ISR (source code)

int alt_irq_register (alt_u32 id,

void* context,

void (*handler)(void*, alt_u32)){

int rc = -EINVAL;

alt_irq_context status;

if (id < ALT_NIRQ) {

/* interrupts are disabled while the handler tables are updated to ensure that an
interrupt doesn't occur while the tables are in an inconsistent state.

*/

status = alt_irq_disable_all ();

alt_irq[id].handler = handler;

alt_irq[id].context = context;

rc = (handler) ? alt_irq_enable (id): alt_irq_disable (id);

alt_irq_enable_all(status);

}

return rc;

}

03/2007-02/2013
48

EPFL/LAP/RB -E2013

NIOSII – Enable/disable interrupts

• The HAL provides functions to allow a program to disable interrupts
for certain sections of code, and re-enable them later.

• alt_irq_disable() and alt_irq_enable() allow to disable and enable
individual interrupts.

• alt_irq_disable_all() disables all interrupts, and returns a context
value. To re-enable interrupts, call alt_irq_enable_all() and pass in
the context parameter. In this way, interrupts are returned to their
state prior to the call to alt_irq_disable_all().

• alt_irq_enabled() returns nonzero if interrupts are enabled, allowing
a program to check on the status of interrupts.

• Disable interrupts for as short a time as possible.
Maximum interrupt latency increases with the
amount of time interrupts are disabled.

03/2007-02/2013
49

EPFL/LAP/RB -E2013

NIOSII – Enable/disable interrupts

• int alt_irq_disable (alt_u32 id);

• int alt_irq_enable (alt_u32 id);

 id: individual IRQ.

The return value is zero.

• int alt_irq_enabled (void)

Returns zero if interrupts are disabled, and non-zero

otherwise.

03/2007-02/2013
50

EPFL/LAP/RB -E2013

NIOSII – Enable/disable interrupts

• alt_irq_context alt_irq_disable_all (void);

• void alt_irq_enable_all (alt_irq_context context);

The alt_irq_enable_all() function enables all interrupts

that were previously disabled by alt_irq_disable_all().

The input argument, context, is the value returned by

a previous call to alt_irq_disable_all(). Using context

allows nested calls to alt_irq_disable_all() and

alt_irq_enable_all().

As a result, alt_irq_enable_all() does not necessarily

enable all interrupts such as interrupts explicitly

disabled by alt_irq_disable().

03/2007-02/2013
51

EPFL/LAP/RB -E2013

52

NIOSII – ISR work

03/2007-02/2013

52

EPFL/LAP/RB -E2013

53

NIOSII – Hardware Interrupt Handler

03/2007-02/2013

53

EPFL/LAP/RB -E2013

54

NIOSII – Main Hardware Interrupt Handler

active = alt_irq_pending ();

do {

i = 0;

mask = 1; /* Test each bit in turn looking for an active interrupt. Once

one is found, the interrupt handler asigned by a call to alt_irq_register() is

called to clear the interrupt condition. */

do {

if (active & mask) {

alt_irq[i].handler(alt_irq[i].context, i);

break;

}

mask <<= 1;

i++;

} while (1);

active = alt_irq_pending ();

} while (active);

03/2007-02/2013

54

EPFL/LAP/RB -E2013

55

NIOSII – Software Exception Handler

03/2007-02/2013

55

EPFL/LAP/RB -E2013

56

NIOSII – Software Exception Handler

• An exception routine must never execute an

unimplemented instruction. The HAL exception

handling system does not support nested

software exceptions.

03/2007-02/2013

56

EPFL/LAP/RB -E2013

NIOSII – Software Exception Handler

Source files:

Version Quartus II 12.0:

C:\altera\10.1\ip\altera\nios2_ip\altera_nios2\HAL\src

C:\altera\12.0\ip\altera\nios2_ip\altera_nios2\HAL\src

03/2007-02/2013
57

EPFL/LAP/RB -E2013

NIOSII – Software Exception Handler

Source files (depend on the system version and Interrupt Controller

used (IIC: Internal, EIC: External)):

• alt_exception_entry.S

• alt_exception_muldiv.S

• alt_exception_trap.S

• alt_irq_entry.S

• alt_irq_handler.c

• alt_software_exception.S

• alt_irq_vars.c

• alt_irq_register.c

• alt_iic.c

• alt_instruction_exception_entry.c

03/2007-02/2013
58

EPFL/LAP/RB -E2013

NIOSII – Software Exception Handler

Header files:

• alt_irq.h

• alt_irq_entry.h

Assembly files:

• alt_irq_entry.S

• alt_exception_trap.S

• alt_exception_entry.S

• alt_exception_muldiv.S

• Are written in NIOSII assembly language, as they have to

manipulate ctl registers and save explicitly registers on/from the

stack

• Provide eret instruction

• Call alt_irq_handler.c written in C
03/2007-02/2013

59

EPFL/LAP/RB -E2013

NIOSII – Performance

• At laboratory, design a system allowing to measure the latency from Timer IRQ
to ISR entry

To access io interface, use the macro IORD(), IOWR() provided in

C:\altera\10.1\ip\nios2_ip\altera_nios2\HAL\inc\io.h

#define __IO_CALC_ADDRESS_NATIVE(BASE, REGNUM) \

((void *)(((alt_u8*)BASE) + ((REGNUM) * (SYSTEM_BUS_WIDTH/8))))

#define IORD(BASE, REGNUM) \

__builtin_ldwio (__IO_CALC_ADDRESS_NATIVE ((BASE), (REGNUM)))

#define IOWR(BASE, REGNUM, DATA) \

__builtin_stwio (__IO_CALC_ADDRESS_NATIVE ((BASE), (REGNUM)), DATA))

03/2007-02/2013
60

EPFL/LAP/RB -E2013

61

NIOS II - Instructions

• Load and store instructions

03/2007-02/2013

61

EPFL/LAP/RB -E2013

62

NIOS II - Instructions

• Load and store instructions, byte, half-word

• Zero (unsigned) or sign extend data 32 bits

03/2007-02/2013

62

EPFL/LAP/RB -E2013

63

NIOS II - Instructions

• ALU instructions

03/2007-02/2013

63

EPFL/LAP/RB -E2013

64

NIOS II - Instructions

• MOVE instructions register register

• Immediate value register

03/2007-02/2013

64

EPFL/LAP/RB -E2013

65

NIOS II - Instructions

Comparison instructions

• Warning: there is NO flags register

• The result of comparison is 0 or 1 and is write to the destination register

03/2007-02/2013

65

EPFL/LAP/RB -E2013

66

NIOS II - Instructions

• All of these compare two registers or a register and an

immediate value, and write either 1 (if true) or 0 to the

result register. These instructions perform all the equality

and relational operators of the C programming language.

03/2007-02/2013

66

EPFL/LAP/RB -E2013

67

NIOS II - Instructions

• Shift and rotate

03/2007-02/2013

67

EPFL/LAP/RB -E2013

68

NIOS II - Instructions

• Program Control instruction

03/2007-02/2013

68

EPFL/LAP/RB -E2013

69

NIOS II - Instructions

• Conditional Program Control instruction

03/2007-02/2013

69

EPFL/LAP/RB -E2013

70

NIOS II - Instructions

• Others Control instructions

03/2007-02/2013

70

EPFL/LAP/RB -E2013

NIOS II - Custom Instructions

03/2007-02/2013
71

EPFL/LAP/RB -E2013

NIOS II – Memory – I/O access

A Nios II core uses one or more of the following to provide memory and I/O access:

 Instruction master port - An Avalon master port that
connects to instruction memory via Avalon switch
fabric

 Instruction cache - Fast cache memory internal to
the Nios II core

Data master port - An Avalon master port that
connects to data memory and peripherals via Avalon
switch fabric

Data cache - Fast cache memory internal to the Nios
II core

Tightly coupled instruction or data memory port -
Interface to fast memory outside the Nios II core

03/2007-02/2013
72

EPFL/LAP/RB -E2013

73

NIOS II – Memory – I/O access

NIOSII - Data Path

•The instruction master port
always retrieves 32 bits of
data. The instruction
master port relies on
dynamic bus-sizing logic
contained in the Avalon
switch fabric.

•By virtue of dynamic bus
sizing, every instruction
fetch returns a full
instruction word, regardless
of the width of the target
memory.

•Consequently, programs
do not need to be aware of
the widths of memory in the
Nios II processor system.

03/2007-02/2013

73

EPFL/LAP/RB -E2013

74

NIOS II – Memory – I/O access

Cache Bypass Method

• The Nios II architecture provides load and store I/O

instructions such as ldio and stio that bypass the data

cache and force an Avalon data transfer to a specified

address.

• Additional cache bypass methods might be provided,

depending on the processor core implementation.

• Some Nios II processor cores support a mechanism called

bit-31 cache bypass to bypass the cache depending on

the value of the most-significant bit of the address.

03/2007-02/2013

74

EPFL/LAP/RB -E2013

75

NIOS II – Tightly Coupled Memory

• Tightly coupled memory provides guaranteed low-latency memory
access for performance-critical applications. Compared to cache
memory, tightly coupled memory provides the following benefits:
 Performance similar to cache memory

 Software can guarantee that performance-critical code or data is located
in tightly coupled memory

 No real-time caching overhead, such as loading, invalidating, or flushing
memory

• Physically, a tightly coupled memory port is a separate master port on
the Nios II processor core, similar to the instruction or data master
port. A Nios II core can have zero, one, or multiple tightly coupled
memories.

• The Nios II architecture supports tightly coupled memories for both
instruction and data access. Each tightly coupled memory port
connects directly to exactly one memory with guaranteed low, fixed
latency. The memory is external to the Nios II core and is usually
located on chip.

03/2007-02/2013

75

EPFL/LAP/RB -E2013

76

NIOS II – JTAG interface

• The Nios II architecture supports a JTAG debug module that provides
onchip emulation features to control the processor remotely from a
host PC.

• PC-based software debugging tools communicate with the JTAG
debug module and provide facilities, such as:

 Downloading programs to memory

 Starting and stopping execution

 Setting breakpoints and watchpoints

 Analyzing registers and memory

 Collecting real-time execution trace data

• The debug module connects to the JTAG circuitry in an Altera®
FPGA.

• External debugging probes can then access the processor via the
standard JTAG interface on the FPGA. On the processor side, the
debug module connects to signals inside the processor core.

03/2007-02/2013

76

EPFL/LAP/RB -E2013

77

NIOS II - Some Avalon Peripherals

PIO

• Modes of configuration :
 Bidirectional

 Input

 Output

 Input and Output

• Interrupt Request capability

03/2007-02/2013

77

EPFL/LAP/RB -E2013

78

NIOS II - Some Avalon Peripherals

PIO

• In/Out Mode

• Interrupt request

03/2007-02/2013

78

EPFL/LAP/RB -E2013

79

NIOS II - Some Avalon Peripherals

PIO

• Bidirectional mode

03/2007-02/2013

79

EPFL/LAP/RB -E2013

80

NIOS II - Some Avalon Peripherals

PIO

• 4 registers to control the PIO

• Some features available as SOPC instantiation :

Edge/level to interrupt request

03/2007-02/2013

80

EPFL/LAP/RB -E2013

81

NIOS II - Some Avalon Peripherals

Timer

• Timeout_pulse

• IRQ

• Watchdog Reset request

03/2007-02/2013

81

EPFL/LAP/RB -E2013

82

NIOS II - Some Avalon Peripherals

Timer

• 6 registers for status - control – configuration

• Generate a TimeOut when the decrementing
Timer counter reach 0, programmed by
Periodh-PeriodL

03/2007-02/2013

82

EPFL/LAP/RB -E2013

83

NIOS II - Some Avalon Peripherals

Timer

• 6 registers for status - control – configuration

• Write to one of Snapshot register generate the

transfer of the current counter's value to

SnapshotH-SnapshotL registers

• Mode can by single or continue (CONT = 1)

• An interrupt can by generated at TimeOut if

ITO=1

03/2007-02/2013

83

EPFL/LAP/RB -E2013

84

NIOS II - Some Avalon Peripherals

Timer

• Status register

03/2007-02/2013

84

EPFL/LAP/RB -E2013

85

NIOS II - Some Avalon Peripherals

Timer

• Control register

03/2007-02/2013

85

EPFL/LAP/RB -E2013

NIOS II - Some Avalon Peripherals

Timer

Interrupt Behavior

The timer core generates an IRQ whenever the

internal counter reaches zero and the ITO bit of the

control register is set to 1.

Acknowledge the IRQ in one of two ways:
Clear the TO bit of the status register

Disable interrupts by clearing the ITO bit of the control

register

Failure to acknowledge the IRQ produces an

undefined result.

03/2007-02/2013
86

EPFL/LAP/RB -E2013

87

NIOS II - Some Avalon Peripherals

Performance Counter

• Profiling is often necessary to validate the

timing of task, process, interrupt

latency/response, software performance, etc…

• Some methods exists to do this task :

Software only as GNU profiler, gprof

Mostly Hardware module as performance counter

core

Hardware/software Interval timer peripheral

03/2007-02/2013

87

EPFL/LAP/RB -E2013

88

NIOS II - Some Avalon Peripherals

Performance Counter

• The main benefit of using the performance counter core is the
accuracy of the profiling results. The performance counter core is
unobtrusive, requiring only a single instruction to start and stop
profiling, and no RAM. It is appropriate for high-precision
measurements of narrowly targeted sections of code.

• GNU profiler, gprof - gprof provides broad low-precision timing
information about the entire software system. It uses a substantial
amount of RAM, and degrades the real-time performance. For
many embedded applications, gprof distorts real-time behavior too
much to be useful. Change cache memory capability.

• Interval timer peripheral -The interval timer is less intrusive than
gprof. It can provide good results for narrowly targeted sections of
code. However, the granularity of the results is milliseconds, which
is too coarse for many embedded applications.

03/2007-02/2013

88

EPFL/LAP/RB -E2013

89

NIOS II - Some Avalon Peripherals

Performance Counter

• The core contains two counters for every section:
 Time: A 64-bit clock cycle counter.

 Events: A 32-bit event counter.

• Section Counters
 Each 64-bit time counter records the aggregate number of clock

cycles spent in a section of code.

 The 32-bit event counter records the number of times the
section executes.

 The performance counter core can have up to seven section
counters.

• Global Counter
 The global counter controls all section counters. The section

counters are enabled only when the global counter is running.

03/2007-02/2013

89

EPFL/LAP/RB -E2013

NIOS II - Some Avalon Peripherals

Performance Counter

03/2007-02/2013
90

EPFL/LAP/RB -E2013

NIOS II - Some Avalon Peripherals

Performance Counter

03/2007-02/2013
91

EPFL/LAP/RB -E2013

Performance counter functions and Macro

92

NIOS II - Some Avalon Peripherals

Performance Counter

• Need the full library (not small C library in NIOS

IDE) as floating printing is used.

03/2007-02/2013

92

EPFL/LAP/RB -E2013

93

NIOS II - Some Avalon Peripherals

Performance Counter

• If an interrupt occurs during the measured

function execution, this time to execute interrupt

routine is counted.

03/2007-02/2013

93

EPFL/LAP/RB -E2013

Références

• Cyclone2, NIOSII, Altera, www.altera.com

• http://www.altera.com/literature/lit-nio2.jsp

• http://www.altera.com/literature/tt/tt_nios2_system_architect.pdf

• http://www.altera.com/literature/tt/tt_qsys_intro.pdf

• http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

• http://www.altera.com/literature/ug/ug_embedded_ip.pdf

• http://www.altera.com/literature/an/AN595.pdf

• n2sw_nii5v2.pdf

• n2cpu_nii5v1.pdf

• n2cpu_nii5v3.pdf
03/2007-02/2013

94

EPFL/LAP/RB -E2013

http://www.altera.com/
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/tt/tt_nios2_system_architect.pdf
http://www.altera.com/literature/tt/tt_qsys_intro.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/an/AN595.pdf

NIOS II – A specific Avalon Peripherals

Counter as exercise

• From this description and code, it is very

easy to add others features as:

• Output Compare function

• Interrupt at specific time

• Reload counter

• Etc…

03/2007-02/2013
112

EPFL/LAP/RB -E2013

