
LAP/EPFL 1 Cyclone V Nios II Interrupt Analysis

R.Beuchat Z:\rb-laboratories\trunk\Enonces_Doc\Labo_DE1-SoC_Interrupt_1_0a.docx

Créé le 05/03/18 Impression le 05/03/18

Modif ié le 05/03/18 11:33 Version [1.0a]

Interrupt analysis

DE1-SoC

Interrupts

Quartus Prime -

NIOSII

Objectives Measuring interrupt parameters on a processor, case study with a Nios II system.

Observing latency, response and recovery time on Nios II systems

Tools Terasic DE1-SoC, Quartus Prime, Qsys and Nios II SBT

Preliminary VHDL, C, Embedded System Architecture, Avalon bus, Nios II processor

Theory FPGA, Avalon, Nios II

Material Quartus Prime, Terasic DE1-SoC, Saleae Logic Pro 16 Logic Analyzer

Duration 3x2h

1 Introduction

The goal of this laboratory is to get in-depth knowledge of the various timings involved in interrupt
handling. To achieve this goal, we will measure the delays involved starting from the generation of an
interrupt request until the interrupt is completely handled. We will also explore the delays introduced by

Real-time operating system (uC/OS-II) synchronization mechanisms.

All measurements will be done on a Cyclone V FPGA. We will use a timer to periodically generate an
interrupt when its internal counter reaches 0. When this occurs, a specific function will be called and

some latency is necessary for the CPU to access the interrupt handler.

The Nios II processor only has one interrupt handler, so a register (ipending) must be polled to

determine the source of the generated interrupt request. Once the device is found, the processor can
select the appropriate Interrupt Service Routine (ISR) to be called. The time needed to access this
function is called the interrupt response time. At the end of the ISR, the time needed to jump back to

the main program is called the interrupt recovery time. From the user's point of view, all of these delays
are equivalent to lost CPU time, and therefore to lost performance. The lower the latency, the better the
interrupt reactivity of the system is.

In this laboratory, different techniques are used to measure those parameters.

2 Design to realize

Please use the (empty) template available on Moodle for this project.

We use an FPGA-based embedded system, thus we need to realize such a system. In this laboratory ,
you will realize a specific design with the following elements:

 FPGA 5CSEMA5F31C6 on the DE1-SoC board

 Nios II Processor with different configurations. We will not use the “Nios II (classic)”, but instead
the standard Nios II design.

 Timer IP (from library) for measuring delays

 Performance counter IP (from library) for measuring delays

 SDRAM controller (check SoC-FPGA design guide on Moodle for SDRAM parameters
https://moodle.epfl.ch/pluginfile.php/1680499/mod_resource/content/8/SoC-
FPGA%20Design%20Guide%20%5BDE1-SoC%20Edition%5D.pdf

 On-chip memory of 128KB, 32 bits width

 JTAG_UART (serial interface)

 Parallel input/output port IP (from library) as Input for 4 push button (active low), with interrupt
generation

 A specific parallel port interface to be designed in VHDL (details below)

 A specific counter interface to be designed in VHDL (details below)

LAP/EPFL
Laboratoire d’Architecture des Processeurs 2 NIOSII Interruptions

R.Beuchat Z:\rb-laboratories\trunk\Enonces_Doc\Labo_DE1-SoC_Interrupt_1_0a.docx

2.1 Specific counter (to design)

You have to realize your own counter with the following characteristics:

 32-bit Avalon slave

 32-bit counter

 1 wait cycle for read access (synchronous read)

 Increment the counter at the system's clock speed (50 MHz)

 Command to reset the counter, command to start the counter, command to stop the counter

 The counter value must be readable at all times transfer the counter value at the start of the
read cycle

Manipulation 1 Counter design

 Propose a register map of the interface

 Realize and simulate the interface

 Realize a Qsys component from this interface use the memory model for the Avalon interface

2.2 Specific parallel port (to design)

You have to realize a specific parallel port with the following features:

 Generic N-bit parallel port (up to 32 bits)

 3 supported accesses:

o Standard read / write : Read and write the parallel port value (offset 0)

o Set bit: The bits set to '1' when writing will set the corresponding bits stored in the PIO
to '1' (offset 1)

o Clear bit: The bits set to '1' when writing will set the corresponding bits stored in the PIO

to '0' (offset 2)

A single write access can set or clear as many bits as requested. It is not necessary to protect the
access in read-modify-write mode (usually done in this case of device if interrupt driven system is used).

Figure 1: Qsys system I/O (memories not shown)

LAP/EPFL
Laboratoire d’Architecture des Processeurs 3 NIOSII Interruptions

R.Beuchat Z:\rb-laboratories\trunk\Enonces_Doc\Labo_DE1-SoC_Interrupt_1_0a.docx

Figure 1 FPGA, general internal bloc diagram, NOT all functions are included in this figure.
EPCS4 is deprecated.

Manipulation 2 Parallel Port design

 Propose a register map of the interface

 Realize and simulate the interface

 Realize a Qsys component from this interface use the memory model for the Avalon interface

Softcore Processor

NIOS II

SDRAM-ctrl

External SDRAM 16Mx16

Avalon Bus

Ctrl

Data[15..

0] A[12..0]

FPGA Clk

Serial Interface

JTAG-UART

Memory

SRAM

Interface

EPCS4

EPCS4

LAP/EPFL
Laboratoire d’Architecture des Processeurs 4 NIOSII Interruptions

R.Beuchat Z:\rb-laboratories\trunk\Enonces_Doc\Labo_DE1-SoC_Interrupt_1_0a.docx

3 Software design

After the hardware realization, it’s time to make software:

Test with the normal timer to determine the response time of an interrupt.

Be careful with the use of “printf()” in interrupt-driven function.

3.1 Interruptions test

Some tests for interrupt driven measure.

Manipulation 3 Interrupt response time

 Initialize interrupt for the timer

 When the timer reaches 0, it will generate an interrupt (and continue to run!)

 Is it an up or down counter?

 In the corresponding interrupt function, read the timer value after a “snap” access. Thus, it is possible
to know the response time. How? You have to answer that.

Manipulation 4 Interrupt recovery time

 With the help of your own timer, you will evaluate the interrupt recovery time

 Stop and reset the timer in the main program, before normal timer initialization of manipulation 2.

 Start your timer at the end of your interrupt function

 In the main program wait for timer no zero value read (why?)

 This will represent the response time, how long is it?

3.2 Logic Analyzer measurement

We will connect an external logic analyzer (Saleae Logic Pro 16) on the GPIO0 connector of the board.

Do not forget to connect ground between the board and the logic analyzer.

With the logic Analyzer and it's software, and with your own designed parallel port initialized as output,

try the following instructions:

 Set bit 0, Clr bit 0, Set bit 0, Clr bit 0 with 4 instructions and loop forever

 Observe the signals with the logic analyzer and make timing measurements with a 50MHz
system clock. What is the pulse frequency? How many clock cycles correspond for a parallel

port period?

 Try with different processors – memories configurations (6 configurations):

o Instruction cache disabled, data cache disabled, on-chip memory

o Instruction cache enabled, data cache disabled, on-chip memory

o Instruction cache enabled, data cache enabled, on-chip memory

o Instruction cache disabled, data cache disabled, sdram memory

o Instruction cache enabled, data cache disabled, sdram memory

o Instruction cache enabled, data cache enabled, sdram memory

Manipulation 5 Interruptions measurement

 Use the same techniques for interrupt latency, response and recovery times by activating I/O bits

and clearing them at appropriated times

 Give a small explanation and result of your measures, compare with the timer provided values.

 For the latency time, you have to modify the Altera interrupt handler!

LAP/EPFL
Laboratoire d’Architecture des Processeurs 5 NIOSII Interruptions

R.Beuchat Z:\rb-laboratories\trunk\Enonces_Doc\Labo_DE1-SoC_Interrupt_1_0a.docx

4 uC/OS-II

In this part we use the uC/OS-II operating system and measure the overhead of the various
synchronization primitives provided by the OS kernel.

4.1 ISR

Use the buttons in our design as the interrupt sources to measure the time used by the following uC/OS -
II synchronization primitives (detailed below):

 Semaphore

 Flags

 Mailbox

 Queue

In this part of the lab, you need to modify your Qsys system:

 Be sure that the PIO module used for your buttons generated interrupts on BOTH edges (not
only on rising edge or only on falling edge).

4.2 Semaphore

Make the main task wait on a semaphore. In the ISR for the falling edge of the buttons, signal the
semaphore to let the main task continue. Measure the overhead of the semaphore.

4.3 Flags

Flags allow you to wait on a Boolean condition. For example, you could wait until multiple flags are all
enabled (OS_FLAG_WAIT_SET_ALL).

Test the speed of the AND/OR conditions as follows:

 OR: wait on one of the buttons’ falling edge.

 AND: wait until the four buttons have been activated.

As always, the signal operations must take place in the ISR.

4.4 Mailbox

A mailbox is used to transfer a message between tasks. The mailbox in uC/OS-II contains a 32-bit value

as payload. If your message fits in the 32-bit field, then you can send it directly through the mailbox.
However, if you need to send more than 32 bits of data, you have to put a pointer to your data structure
in the mailbox instead.

In the buttons’ ISR, send a message through a mailbox. Your message should be a pointer to a structure
with 3 members:

 The Buttons number (0..3) pressed

 A boolean value that determines if the interrupt was caused due to a rising or a falling edge of

the buttons.

 Time of the event (button press) on 32 bits, with a resolution of 1 us.

4.5 Queue

Same as Mailbox, but with Queue

Manipulation 6

 Connect the Saleae Logic Pro 16 on the extension connector, with your special PIO output.

 Create the tasks for waiting on the actions of the buttons with the different synchronization
mechanisms.

 Each time a signal operation is done, activate a bit on the parallel port on the external connector.

 Each time a wait operation is done, deactivate the corresponding bit on the external connector.

 Measure the elapsed time with your timer and compare the time captured by the logic analyzer.

LAP/EPFL
Laboratoire d’Architecture des Processeurs 6 NIOSII Interruptions

R.Beuchat Z:\rb-laboratories\trunk\Enonces_Doc\Labo_DE1-SoC_Interrupt_1_0a.docx

5 Report

 Provide a report with the components you created/modified in VHDL (PIO and Timer).

 Provide a general schematic of your design from the Buttons to the output port and external
connector.

 Provide a table with the measured times obtained by your timer and by the logic analyzer.

 Comment your results.

