
« Real Time Embedded systems »
MicroC/OS-II

rene.beuchat@epfl.ch
LAP/ISIM/IC/EPFL
Chargé de cours

LSN/EIG
Prof. HES

RB -E2007/2011

1

Introduction

• MicroC/OS-II is a Real-Time Kernel
developed by Jean-J. Labrosse since
1992.

• It's certified for avionics equipment
requirements.

• Book : Microc/OS-II The Real-Time
Kernel, ISBN-13: 978-1-57820-103-7, CMPBooks

• Source available, NOT a license free
software

• Version Microc/OS-III available
3

RB -E2007/2011

Main features

• Very well documented source code
• Portable (ARM, NIOSII, 8/16/32/64 bits

processor, DSP, …)
• Robust and Reliable
• ROMable
• Scalable, only needed services include with

#define constant by user
• Multitasking (64, 256 v>2.8)

Task priority scheduling
1 task 1 priority

• Preemptive

4

RB -E2007/2011

Main features (2)

• Deterministic for most of functions and
services, except for OSTimeTick() and
some event flags services, execution time
do NOT depend on the number of task
running

• Task stacks with different size capability
and stack size check

• Interrupt Management with nested
interrupt (255 levels deep possible)

5

RB -E2007/2011

Main features (3)

• Services as :
Task management functions
Semaphores
Mutual exclusion semaphores
Event flags
Message mailboxes
Message queues
Fixed-size memory partitions
…

6

RB -E2007/2011

Real-Time Systems Concepts

7

RB -E2007/2011

Soft/Hard Real Time

• Soft Real Time systems:
Tasks are executed as fast as possible but
tasks don't have to finish by specific time

• Hard Real Time systems:
Task have to be finish on time

• Real systems :
both Hard and Soft Real Time requirement

8

RB -E2007/2011

Foreground/Background Systems

• Very often used model for small
embedded systems microcontroller based

• NO kernel
Background: A main loop program with
sequentially executed tasks (functions call)
Foreground: Some interrupt driven tasks,
hardware event triggered

9

RB -E2007/2011

Foreground/Background Systems

Background Foreground

10

RB -E2007/2011

ISR

ISR (nested)ISR

Time

Foreground/Background Systems

11

RB -E2007/2011

• Worst case task-level response depend
on the length to execute the full main
loop + ISR

Critical region

12

RB -E2007/2011

• A critical region or critical sections of code, is
an indivisibly part of code. Thus it CAN NOT
be interruptible.

• Thus the processor has to have it's interrupts
disabled during the critical region

• Or it needs a way to verify that it has not been
interrupted. In this case it has to run again the
critical part.

Resources, shared resources

13

RB -E2007/2011

• A resource is any entity used by a task, ie:
I/O device
Variable
Data structure, array of data

• A shared resource is a resource than can be
used by more than one task.

• Each task has to have exclusive access to the
shared resource (it can be long: ex. Printer)

• It's the mutual exclusion

Multitasking

14

RB -E2007/2011

• The CPU has to be switched between several
tasks.

• Multitasking is the process of scheduling and
switching the CPU execution time between the
tasks.

• A task is often call a thread, is a simple
program that "thinks" it has the CPU all to
itself.

Tasks

15

RB -E2007/2011

• A task has :
it's own registers set
a priority
it's own stack area

• A task is typically an infinite loop that can be
in any of 5 states :

Dormant
Ready
Running
Waiting (for an event)
In an ISR (Interrupt Service Routine)

Tasks

16

RB -E2007/2011

Task #1
Stack

Task Ctrl Block

CPU registers:
Context

CPU

Memory

Task #2
Stack

Task Ctrl Block

Task #n
Stack

Task Ctrl Block

Tasks states (MicroC/OS-II)

17

RB -E2007/2011

TASK
Waiting

TASK
Dormant

TASK
Ready

TASK
Running

ISR
Running

Interrupt

OSIntExit()OSTaskDel()

Task preempted

OSStart()
OSIntExit()
OS_TASK_SW()

OSTaskDel()

OSTaskCreate()
OSTaskCreateExt()

OSTaskDel()
OSxxxPend()
OSTaskSuspend()
OSTimeDly()
OSTimeDlyHMSM()

OSxxxPost()
OSTaskResume()
OSTimeDlyResume()
OSTimeTick()

Tasks states (MicroC/OS-II)

• Signal : Post
OSxxxPost():

OSFlagPost()
OSMboxPost()
OSMboxPostOpt()
OSMutexPost()
OSQPost()
OSQPostFront()
OSQPostOpy()
OSSemPost()

• Wait : Pending
OSxxxPend():

OSFlagPend()
OSMboxPend ()

OSMutexPend ()
OSQPend ()

OSSemPend ()

18

RB -E2007/2011

Tasks Switches

• When the multitasking kernel decides to
run on a different task :

It saves the current task's context (CPU
registers) current task stack area
New task's context restored from new task
stack area
Resume execution of the new task's code
MORE registers more overhead to save
ALL the registers on the task's stack

19

RB -E2007/2011

Kernel

• The kernel is the part of the multitasking
operating system for the management of
tasks and communication between tasks

• Fundamental service is context switching
• Provide overhead of 2-5% (vs Background

/ Foreground systems) CPU time. Depend
of the amount of invocation of these
services

20

RB -E2007/2011

Scheduler

• The scheduler is the part of the kernel
responsible for determining the next task to
run.

• Most real-time systems are priority based
• The priority of each task is application

dependant, in priority-based system, the
CPU time is always given to the highest
priority task

21

RB -E2007/2011

eCOS Kernel scheduler, Bit Map Scheduler
MicroC/OS-II

22

RB -E2007/2011

Priority 0Thread A Maximum

Priority 1Thread B

Priority 2

Priority nThread C Minimum

Priority ……

Only ONE thread on a priority level

eCOS Kernel scheduler, Bit Map Scheduler
MicroC/OS-II

23

RB -E2007/2011

Thread B

Thread A

Thread C

Only ONE thread on a priority level

Thread B

Thread C

Time

preemption Deschedule

preemption Deschedule

Non-preemptive kernel

• In a NON preemptive kernel, the task's
switching is always done when the task
explicitly give up control of the CPU (ex.
Yield() call)

• It's called cooperative multitasking
• ISR are available but do not provide

context switching
• No-reentrant function can be used easily

24

RB -E2007/2011

Non-preemptive kernel

Low priority task

25

RB -E2007/2011

Yield() ctrl to kernel

High priority task

Time

Non-preemptive kernel

• Drawback: responsiveness for high priority
task can be very high if a lowest priority
task do not relinquish the CPU for a long
time

• Response time is not deterministic

26

RB -E2007/2011

Preemptive kernel

• The highest priority task always receive the
CPU time when it's ready

• An ISR preempt the task (could be a timer)
• Execution is deterministic, task response

time is minimized
• Don't use non-reentrant functions without

mutual exclusive access :
Mutual semaphore (mutex)

27

RB -E2007/2011

Preemptive kernel

Low priority task

28

RB -E2007/2011

Switched
by the
kernel

Higher priority task

Time

ISR

Reentrant functions

• A reentrant function can be used by more than
one task without corrupting data or devices

• A reentrant function can be interrupted at any
time and continue later without loss of data

• Use local variables on CPU registers or on stack
• Protect global variables by mutex or interrupt

disabled (not for long time!)

29

RB -E2007/2011

Reentrant functions (ex.)

void strcpy(char *dest, char *src){
while(*dest++ = *src++){
}
*dest = NUL;

}

• Parameters are passed by the stack
• Multiple tasks can call strcpy without problems

30

RB -E2007/2011

Non-Reentrant functions (ex.)

Int Temp;
void swap(int *x, int *y){

Temp = *x;
*x = *y;
*y = Temp;

}

• Temp : global variable

31

RB -E2007/2011

Problem if task
switching is
here!

Non-Reentrant functions (ex.)

Low priority task

x=1;
y=2;
Swap(&x, &y);

{
Temp = *x; // Temp = 1

*x = *y;
*y = Temp;

}

OSTimeDly(1);
x = 2
y = 3

Temp : global variable

32

RB -E2007/2011

High priority task

z=3;
t=4;
Swap(&z, &t);

{
Temp = *z; // Temp = 3
*z = *t;
*t = Temp;

}
OSTimeDly(1);

z = 4
t = 3

ISR
OSIntExit();

Temp = 3 !

Non-Reentrant functions (ex.)

Correction to make the swap function reentrant:
• Temp : global variable NO
• Temp local variable to swap()
or
• Protect access to Temp use by exclusion

access semaphore
or
• Disable interrupt during Temp use

33

RB -E2007/2011

Round-robin scheduling

Capability for the scheduler to support more than
1 task to the same priority
Allow task execution by quantum of time and task
scheduling is run

34

RB -E2007/2011

eCOS Kernel scheduler
Multilevel Queue Scheduler

35

RB -E2007/2011

Priority 0Thread A Thread B … Maximum

Priority 1

Priority 1

Priority 31Thread C Minimum

Priority ……

Timeslice on same priority level

eCOS Kernel scheduler
Multilevel Queue Scheduler

36

RB -E2007/2011

Thread A Thread B

Thread C

Timeslice on same priority level

Thread A

Thread C

Time

preemption Deschedule

DescheduleTimeslice

Task priorities

• Each task has a priority :
• The most important the highest priority

• Static priority
The priority does not change during the application

• Dynamic priority
The priority can change during the application's
execution at run time

37

RB -E2007/2011

Priority inversion

• Problem in real time systems, example:
Task1 highest priority
Task 2 middle priority
Task 3 lowest priority
Semaphore X: Sx

38

RB -E2007/2011

Task1(H)

Task2(M)

Task3(L)
Time

Priority inversion

39

RB -E2007/2011

Task1(H) waitA

Task2(M) waitB

Task3(L)

Time

T3 Lock Sx

EventA: T1 preempt 3

T1 acces Sx:
Switch to T3

EventB: T2 preempt 3

T2 finish
T3 continue

T3 Unlock Sx
T1 run

Priority Inversion

Priority inversion inheritance

40

RB -E2007/2011

Task1(H) waitA

Task2(M) waitB

Task3(L)

Time

T3 Lock Sx

EventA: T1 preempt 3

T1 acces Sx:
Switch to T3: T3 priority = T1 pr.(H)

T1 finish

EventB:
T2 run

T3 Unlock Sx
T1 run

Priority Inversion

Priority inversion inheritance

• Utilization of mutex for mutual exclusive
access to a resource with priority change
to the highest of the tasks waiting for it.

41

RB -E2007/2011

Assigning task priority

• Very difficult task, but some rules:
• Non critical tasks lowest priority
• Rate Monotonic Scheduling is a technique

to assign priority with the simple rule :
Put the highest rate of execution the highest
priority

42

RB -E2007/2011

RMS (Rate Monotonic Scheduling)

• Some assumptions:
All tasks are periodic
Tasks do not synchronize with one another, share
resources or exchange data
Preemptive scheduling on highest priority task
Hard real time deadlines are always met if:

• Σ Ei / Ti ≤ n * (21/n -1)
Ei : max execution time task i
Ti : execution period of task I
Ei / Ti : fraction of execution time of task I
n: number of task

43

RB -E2007/2011

RMS (Rate Monotonic Scheduling)

• n ∞, Σ Ei / Ti ≤ ln(2) ≈ 0.693
• The sum of all critica task need to be less

than 70% CPU time!
• Stay some times for non critical task !

• It's a starting point for priority choice !

44

RB -E2007/2011

Mutual exclusion

• Disabling interrupts (MicroC/OS-II):
OS_ENTER_CRITICAL();

Interrupt disabled

OS_EXIT_CRITICAL();

• Disabling Scheduler
If not accessed by ISR
OSSchedLock();

Scheduler disabled, interrupt enabled !
DO NOT use OSxxxPend() or TimeDlyxx() functions !

OSSchedUnLock();

45

RB -E2007/2011

Mutual exclusion

• Semaphores (MicroC/OS-II):
Mutual exclusion to access shared resources
Signal the occurrence of an event
Allow two task to synchronize

Binary semaphore (0, 1)
Counter semaphore

46

RB -E2007/2011

Semaphore

• Initialize() or Create() with n > 0
• WAIT() or PEND(),

if n > 0 n= n-1 access allowed
If n == 0 calling task go on waiting list,
control to another ready task

• SIGNAL() or POST()
Task waiting execute
No task waiting n = n+1

47

RB -E2007/2011

Semaphore

• Execution :
Highest priority task (MicroC/OS-II)
First task waiting for the semaphore (FIFO)

OS_EVENT *SharedDataSem;

SharedDataSem OSSemCreate(1); // Create the semaphore

Void Function(void){
INT8U err;
OSSemPend(SharedDataSem, 0, &er);

//Exclusion access

OSSemPost(SharedDataSem);
}

48

RB -E2007/2011

Mutual exclusion semaphores

• Binary semaphore for mutual exclusion
• A parameter PIP (Priority inheritance

priority) is pass at Creation time.
• It's a priority reserved with the value of the

highest priority of all task that can wait on
the mutex

• It's a way to resolve the priority inversion
without having two task at the same
priority !

50

RB -E2007/2011

Mutual exclusion semaphores

OS_EVENT *OSMutexCreate(INT8U prio, INT8U *err);
OSMutexCreate() is used to create and initialize a mutex. A mutex is used to gain exclusive access to

a resource.

void OSMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);
OSMutexPend() is used when a task desires to get exclusive access to a resource. If a task calls

OSMutexPend() and the mutex is available, then OSMutexPend() gives the mutex to the caller
and returns to its caller. Note that nothing is actually given to the caller except for the fact that if
err is set to OS_NO_ERR, the caller can assume that it owns the mutex. However, if the mutex is
already owned by another task, OSMutexPend() places the calling task in the wait list for the
mutex. The task thus waits until the task that owns the mutex releases the mutex and thus the
resource or until the specified timeout expires. If the mutex is signaled before the timeout expires,
_C/OS-II resumes the highest priority task that is waiting for the mutex. Note that if the mutex is
owned by a lower priority task, then OSMutexPend() raises the priority of the task that owns the
mutex to the PIP, as specified when you created the mutex [see OSMutexCreate()].

INT8U OSMutexPost(OS_EVENT *pevent);
A mutex is signaled (i.e., released) by calling OSMutexPost(). You call this function only if you acquire

the mutex by first calling either OSMutexAccept() or OSMutexPend(). If the priority of the task that
owns the mutex has been raised when a higher priority task attempts to acquire the mutex, the
original task priority of the task is restored. If one or more tasks are waiting for the mutex, the
mutex is given to the highest priority task waiting on the mutex. The scheduler is then called to
determine if the awakened task is now the highest priority task ready to run, and if so, a context
switch is done to run the readied task. If no task is waiting for the mutex, the mutex value is simply
set to available (0xFF).

51

RB -E2007/2011

Mutual exclusion semaphores

INT8U OSMutexQuery(OS_EVENT *pevent, OS_MUTEX_DATA *pdata);
OSMutexQuery() is used to obtain run-time information about a mutex. Your application

must allocate an OS_MUTEX_DATA data structure that is used to receive data from
the event control block of the mutex. OSMutexQuery() allows you to determine
whether any task is waiting on the mutex, how many tasks are waiting (by counting
the number of 1s) in the .OSEventTbl[] field, obtain the PIP, and determine whether
the mutex is available (1) or not (0). Note that the size of .OSEventTbl[] is established
by the #define constant OS_EVENT_TBL_SIZE (see uCOS_II.H).

OS_EVENT *OSMutexDel(OS_EVENT *pevent, INT8U opt, INT8U *err);
OSMutexDel() is used to delete a mutex. This function is dangerous to use because

multiple tasks could attempt to access a deleted mutex. You should always use this
function with great care. Generally speaking, before you delete a mutex, you must
first delete all the tasks that can access the mutex.

INT8U OSMutexAccept(OS_EVENT *pevent, INT8U *err);
OSMutexAccept() allows to check to see if a resource is available. Unlike

OSMutexPend(), OSMutexAccept() does not suspend the calling task if the resource
is not available. In other words, OSMutexAccept() is non-blocking.

52

RB -E2007/2011

Event flags

• An events flag is used when a task needs to
synchronize with the occurrence of multiple
events.

• The task can be synchronized when ANY of the
events have occurred OR function, it's call
disjunctive synchronization

• The task can be synchronized when ALL of the
events have occurred AND function, it's call
conjunctive synchronization

53

RB -E2007/2011

Event flags

54

RB -E2007/2011

ISR
Task

Pend

Semaphore

Post

Events
Task

Disjunctive synchronization (OR)

ISR
Task

PendPost
Task

Conjunctive synchronization (AND)

Event flags

• An Event is a bit activated in a Task or ISR
on an event flag

• Evaluation is done when SET function is
done

55

RB -E2007/2011

Event flags

OS_FLAG_GRP *OSFlagCreate
(OS_FLAGS flags, INT8U *err);

OSFlagCreate() is used to create and
initialize an event flag group.

56

RB -E2007/2011

Event flags

• OSFlagPost()
• OS_FLAGS OSFlagPost(OS_FLAG_GRP

*pgrp, OS_FLAGS flags, INT8U opt, INT8U err);

• You set or clear event flag bits by calling
OSFlagPost(). The bits set or cleared are
specified in a bit mask. OSFlagPost() readies
each task that has its desired bits satisfied by
this call. You can set or clear bits that are
already set or cleared.

57

RB -E2007/2011

Event flags

OS_FLAGS OSFlagPend (OS_FLAG_GRP *pgrp,
OS_FLAGS flags,
INT8U wait_type,
INT16U timeout,
INT8U *err);

OSFlagPend() is used to have a task wait for a combination
of conditions (i.e., events or bits) to be set (or cleared) in
an event flag group. Your application can wait for any
condition to be set or cleared or for all conditions to be
set or cleared. If the events that the calling task desires
are not available, then the calling task is blocked until the
desired conditions are satisfied or the specified timeout
expires.

58

RB -E2007/2011

Event flags Arguments

• pgrp is a pointer to the event flag group. This pointer is returned to your application when the
event flag group is created [see OSFlagCreate()].

• flags is a bit pattern indicating which bit(s) (i.e., flags) you wish to check. The bits you want are
specified by setting the corresponding bits in flags.

• wait_type specifies whether you want all bits to be set/cleared or any of the bits to be set/cleared.
You can specify the following arguments:

OS_FLAG_WAIT_CLR_ALL You check all bits in flags to be clear (0)
OS_FLAG_WAIT_CLR_ANY You check any bit in flags to be clear (0)
OS_FLAG_WAIT_SET_ALL You check all bits in flags to be set (1)
OS_FLAG_WAIT_SET_ANY You check any bit in flags to be set (1)

• You can also specify whether the flags are consumed by adding OS_FLAG_CONSUME to the
wait_type. For example, to wait for any flag in a group and then clear the flags that satisfy the
condition, set wait_type to

OS_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME
• err is a pointer to an error code and can be:

OS_NO_ERR No error.
OS_ERR_PEND_ISR You try to call OSFlagPend from an ISR, which is not allowed.
OS_FLAG_INVALID_PGRP You pass a NULL pointer instead of the event flag handle.
OS_ERR_EVENT_TYPE You are not pointing to an event flag group.
OS_TIMEOUT The flags are not available within the specified amount of time.
OS_FLAG_ERR_WAIT_TYPE You don’t specify a proper wait_type argument.

59

RB -E2007/2011

Event flags

OS_FLAGS OSFlagAccept (OS_FLAG_GRP
*pgrp, OS_FLAGS flags, INT8U wait_type,
NT8U *err);

OSFlagAccept() allows to check the status of a
combination of bits to be either set or cleared in
an event flag group. Your application can check
for any bit to be set/cleared or all bits to be
set/cleared. This function behaves exactly as
OSFlagPend() does, except that the caller does
NOT block if the desired event flags are not
present.

60

RB -E2007/2011

Intertask Communication

• For intertask communication, global
variables can be used. The access has to
be protected by semaphore.

• In case of ISR (Interrupt Service Routine),
disabling interrupt is necessary, as
waiting on a semaphore is NOT allowed in
an ISR.

61

RB -E2007/2011

Intertask Communication

• If an ISR need to signal a variable
modification, synchronizing semaphore can
be used. The Post (Signal) can be done in
the ISR, but never the Pend (Wait)

• Active wait on a variable modification can
sometimes be used (polling on a variable),
during this time only task with higher
priority can take the processor.

62

RB -E2007/2011

Message mailboxes

• Message can be used to communicate
between Tasks and ISR to Task.

• The kernel can provide message mailbox
services. In general the message is a
pointer to an known structure by both the
sender and the receiver

63

RB -E2007/2011

Message mailboxes

• Only ONE message can be put in the
mailbox at a time.

• If a new message is Posted, and the
previous one not consumed (Pend) an
error is provided and the new message is
not accepted

64

RB -E2007/2011

Message mailboxes

65

RB -E2007/2011

TaskTask

Mailbox
Pend

10

Waiting Timeout
Nb of TicksISR

Post

Post

Message mailboxes

66

RB -E2007/2011

Task

Mailbox
Post OSMBoxAccept()

In an ISR, only the Accept()
access is allowed to read a
Mailbox

ISR

Message mailboxes

• OS_EVENT *OSMboxCreate (void *msg);

• OSMboxCreate() creates and initializes a
mailbox. A mailbox allows tasks or ISRs to send
a pointer-variable (message) to one or more
tasks.

• msg is used to initialize the contents of the
mailbox. The mailbox is empty when msg is a
NULL pointer. The mailbox initially contains a
message when msg is non-NULL.

67

RB -E2007/2011

Message mailboxes

• void *OSMboxPend (OS_EVENT *pevent, INT16U timeout, INT8U *err);

• OSMboxPend() is used when a task expects to receive a message. The
message is sent to the task either by an ISR or by another task.

• The message received is a pointer-sized variable, and its use is application
specific. If a message is present in the mailbox when OSMboxPend() is
called, the message is retrieved, the mailbox is emptied, and the retrieved
message is returned to the caller.

• If no message is present in the mailbox, OSMboxPend() suspends the
current task until either a message is received or a user-specified timeout
expires.

• If a message is sent to the mailbox and multiple tasks are waiting for the
message, μC/OS-II resumes the highest priority task waiting to run. A
pended task that has been suspended with OSTaskSuspend() can receive
a message. However, the task remains suspended until it is resumed by
calling OSTaskResume().

68

RB -E2007/2011

Message mailboxes

• INT8U OSMboxPost (OS_EVENT *pevent, void *msg);

• OSMboxPost() sends a message to a task through a mailbox. A
message is a pointer-sized variable and, its use is application
specific.

• If a message is already in the mailbox, an error code is returned
indicating that the mailbox is full. OSMboxPost() then immediately
returns to its caller, and the message is not placed in the mailbox.

• If any task is waiting for a message at the mailbox, the highest
priority task waiting receives the message. If the task waiting for the
message has a higher priority than the task sending the message,
the higher priority task is resumed, and the task sending the
message is suspended.

• In other words, a context switch occurs.

69

RB -E2007/2011

Message mailboxes

70

RB -E2007/2011

TaskTask

Mailbox
Pend

10

ISR

Post

Post

Task

Task
OSMboxPostOpt() can post
Mailbox to the highest priority waiting task
OR to ALL the waiting tasks

Message mailboxes

• INT8U OSMboxPostOpt (OS_EVENT *pevent, void *msg, INT8U opt);

• OSMboxPostOpt() works just like OSMboxPost() except that it allows you to post a
message to multiple tasks. In other words, OSMboxPostOpt() allows the message
posted to be broadcast to all tasks waiting on the mailbox. OSMboxPostOpt() can
actually replace OSMboxPost() because it can emulate OSMboxPost().

• OSMboxPostOpt() is used to send a message to a task through a mailbox. A
message is a pointer-sized variable, and its use is application specific.

• If a message is already in the mailbox, an error code is returned indicating that the
mailbox is full. OSMboxPostOpt() then immediately returns to its caller, and the
message is not placed in the mailbox.

• If any task is waiting for a message at the mailbox, OSMboxPostOpt() allows you
either to post the message to the highest priority task waiting at the mailbox (opt set
to OS_POST_OPT_NONE) or to all tasks waiting at the mailbox (opt is set to
OS_POST_OPT_BROADCAST).

• In either case, scheduling occurs and, if any of the tasks that receives the message
have a higher priority than the task that is posting the message, then the higher
priority task is resumed, and the sending task is suspended. In other words, a context
switch occurs.

71

RB -E2007/2011

Message mailboxes

• Others OSMBox functions:

OS_EVENT *OSMboxCreate (void *msg);
OS_EVENT *OSMboxDel (OS_EVENT
*pevent, INT8U opt, INT8U *err);
void *OSMboxAccept (OS_EVENT *pevent);
INT8U OSMboxQuery (OS_EVENT *pevent,
OS_MBOX_DATA *pdata);

•

72

RB -E2007/2011

Message queues

• A message queue is similar to the
mailbox, but it can accept more than 1
message. As many as the queue can
accept them.

• The queue has to be provide when
creating the message queue with
OSQCreate()

• Void *MyArrayofMsg[SIZE];
• The array is seen as a circular buffer

73

RB -E2007/2011

Message queues

74

RB -E2007/2011

TaskTask

Queue
Pend

0

ISR

Post

Post

Task

Task
OSMboxPostOpt() can post
Mailbox to the highest priority waiting task
OR to ALL the waiting tasks

10

Message queues

• OS_EVENT *OSQCreate (void **start,
INT8U size);

• OSQCreate() creates a message queue. A
message queue allows tasks or ISRs to send
pointer-sized variables (messages) to one or
more tasks. The meaning of the messages sent
are application specific.

start is the base address of the message storage
area. A message storage area is declared as an array
of pointers to voids.
size is the size (in number of entries) of the message
storage area.

75

RB -E2007/2011

Message queues

• void *OSQPend (OS_EVENT *pevent, INT16U timeout, INT8U *err);
• OSQPend() is used when a task wants to receive messages from a queue.

The messages are sent to the task either by an ISR or by another task.
• The messages received are pointer-sized variables, and their use is

application specific.
• If at least one message is present at the queue when OSQPend() is called,

the message is retrieved and returned to the caller.
• If no message is present at the queue, OSQPend() suspends the current

task until either a message is received or a user-specified timeout expires.
• If a message is sent to the queue and multiple tasks are waiting for such a

message, then μC/OS-II resumes the highest priority task that is waiting.
• A pended task that has been suspended with OSTaskSuspend() can

receive a message. However, the task remains suspended until it is
resumed by calling OSTaskResume().

76

RB -E2007/2011

Message queues

• INT8U OSQPost (OS_EVENT *pevent, void *msg);

• OSQPost() sends a message to a task through a queue.
• A message is a pointer-sized variable, and its use is application

specific.
• If the message queue is full, an error code is returned to the caller.

In this case, OSQPost() immediately returns to its caller, and the
message is not placed in the queue.

• If any task is waiting for a message at the queue, the highest priority
task receives the message.

• If the task waiting for the message has a higher priority than the task
sending the message, the higher priority task resumes, and the task
sending the message is suspended; that is, a context switch occurs.

• Message queues are first-in first-out (FIFO), which means that the
first message sent is the first message received.

77

RB -E2007/2011

Message queues

• INT8U OSQPostFront (OS_EVENT *pevent, void *msg);

• OSQPostFront() sends a message to a task through a queue.
OSQPostFront() behaves very much like OSQPost(), except that the
message is inserted at the front of the queue.

• This means that OSQPostFront() makes the message queue behave like a
last-in first-out (LIFO) queue instead of a first-in first-out (FIFO) queue.

• The message is a pointer-sized variable, and its use is application specific.
• If the message queue is full, an error code is returned to the caller.

OSQPostFront() immediately returns to its caller, and the message is not
placed in the queue.

• If any tasks are waiting for a message at the queue, the highest priority task
receives the message.

• If the task waiting for the message has a higher priority than the task
sending the message, the higher priority task is resumed, and the task
sending the message is suspended; that is, a context switch occurs.

78

RB -E2007/2011

Message queues

• INT8U OSQPostOpt (OS_EVENT *pevent, void *msg, INT8U opt);

• OSQPostOpt() is used to send a message to a task through a queue. A
message is a pointer-sized variable, and its use is application specific.

• If the message queue is full, an error code is returned indicating that the
queue is full. OSQPostOpt() then immediately returns to its caller, and the
message is not placed in the queue.

• If any task is waiting for a message at the queue, OSQPostOpt() allows you
to either post the message to the highest priority task waiting at the queue
(opt set to OS_POST_OPT_NONE) or to all tasks waiting at the queue
(opt is set to OS_POST_OPT_BROADCAST).

• In either case, scheduling occurs, and, if any of the tasks that receive the
message have a higher priority than the task that is posting the message,
then the higher priority task is resumed, and the sending task is suspended.
In other words, a context switch occurs.

79

RB -E2007/2011

Message queues

• OSQPostOpt() emulates both OSQPost() and
OSQPostFront() and also allows to post a
message to multiple tasks. In other words, it
allows the message posted to be broadcast to
all tasks waiting on the queue. OSQPostOpt()
can actually replace OSQPost() and
OSQPostFront() because the mode of operation
is specified via an option argument, opt. Doing
this allows you to reduce the amount of code
space needed by μC/OS-II.

80

RB -E2007/2011

Message queues

• pevent is a pointer to the queue. This pointer is returned to your application
when the queue is created [see OSQCreate()].

• msg is the actual message sent to the task(s). msg is a pointer-sized
variable, and what msg points to is application specific. As of V2.60, you are
now allowed to post a NULL pointer.

• opt determines the type of POST performed:
OS_POST_OPT_NONE POST to a single waiting task [identical to OSQPost()].
OS_POST_OPT_BROADCAST POST to all tasks waiting on the queue.
OS_POST_OPT_FRONT POST as LIFO [simulates OSQPostFront()].
Below is a list of all the possible combination of these flags:
OS_POST_OPT_NONE is identical to OSQPost()
OS_POST_OPT_FRONT is identical to OSQPostFront()
OS_POST_OPT_BROADCAST is identical to OSQPost() but broadcasts msg to
all waiting tasks
OS_POST_OPT_FRONT + OS_POST_OPT_BROADCAST
is identical to OSQPostFront() except that broadcasts msg to all waiting tasks.

81

RB -E2007/2011

Message queues

• INT8U *OSQFlush (OS_EVENT *pevent);
• INT8U OSQQuery (OS_EVENT *pevent,

OS_Q_DATA *pdata);
• OS_EVENT *OSQDel (OS_EVENT

*pevent, INT8U opt, INT8U *err);

82

RB -E2007/2011

Clock Tick

• A Clock Tick is a special interrupt that
occurs periodically.

• A Timer provide this interrupt
• It can be used for delay, for time-out
• Faster the clock tick higher the overhead

imposed to the system in general
10..200ms

• The resolution is one clock tick
• The accuracy is NOT one clock tick

83

RB -E2007/2011

Clock Tick

• An example of a low priority task delayed
by 1 tick in different timing configuration

• In all case the real waiting time is NOT
exactly a multiple of 1 tick,

• There is a jitter in the execution starting
time !

• It could be less than 1 tick or more than 1
tick !

84

RB -E2007/2011

Clock Tick

85

RB -E2007/2011

Tick interrupt

Tick ISR

All higher
priority tasks

Delayed task

20 ms

16 ms 25 ms 17 ms 16 ms

Call to delay 1 tick(20ms)

Clock Tick

86

RB -E2007/2011

Tick interrupt

Tick ISR

All higher
priority tasks

Delayed task

20 ms

6 ms 27 ms 17 ms 16 ms

Call to delay 1 tick(20ms)

Clock Tick

• If there is not enough time in a tick slot to
finish all the higher priority task, the
waiting time can be far more than 1 tick !

• The deadline can be missed !
• Acceptable in certain applications, not in

others !

87

RB -E2007/2011

Clock Tick

88

RB -E2007/2011

Tick interrupt

Tick ISR

All higher
priority tasks

Delayed task

20 ms

45 ms 17 ms 16 ms

Call to delay 1 tick(20ms)

Kernel Structure

Example from MicroC/OS-II
Task Control Bloc

Event Control Block

RB -E2007/2011

89

Task Control Blocks

• For each task created, a task bloc is take
from a list of free TCB

• A TCB is a data structure used to maintain
the state of a task when it's preempted

• A TCB contain all the information about a
task for a resume and to continue again
it's execution

90

RB -E2007/2011

Task Control Blocks

• A list of Free TCB is available at starting
• Each time a task is created, a TCB is take

from the free list
• Each task has a unique priority level

(0..60) or (0..252)
• Idle task has the lowest priority
• Static task allows the calculation of

statistics on the tasks timings

91

RB -E2007/2011

Task Control Blocks

* TASK CONTROL BLOCK

*/

typedef struct os_tcb {
OS_STK *OSTCBStkPtr; /* Pointer to current top of stack */

#if OS_TASK_CREATE_EXT_EN > 0
void *OSTCBExtPtr; /* Pointer to user definable data for TCB extension */
OS_STK *OSTCBStkBottom; /* Pointer to bottom of stack */
INT32U OSTCBStkSize; /* Size of task stack (in number of stack elements) */
INT16U OSTCBOpt; /* Task options as passed by OSTaskCreateExt() */
INT16U OSTCBId; /* Task ID (0..65535) */

#endif

struct os_tcb *OSTCBNext; /* Pointer to next TCB in the TCB list */
struct os_tcb *OSTCBPrev; /* Pointer to previous TCB in the TCB list */

#if OS_EVENT_EN
OS_EVENT *OSTCBEventPtr; /* Pointer to event control block */

#endif

#if ((OS_Q_EN > 0) && (OS_MAX_QS > 0)) || (OS_MBOX_EN > 0)
void *OSTCBMsg; /* Message received from OSMboxPost() or OSQPost() */

#endif

#if (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0)
#if OS_TASK_DEL_EN > 0

OS_FLAG_NODE *OSTCBFlagNode; /* Pointer to event flag node */
#endif

OS_FLAGS OSTCBFlagsRdy; /* Event flags that made task ready to run */
#endif

92

RB -E2007/2011

Task Control Blocks

INT16U OSTCBDly; /* Nbr ticks to delay task or, timeout waiting for event */
INT8U OSTCBStat; /* Task status */
BOOLEAN OSTCBPendTO; /* Flag indicating PEND timed out (OS_TRUE == timed out) */
INT8U OSTCBPrio; /* Task priority (0 == highest) */

INT8U OSTCBX; /* Bit position in group corresponding to task priority */
INT8U OSTCBY; /* Index into ready table corresponding to task priority */

#if OS_LOWEST_PRIO <= 63
INT8U OSTCBBitX; /* Bit mask to access bit position in ready table */
INT8U OSTCBBitY; /* Bit mask to access bit position in ready group */

#else
INT16U OSTCBBitX; /* Bit mask to access bit position in ready table */
INT16U OSTCBBitY; /* Bit mask to access bit position in ready group */

#endif

#if OS_TASK_DEL_EN > 0
INT8U OSTCBDelReq; /* Indicates whether a task needs to delete itself */

#endif

#if OS_TASK_PROFILE_EN > 0
INT32U OSTCBCtxSwCtr; /* Number of time the task was switched in */
INT32U OSTCBCyclesTot; /* Total number of clock cycles the task has been running */
INT32U OSTCBCyclesStart; /* Snapshot of cycle counter at start of task resumption */
OS_STK *OSTCBStkBase; /* Pointer to the beginning of the task stack */
INT32U OSTCBStkUsed; /* Number of bytes used from the stack */

#endif

#if OS_TASK_NAME_SIZE > 1
INT8U OSTCBTaskName[OS_TASK_NAME_SIZE];

#endif
} OS_TCB;

93

RB -E2007/2011

ECB: Event Control Blocks

• a semaphore, a mutex, a flag, a mailbox, a
queue are considered as Event

• Signal can be done on a Event and control
transferred to a waiting task on this event

• The signal can be done from an ISR or
from an other task

• The ECB is a data structure to handle the
events: OS_EVENT from ucos_ii.h

94

RB -E2007/2011

ECB: Event Control Blocks

• OSEventType specify the Type of Event as:
a semaphore,
a mutex,
a mailbox,
a queue

• OSEventPtr is a pointer for mailbox and message queue
• OSEventCnt is used for the semaphore counter
• OSEventGrp and
OSEventTbl[OS_EVENT_TBL_SIZE]are used for priority
waiting for the associated event

• OSEventName[OS_EVENT_NAME_SIZE]allow to specify a
name to the event

95

RB -E2007/2011

ECB: Event Control Blocks

OSEventType

*OSEventPtr

OSEventCnt

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
15 10 9 8

16

63 56
OSEventName[]

96
RB -E2007/2011

OSEventTbl[0]

pevent

OSEventGrp

OSEventTbl[2]

OSEventTbl[3]

OSEventTbl[7]

Priorities of all
tasks waiting
for the event,
Activated by a '1'

Offset in
OSEvenTbl
waiting for the
event

ECB: Event Control Blocks

OSEventType

*OSEventPtr

OSEventCnt

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
15 10 9 8

16

43

63 56
OSEventName[]

0 0 1 0 1 0 1 1

97

RB -E2007/2011

OSEventTbl[0]

pevent

OSEventGrp

OSEventTbl[2]

OSEventTbl[3]

OSEventTbl[7]

Task's
Priority

ECB: Event Control Blocks

* EVENT CONTROL BLOCK

#if OS_EVENT_EN && (OS_MAX_EVENTS > 0)
typedef struct os_event {

INT8U OSEventType; /* Type of event control block (see OS_EVENT_TYPE_xxxx) */
void *OSEventPtr; /* Pointer to message or queue structure */
INT16U OSEventCnt; /* Semaphore Count (not used if other EVENT type) */

#if OS_LOWEST_PRIO <= 63
INT8U OSEventGrp; /* Group corresponding to tasks waiting for event to occur */
INT8U OSEventTbl[OS_EVENT_TBL_SIZE]; /* List of tasks waiting for event to occur */

#else
INT16U OSEventGrp; /* Group corresponding to tasks waiting for event to occur */
INT16U OSEventTbl[OS_EVENT_TBL_SIZE]; /* List of tasks waiting for event to occur */

#endif

#if OS_EVENT_NAME_SIZE > 1
INT8U OSEventName[OS_EVENT_NAME_SIZE];

#endif
} OS_EVENT;
#endif

98

RB -E2007/2011

ECB: Event Control Blocks

• An ECB is to be reserved for each event to create:

OS_EVENT MySemaphore; //
MySemaphore = OSSemCreate(1);

OS_EVENT MyMailbox;
…

99

RB -E2007/2011

EFG: Event Flag Group

• For the Flags, the structure is OS_FLAG_GRP
/*

* EVENT FLAGS CONTROL BLOCK

*/

#if (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0)

#if OS_FLAGS_NBITS == 8 /* Determine the size of OS_FLAGS (8, 16 or 32 bits) */
typedef INT8U OS_FLAGS;
#endif

#if OS_FLAGS_NBITS == 16
typedef INT16U OS_FLAGS;
#endif

#if OS_FLAGS_NBITS == 32
typedef INT32U OS_FLAGS;
#endif

typedef struct os_flag_grp { /* Event Flag Group */
INT8U OSFlagType; /* Should be set to OS_EVENT_TYPE_FLAG */
void *OSFlagWaitList; /* Pointer to first NODE of task waiting on event flag */
OS_FLAGS OSFlagFlags; /* 8, 16 or 32 bit flags */

#if OS_FLAG_NAME_SIZE > 1
INT8U OSFlagName[OS_FLAG_NAME_SIZE];

#endif
} OS_FLAG_GRP;

100

RB -E2007/2011

ECB: Event Control Blocks

• Associated with OS_FLAG_NODE
typedef struct os_flag_node { /* Event Flag Wait List Node */

void *OSFlagNodeNext; /* Pointer to next NODE in wait list */
void *OSFlagNodePrev; /* Pointer to previous NODE in wait list */
void *OSFlagNodeTCB; /* Pointer to TCB of waiting task */
void *OSFlagNodeFlagGrp; /* Pointer to Event Flag Group */
OS_FLAGS OSFlagNodeFlags; /* Event flag to wait on */
INT8U OSFlagNodeWaitType; /* Type of wait: */

/* OS_FLAG_WAIT_AND */
/* OS_FLAG_WAIT_ALL */
/* OS_FLAG_WAIT_OR */
/* OS_FLAG_WAIT_ANY */

} OS_FLAG_NODE;
#endif

101

RB -E2007/2011

Free Pools after OSInit()

102

RB -E2007/2011

OSTCBFreeList OSTCBNext 0

OSEventFreeList OSEventPtr 0

OSQFreeList OSQPtr 0

OSFlagFreeList OSFlagWaitList 0

OSMemFreeList OSMemFreeList 0

OSTCBNext

OSEventPtr

OSQPtr

OSFlagWaitList

OSMemFreeList

OSTCBNext

OSEventPtr

OSQPtr

OSFlagWaitList

OSMemFreeList

A Task that run indefinitely

• A Task has the structure like this one
1. void Task1(void *pdata){

{
for(;;){

//One of uC/OS-II's services :
OSFlagPend();
OSMboxPend();
OSMutexPend();
OSQPend();
OSSemPend();
OSTaskSuspend();
OSTimeDly();
OSTimeDlyHMSM();

}
}

103

RB -E2007/2011

A Task than run for a limited time

• Or this one
1. void Task2(void *pdata){

{
// USER CODE
OSTaskDel();

}

104

RB -E2007/2011

	 « Real Time Embedded systems »�MicroC/OS-II
	Introduction
	Main features
	Main features (2)
	Main features (3)
	Diapositive numéro 7
	Soft/Hard Real Time
	Foreground/Background Systems
	Foreground/Background Systems
	Foreground/Background Systems
	Critical region
	Resources, shared resources
	Multitasking
	Tasks
	Tasks
	Tasks states (MicroC/OS-II)
	Tasks states (MicroC/OS-II)
	Tasks Switches
	Kernel
	Scheduler
	eCOS Kernel scheduler, Bit Map Scheduler�MicroC/OS-II
	eCOS Kernel scheduler, Bit Map Scheduler�MicroC/OS-II
	Non-preemptive kernel
	Non-preemptive kernel
	Non-preemptive kernel
	Preemptive kernel
	Preemptive kernel
	Reentrant functions
	Reentrant functions (ex.)
	Non-Reentrant functions (ex.)
	Non-Reentrant functions (ex.)
	Non-Reentrant functions (ex.)
	Round-robin scheduling
	eCOS Kernel scheduler�Multilevel Queue Scheduler
	eCOS Kernel scheduler�Multilevel Queue Scheduler
	Task priorities
	Priority inversion
	Priority inversion
	Priority inversion inheritance
	Priority inversion inheritance
	Assigning task priority
	RMS (Rate Monotonic Scheduling)
	RMS (Rate Monotonic Scheduling)
	Mutual exclusion
	Mutual exclusion
	Semaphore
	Semaphore
	Mutual exclusion semaphores
	Mutual exclusion semaphores
	Mutual exclusion semaphores
	Event flags
	Event flags
	Event flags
	Event flags
	Event flags
	Event flags
	Event flags Arguments
	Event flags
	Intertask Communication
	Intertask Communication
	Message mailboxes
	Message mailboxes
	Message mailboxes
	Message mailboxes
	Message mailboxes
	Message mailboxes
	Message mailboxes
	Message mailboxes
	Message mailboxes
	Message mailboxes
	Message queues
	Message queues
	Message queues
	Message queues
	Message queues
	Message queues
	Message queues
	Message queues
	Message queues
	Message queues
	Clock Tick
	Clock Tick
	Clock Tick
	Clock Tick
	Clock Tick
	Clock Tick
	Kernel Structure
	Task Control Blocks
	Task Control Blocks
	Task Control Blocks
	Task Control Blocks
	ECB: Event Control Blocks
	ECB: Event Control Blocks
	ECB: Event Control Blocks
	ECB: Event Control Blocks
	ECB: Event Control Blocks
	ECB: Event Control Blocks
	EFG: Event Flag Group
	ECB: Event Control Blocks
	Free Pools after OSInit()
	A Task that run indefinitely
	A Task than run for a limited time

