
Altera Corporation
AN-391-1.2

February 2006, ver. 1.2
Profiling Nios II Systems
Application Note 391
Introduction This application note describes a variety of ways to measure the
performance of a Nios® II system with three tools: the GNU profiler,
called nios2-elf-gprof, the timestamp interval timer peripheral, and the
performance counter peripheral. Two tutorials give detailed examples of
using these tools to measure performance.

The profiler tool is explained first. Measurements with the profiler tool do
not require any hardware changes to your Nios II system, because the
measurement is performed in software by compiler instrumentation of
application code with calls to functions in the profiler library.

Next, minimally intrusive methods are examined. The performance
counter peripheral and the timestamp peripheral are described and
compared. The addition of both hardware peripherals and source code
changes to start and stop these peripherals are necessary. The benefit of
using hardware peripherals to measure performance is the accuracy of
the measurement results.

Compiler speed optimizations affect functions to widely varying degrees.
Compiler size optimizations also affect functions in different ways. These
differences impact cache usage and resource contention, which can
amplify the relative timing behavior of functions. For these reasons,
profiling should be performed on release-mode code to gain the most
insight on how to improve an application in its final form.

Tools The tutorials use the following tools to measure the performance of a
Nios II system.

GNU Profiler

Minimal source code changes are required to take measurements for
analysis with the GNU profiler. The only changes needed are as follows:

1. Add the profiler library via a checkbox in the Nios II IDE.

2. Change the main() function to call exit().

3. Rebuild the project.
 1
Preliminary

Profiling Nios II Systems
Performance Counter Peripheral

A performance-counter unit is just a block of big counters in the hardware
that are used for timing "sections" in the software. A performance counter
peripheral can track up to seven sections (the default is three). Two
counters are used to track each section:

■ Time—a 64-bit time (clock-tick) counter
■ Occurrences—a 32-bit event counter

You can change the maximum number of sections to track by editing the
performance counter peripheral in SOPC Builder.

These counters let you accurately measure the execution time taken by
blocks of C code. Simple, efficient, minimally-intrusive macros enable
you to mark the start and end of blocks-of-interest in your program. Each
block-of-interest is called a "section." The performance counter peripheral
has up to seven measurement BEGIN/END features that let you measure
each section as a fraction of some larger program. Each section must be
wrapped with BEGIN/END by hand, so performance counters are best
suited for analyzing determinism and run-time issues.

High Resolution Timer

A high resolution timer does not use a large number of logic elements
(LEs) on your FPGA, nor does it require heavy instrumentation of every
function call in your code to get performance measurements. Timers do
require specific calls to read the timer in the sections of the source code
that you want to measure, so their use is better suited for pinpointing
measurements. Source code instrumentation is done by hand, but
because it is less pervasive, it is also less intrusive. Many more CPU cycles
are required to make two function calls—one to read the time at the
beginning of a code section, and one to read the time at the end—than are
consumed by the performance counter peripheral macros.
2 Altera Corporation
Preliminary

Use the GNU Profiler to Measure Code Performance
Use the GNU
Profiler to
Measure Code
Performance

The following sections explain the advantages and limitations of using
the GNU profiler for performance analysis. A tutorial is provided that
demonstrates the use of the profiler to collect and analyze performance
data.

GNU Profiler Advantage

The major advantage to measuring with the profiler is that it provides an
overview of the entire system. Although there is some overhead, it is
distributed evenly throughout the system. The functions that are
identified as consuming the most CPU time will still consume the most
CPU time when run at full speed without profiler instrumentation.

GNU Profiler Drawback

Adding instructions to each function call for use with the profiler affects
the code’s behavior. Each function is slightly larger. Each function calls
another function to collect profiling information. Pulling the profiling
function into instruction cache memory will generate more i-cache misses
than source code that is not changed. Memory used to record the profiling
data can change the behavior of the data cache. The sum of these effects,
along with the longer execution time of each function call’s entry and exit,
can mask a time-sensitive issue that you are trying to uncover through
profiling.

The profiler interpolates the percentage of time spent within each
function based on periodic samplings of the program counter. The
periodic samples are tied to the system clock’s timer tick. The profiler is
not able to take samples while interrupts are disabled and therefore not
able to record the CPU cycles spent within interrupt routines.

Profiling cannot be done for individual functions. Profiling must be done
for the entire system, or not at all.

The gprof profiling data is only a sampling of the program counter taken
at the resolution of the system timer tick. Therefore, it is an estimation, not
an exact representation, of where the CPU time is spent. The statistical
significance of the sampling can be improved by increasing the frequency
of the system timer tick. However, increasing the frequency of the tick
costs additional overhead due to the additional time spent recording
samples.

Nios II is capable of generating complete and accurate program counter
trace information, although this information is not used by the Profiler. To
generate this information requires a Nios II core configured with a JTAG
Debug Module Level 3 or greater. Level 3 creates on-chip trace data that
can be viewed in the Nios II IDE Trace View. Approximately a dozen
Altera Corporation 3
Preliminary

Profiling Nios II Systems
instructions can be captured in the on-chip trace buffer. A much larger
trace can be obtained by configuring a Nios II core with a JTAG Debug
Module Level 4 to generate off-chip trace information. The collection of
this off-chip trace data requires the FS/2 or Lauterbach hardware.

When using the GNU profiler with your custom hardware designs, be
sure to include a system clock timer, or else the profiler will not produce
proper output.

Software Considerations

The profiler instruments your source code with functions to track CPU
consumption.

Profiler Mechanics

The checkbox to Link with Profiling Library automatically turns on the
-pg compiler switch and links profiling library code within the software
component altera_nios2 with the system library. This code counts the
number of times each profiled function is called.

The -pg compiler option forces the compiler to insert a call to the function
mcount (located in altera_nios2\HAL\src\alt_mcount.S) at the
beginning of every function call. This call to mcount tracks every parent
and child function call relationship, enabling the construction of the call
graph. The option also installs a function called nios2_pcsample
(located in altera_nios2\HAL\src\alt_gmon.c) that samples the
foreground program counter on every system clock interrupt. When the
program is executed, data is collected on the host in a file, gmon.out. The
Nios II IDE Profiling perspective views, as well as the nios2-elf-gprof
utility, can read this file and display profiling information about the
program. The operation of the profiling code on the target is as follows:

■ The compiler instruments function prologues with a call to mcount
so it can work out which function called which other function. This
data is known as function call arcs in the gprof documentation.

■ An alarm is registered with the timer interrupt handler to capture
information about which foreground function was executing when it
was called (this is known as histogram data).

■ The profiling data is stored in target memory allocated from the
heap.

■ When the user's code exits with a BREAK 2 instruction, the profiling
data is copied from the target to the host by nios2-download.
4 Altera Corporation
Preliminary

Use the GNU Profiler to Measure Code Performance
■ nios2-elf-gprof needs both the function call arc data and the
histogram data to work correctly.

Profiler Overhead

Using the profiler impacts both memory and CPU cycles.

Memory
The code overhead (the size of the .text section) is increased when
profiling is enabled, due to the addition of the nios2_pcsample and
mcount functions. The system timer gets instrumented with a call to
nios2_pcsample(). Also, every function gets instrumented with a call
to mcount(). The .text section is further increased by the size of these
two functions. The impact to the .text section can be viewed by comparing
changes to the .text section in the objdump file when profiling is enabled.

The profiler uses buckets to store data on the heap during profiling. Each
bucket is two bytes in size. One bucket is created to represent samples for
every 32 bytes of code in the .text section. The total number of profiler
buckets allocated from the heap is the size of the .text section divided by
32. The total heap consumed by profiler buckets is therefore:

((.text section size) / 32) * 2 bytes

The profiler measures all functions in the object code that are compiled
with profiling information. This includes library source code, including
the system library, but does not include the Altera-provided run-time
library functions. These run-time libraries are pre-built. They are not
compiled with profiling information, so time spent in the run-time library
functions is not tracked by the profiler.

CPU Cycles
The impact to the .text section size of the profiling information is
proportional to the number of small functions in the application. Because
the profiler tracks each individual function via a call to mcount(), the
more that the application code is divided into small functions, the larger
the impact in terms of both CPU time and code size. This disadvantage is
offset by the higher resolution of the profiled data. To calculate the
additional CPU time consumed when profiling with mcount(), multiply
the amount of time that it takes to execute mcount() by the number of
function invocations in the application.

For every clock tick, there is a call to nios2_pcsample(). To find the
additional CPU time that is consumed when profiling with
nios2_pcsample(), multiply the length of time it takes to execute this
function by the number of ticks.
Altera Corporation 5
Preliminary

Profiling Nios II Systems
To arrive at a total time for additional CPU cycles consumed by profiling,
add the overhead for mcount() (one call to mcount() per profiled
function invocation) to the overhead for nios2_pcsample().

Hardware Considerations

The profiler just needs a system timer. No special peripherals are
required. You do not need to change your Nios II hardware design.

Tutorial 1:
Program the
Standard
Hardware
Design to an
FPGA

For the first tutorial, use the reference example standard hardware design
without modification. If your Nios development board contains another
hardware design, follow the next few steps to program the standard
hardware design. If the Nios development board already has the standard
hardware design programmed, go to “Create the Profiler_Project
Software Design”.

1. Run the Quartus® II software, version 5.1.

2. Open the Quartus II project file for the standard Nios II hardware
design project for your board. For example, the Stratix® Edition
standard project file name for the 1S40 device is standard.qpf,
located in the directory <Nios II kit path>\examples\verilog\
niosII_stratix_1s40\standard.

3. On the Tools menu, click Programmer.

4. Turn on Program/Configure, located on the same row as
standard.sof.

5. Click Start to download the Nios II SRAM Object File standard.sof
to the FPGA.

f If the Start button is greyed out, or the USB-Blaster™ cable is not listed,
refer to the Introduction to Quartus II manual for more details on the
Programmer tool.

Create the Profiler_Project Software Design

The following steps illustrate the creation of the profiler_project example
as a Nios II IDE project.

1. Run the Nios II IDE software, version 5.1 from the Windows Start
menu.
6 Altera Corporation
Preliminary

Tutorial 1: Program the Standard Hardware Design to an FPGA
2. If the Workspace Launcher window opens, leave the default
workspace, <Nios II kit path>\bin\eclipse\workspace, selected and
click OK.

3. Create a new project.

a. On the File menu, point to New and click C/C++ Application.

b. In the Name field, type profiler_project.

c. In the Select Target Hardware box, click Browse to set the SOPC
Builder System. Select the PTF file to the standard hardware
design for the Nios development board you are using. For
example, the PTF file for the Stratix Edition standard Nios II
hardware design for the 1S40 device is located at <Nios II kit
path>\examples\verilog\niosII_stratix_1s40\
standard\std_1s40.ptf.

d. In the Select Project Template box, select Blank Project.

e. Click Finish.

4. From Windows Explorer, drag the profiler_project.c,
checksum_test.c, and checksum_test.h source files (included with
this tutorial) into the profiler_project folder on the C/C++ Projects
tab in the Nios II IDE.

5. On the C/C++ Projects tab, right-click profiler_project and click
Properties.

6. In the Properties window, select C/C++ Build in the left column. In
the Active Configuration box, select Release.

7. Click OK.

8. In the C/C++ Projects tab, right-click profiler_project_syslib and
click Properties.

9. In the Properties window, select System Library in the left column.
In the System Library Contents box, select Link with profiling
library.

10. In the Properties window, select C/C++ Build in the left column. In
the Active Configuration box, select Release.

11. Click OK.
Altera Corporation 7
Preliminary

Profiling Nios II Systems
You have created the profiler_project.

Create the Profiler Report Based on the Profiler_Project Design

After creating the project, follow these steps to run it and create the
profiler report:

1. In the C/C++ Projects tab, right-click profiler_project. On the
Run As menu, click Nios II Hardware. The build is performed
automatically.

The project execution causes a gmon.out file to be written that
contains profiler information. The gmon.out file can be analyzed
with the nios2-elf-gprof tool.

2. Run the Nios II SDK Shell and navigate to the software project
directory, profiler_project/Release, as follows:

$[SOPC Builder]$ cd /cygdrive/c/altera/kits/nios2/
examples/verilog/niosII_stratix_1s40/standard/
software/profiler_project/Release

3. Run nios2-elf-gprof, passing in the profiler_project.elf file and
gmon.out profiler data file as follows:

$[SOPC Builder]$ nios2-elf-gprof profiler_project.elf
gmon.out > report.txt

This action generates a flat profile report and a call graph, which are
captured in the file report.txt.

4. Use any editor to view the report.txt file. The profiler report
excerpts shown in the following section were generated on a Nios
development board, Stratix Edition, containing a Stratix 1S40 device
with a Nios II version 5.1 standard hardware design running at 50
MHz.

Analyze the Command Line Generated Profiler Report

Information in the profiler report is conveyed in the following two ways:

■ The flat profile portion of the report identifies the child functions in
the order in which they consume processing time.

■ The call graph portion of the report describes the call tree of the
program sorted by the total amount of time spent in each function
and its children. Each entry in this table consists of several lines. The
8 Altera Corporation
Preliminary

Tutorial 1: Program the Standard Hardware Design to an FPGA
line with the index number at the left hand margin lists the current
function. The lines above it list the functions that called this function,
and the lines below it list the functions this one called, with caveats
that are detailed further in both the report itself and the full GNU
profiler documentation.

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
77.68 2.48 2.48 1 2.48 2.48 checksum_test
9.08 2.77 0.29 alt_dcache_flush
1.14 3.16 0.04 10 0.00 0.00 alt_busy_sleep

... (deleted portion) ...

Call graph (explanation follows)

granularity: each sample hit covers 32 byte(s) for 0.31% of 3.19 seconds

index % time self children called name
2.48 0.00 1/1 main [3]

[4] 77.7 2.48 0.00 1 checksum_test [4]
0.00 0.00 300/300 alt_dcache_flush_all [22]

... (deleted portion) ...

0.00 0.00 321/321 alt_irq_handler [19]
[20] 0.0 0.00 0.00 321 alt_avalon_timer_sc_irq [20]

The call graph report shows that the checksum_test function call
(index [4]) consumed 77.7% of the processing time during execution of
the profiler_project design.

The granularity statement in the call graph report states that the report
covers 3.19 seconds, or 3,190 milliseconds. Our Nios II system has a 10
millisecond timer, so the timer interrupt handler will be called once at the
beginning before a full clock period has elapsed and once every 10
milliseconds thereafter. An accurate reporting should show, therefore,
that the timer interrupt handler was called 320 times. Index [20] shows
that alt_avalon_timer_sc_irq was called 321 times, which is within
the sampling range.
Altera Corporation 9
Preliminary

Profiling Nios II Systems
Use the Nios II
IDE Profiling
Perspective

The Profiling Perspective provides several organizational views into the
timing behavior of your application.

1. In the Nios II IDE C/C++ Perspective, click the Navigator tab.

2. In the profiler_project\Release directory, select the gmon.out file
(Figure 1).

Figure 1. Select the gmon.out File

3. Right-click the gmon.out file. On the Open With menu, click Gprof
Viewer.

4. If the Nios II IDE does not switch to the Profiling Perspective, on the
Window menu, point to Open Perspective and click Other. Select
Profiling and click OK (Figure 2).
10 Altera Corporation
Preliminary

Use the Nios II IDE Profiling Perspective
Figure 2. Select Perspective Dialog Box

Editor View

When you open the gmon.out file with the Nios II IDE, the IDE
automatically calls gprof and displays the standard gprof text output in
the Editor view. By default, the output displayed in this window is
identical to the report.txt file that you generated previously using the
command line. You can apply gprof command line switches to the Editor
view to modify the way profiling information is displayed. Use the –help
parameter to show the complete list of options.

1. Right-click in the Editor view and click Change gprof arguments.

2. Type --help in the pop-up window to see all of the available
options displayed in the Editor view (Figure 3).

3. Select Change gprof arguments again to remove the –help
parameter. Gprof will regenerate the profiling information and
display it in the Editor view.
Altera Corporation 11
Preliminary

Profiling Nios II Systems
Figure 3. Available Options in the Editor View

The Editor view shows all of the profiling information, just like the
report.txt output. The Profiling Perspective provides two additional
views, Call Hierarchy and Samples, that organize the profiling data in
different ways to provide greater insight into the timing behavior.

Call Hierarchy View

The Call Hierarchy view displays the gmon.out call graph data in an
easy-to-read tree format. In this view, you can follow the function call
sequences more easily than by reading the report.txt file. There are two
ways to view the call hierarchy data. Right-click in the view and click
Toggle Call Direction to alternate between these display types:

■ Top down - lists the calling functions, with the functions they called
nested below.

■ Inverted - lists the called functions, with the functions that called
them nested below.

When the call direction is Top down, the first entry is "spontaneous".
Gprof uses this term when it cannot determine who the caller is. When the
call direction is Inverted, the first entry is "inverted calls".
12 Altera Corporation
Preliminary

Use the Nios II IDE Profiling Perspective
The Call Hierarchy view displays the time spent in each function from
the standard gmon.out data. It also calculates and displays the
percentage of time spent in each function. When the call direction is top
down, there are two sets of actual time and percentage time figures for
each function. The first set represents the time spent within the function.
The second set represents the total time spent within the function plus all
functions called by that function. Each indented line in the view drills
down into the details of percentage time spent in each called function.
When the call direction is inverted, only the first set of time and
percentage numbers representing time spent within the function
displays.

If the Nios II IDE does not show the Call Hierarchy view, on the Window
menu, point to Show View, and click Other. Expand the Profiling folder
and click Call Hierarchy (Figure 4).

Figure 4. Show View Dialog Box

The Call Hierarchy view shown in Figure 5 shows that
alt_avalon_timer_sc_irq() is called by alt_irq_handler().
Additionally, this view shows that alt_irq_handler() is the only
function that calls alt_avalon_timer_sc_irq().
Altera Corporation 13
Preliminary

Profiling Nios II Systems
Figure 5. Different Views of Profiling Data

Samples – Line by Line View and Function Total

The Samples – Line by Line view (refer to Figure 5) breaks down the
program execution by line of C source code executed. Each line of C
source code sampled during profiling maps to one or more entries in the
table.

Samples are taken of individual Nios II assembly instructions. The
samples are collected into a fixed number of bins, regardless of program
size. Each bin is shown as a single entry in the table. Therefore, the line by
line samples view will show a higher degree of resolution for smaller
14 Altera Corporation
Preliminary

Use the Nios II IDE Profiling Perspective
programs. For example, in a small program, every two assembly
instructions might map to their own bin, while a larger program might
map dozens of assembly instructions into a single bin.

Because a single C source line may get compiled into several assembler
instructions, a single C source code line number could map to multiple
entries in the table. In the profiler_project, the checksum_test()
function in checksum_test.c has multiple table entries for C source code
line number 83. The larger the program, the less likely the chance that a
single C source code line will map to multiple table entries.

The Samples – Function Total view breaks down program execution by
function. For example, to see the number of times the
alt_avalon_timer_sc_irq() function is called, perform the
following steps:

1. Click the Samples – Function Total tab.

2. Scroll down to the alt_avalon_timer_sc_irq() function.

3. In this example, the value for the Calls field for the
alt_avalon_timer_sc_irq() function is 321. This value
correlates with the granularity of 3.19 listed in the Flat Profile shown
in the Editor view, because the 10 millisecond system timer
frequency causes the timer interrupt to be invoked 100 times every
second.

Click on a column heading to change the order in which the entries are
sorted in that column. Click the heading again to reverse the sort order.
Notice the '>' or '<' that precedes one of the column heading labels. The
symbol indicates whether the samples are sorted in ascending or
descending order. Their presence in a particular column label also
identifies that the samples are sorted by that column.

Task View

During your profiling analysis, the Task view can be useful for recording
notes about the timing behavior observed, such as the name of a function
that is executing particularly slowly. Expending your programming
efforts on improving this function may show a substantial increase in
overall speed. You can use the Task view to record how changing system
inputs impact the CPU consumption over successive executions.

Perform the following steps to use the Task view.

1. Right-click in the Task view and select Add Task.
Altera Corporation 15
Preliminary

Profiling Nios II Systems
2. Enter a description and select a priority for the new task.

3. Later, after you have improved the efficiency of the noted function,
turn on the check box to indicate that this task has been completed.

Context Sensitive Help

The Nios II IDE Profiling Perspective offers context sensitive help that
specifically details the various views. After clicking in the Call Hierarchy
view or one of the Samples views, press F1. A pop-up window appears
that provides a summary of the view as well as a link to the online help
for that view.

Use
Performance
Counters and
Timers

After the profiler has identified areas of code that consume a lot of CPU
time, a performance counter or timer can further analyze these functional
bottlenecks.

The following sections explain the advantages and limitations of using
performance counters and timers for performance analysis. A tutorial is
provided that demonstrates the use of performance counters and timers
to collect and analyze performance data.

Performance Counter Advantage

There are no other mechanisms available with the Nios II development
kits that provide measurements with so little intrusion. Only one or two
instructions are required for each BEGIN and END macro. A performance
counter is an order of magnitude faster than the profiler. The only way to
get measurement data that is less intrusive would be a completely
hardware-based solution, such as a logic analyzer set up with triggers on
particular bus addresses.

Timer Advantage

Unlike the performance counter, which can only time up to seven sections
of code simultaneously, there is no limit on the number of sections that
can be measured with a timer. The timer can be read 1,000 times and
stored in 1,000 different variables as a start time for a section, and then
compared to 1,000 end timer readings. The only practical limiting factors
are memory consumption and complexity.

Performance Counter Drawback

One drawback to measuring performance with a performance counter is
the counter’s large size. The performance counter consumes a large
number of LEs on the FPGA. On a 1S40 device, a single performance
16 Altera Corporation
Preliminary

Use Performance Counters and Timers
counter peripheral with three section counters defined within a modified
standard hardware design consumes 670 logic cells (LCs), and 420 LC
registers. The same design with a single performance counter defined
with seven section counters consumes 1,345 logic cells and 808 LC
registers.

1 A performance counter should be removed from a system before
the system is deployed.

Timer Drawback

A timer consumes hardware resources. It also introduces an additional
interrupt source into the system that impacts interrupt latency.

Performance Counter & Timer Drawbacks

A drawback to both performance counters and timers is the lack of
context awareness. If a timer interrupt occurs during the measurement of
a section of code, the total time taken by the CPU to process the timer
interrupt and return to the section is added to the total measurement
time. This effect is much more pronounced in a multi-threaded operating
system. Many threads may get scheduled to execute while the section of
code is being measured, resulting in a very large, skewed measurement
time. To avoid thread switch impacts, most multi-threaded operating
systems have a system call to temporarily lock the scheduler. Interrupts
can be disabled to completely avoid section measurement interruptions.
Of course, disabling interrupts or locking the scheduler usually affects the
behavior of your system, so these actions should be avoided whenever
possible.

Adding performance counters and timers can also increase fMAX.

Performance Counter Software Considerations

PERF_BEGIN and PERF_END are the performance counter peripheral
macros that record the beginning and ending times of a particular code
section to be measured.

PERF_BEGIN and PERF_END are single writes to the performance
counter peripheral. These macros are very efficient, requiring only two or
three machine instructions. This method provides the fastest way
possible to record the time. The only way to make a measurement that is
less intrusive would require the use of an external measurement device,
such as a logic analyzer with triggers set on particular memory addresses.

The macros used to begin and end each performance counter section are
defined as follows:
Altera Corporation 17
Preliminary

Profiling Nios II Systems
#define PERF_BEGIN(p,n) IOWR((p),(((n)*4)+1),0)

#define PERF_END(p,n) IOWR((p),(((n)*4)),0)

The Global Counter

This unit uses section #0 as a special "global" section, which counts the
total time during which measurements are being taken. None of the other
section-counters are allowed to run at all (not even the other event
counters) when the global time-counter is stopped. Special macros
(PERF_START_MEASURING, PERF_STOP_MEASURING) are defined to
control the global counters. Do not manipulate the global counters
directly through PERF_BEGIN and PERF_END.

Hardware Considerations

Performance counters and timers are SOPC Builder peripherals, so
adding one to an existing system necessitates a change to the
Nios II-generated SOF in the Quartus II software. Timers and
performance counters can, like any hardware counters, eventually
overflow.

Tutorial 2:
Use
Performance
Counters and
Timers to
Measure Code
Performance

This tutorial demonstrates the use of performance counters and
timestamp interval timers to further measure the performance of a Nios II
system and pinpoint sections of code that use a lot of CPU time.

The software part of this second tutorial can be done without creating the
standard_perf_counter Nios II hardware design. Instead, you can use the
full_featured hardware reference design. Refer to “Appendix A:
Full_Featured Reference Design” on page 25.

Create the standard_perf_counter Hardware Design

The following steps demonstrate the creation of the
standard_perf_counter example as a Nios II hardware design.

1. Create a copy of the standard hardware design for a Nios
development board. The copy will be modified to change the
frequency of the interval timer and to add the performance counter.

For example, the Stratix Edition standard reference design for the
1S40 device is located at <Nios II kit path>\examples\verilog\
niosII_stratix_1s40\standard. Replacing the directory names for
your Nios development board and hardware language type as
appropriate, copy this directory to:
18 Altera Corporation
Preliminary

Tutorial 2: Use Performance Counters and Timers to Measure Code Performance
<Nios II kit path>\examples\verilog\niosII_stratix_1s40\
standard_perf_counter

2. Run the Quartus II software, version 5.1.

3. Open the Quartus II project file for the new project in the folder you
have just copied, standard.qpf.

4. On the Tools menu, click SOPC Builder.

The SOPC Builder window appears.

5. In the System Contents tab, under the list of Avalon Components,
click the '+' symbol to expand the choices under Extra Utilities.

6. Click Performance Counter Unit. Click Add.

7. Leave the default value of Number of simultaneously-measured
sections at 3. Rename this instance of the performance counter to
performance_counter. Click Finish.

A performance counter module is added to the hardware design.

8. Under the list of Module Names that make up the hardware design,
select the interval timer named high_res_timer.

9. Right-click high_res_timer and click Edit.

10. Under Timeout Period, leave the Initial Period value number set to
1, but change the units from msec (milliseconds) to usec
(microseconds).

11. Click Finish.

Figure 6 shows the SOPC Builder system.
Altera Corporation 19
Preliminary

Profiling Nios II Systems
Figure 6. SOPC Builder Window

12. Click the System Generation tab to generate the hardware design.

13. Click Generate. The generation phase will take a few minutes.

14. The last message should state "SUCCESS: SYSTEM GENERATION
COMPLETED". When the system generation is complete, click Exit.
The hardware design is now ready to be compiled by the Quartus II
software.

15. In the Processing menu, click Start Compilation.

When the compilation is complete, the Compilation Report provides
full details. For example, the number of logic cells used to create the
performance counter peripheral is reported in the Resource
Utilization by Entity section of the Analysis & Synthesis folder.
20 Altera Corporation
Preliminary

Tutorial 2: Use Performance Counters and Timers to Measure Code Performance
Program the standard_perf_counter Hardware Design to an
FPGA

Now you can program your new design into the FPGA.

1. On the Tools menu, click Programmer.

2. Turn on Program/Configure, located on the same row as
standard.sof.

3. Click Start to program the standard.sof hardware design to the
FPGA.

f If the Start button is greyed out, or the USB-Blaster cable is not listed,
refer to the Introduction to Quartus II manual for more details on the
Programmer tool.

Create the Performance_Project Software Design

Create a software project to test the new hardware design.

1. On the Tools menu, click SOPC Builder.

The SOPC Builder window appears.

2. Click the System Generation tab.

3. Click Run Nios II IDE.

4. Leave the default workspace, <Nios II kit path>\bin\eclipse\
workspace, selected and click OK.

5. Close any projects that are open (except leave the Nios II Device
Drivers project open).

6. Create a new project.

a. On the File menu, point to New and click C/C++ Application.

b. In the Name field, type performance_project.

c. Verify that the SOPC Builder System file is the one specified for
the standard_perf_counter hardware just created. For example,
the PTF file for the 1S40 device is located at <Nios II kit path>\
examples\verilog\niosII_stratix_1s40\
standard_perf_counter\std_1s40.ptf.
Altera Corporation 21
Preliminary

Profiling Nios II Systems
d. In the Select Project Template box, select Blank Project.

e. Click Finish.

7. From Windows Explorer, copy the
high_res_timestamp_performance_project.c, checksum_test.c, and
checksum_test.h source files (included with this tutorial) into the
performance_project folder on the Navigator tab in the Nios II IDE.

8. On the C/C++ Projects tab, right-click performance_project and
click Properties.

9. In the Properties window, select C/C++ Build in the left column. In
the Active Configuration box, select Release.

10. Click OK.

11. In the C/C++ Projects tab, right-click performance_project_syslib
and click Properties.

12. In the Properties window, click System Library. From the menu for
Timestamp timer, select high_res_timer.

13. In the Properties window, select C/C++ Build in the left column. In
the Active Configuration box, select Release.

14. Click OK.

Build and Run the Performance_Project Software Design

1. In the C/C++ Projects tab, right-click performance_project. On the
Run As menu, click Nios II Hardware. The build is performed
automatically.

2. The performance counter report will be printed to STDOUT (JTAG
UART). The following performance counter report was generated
on a Nios 1S40 development board with Nios II version 5.1 standard
hardware design running at 50 MHz with one performance counter
added, and the high_res_timer modified to 1 microsecond.
22 Altera Corporation
Preliminary

Conclusion
Hello from Nios II Performance Checksum Test!
timestamp measurement for checksum_test = 128932865 ticks
timestamp measurement overhead = 73 ticks
Actual time in checksum_test = 128932792 ticks
Timestamp timer frequency = 50000000
--Performance Counter Report--
Total Time: 5.15913 seconds (257956281 clock-cycles)
+-----------------+--------+-----------+--------------+-----------+
| Section | % | Time (sec)| Time (clocks)|Occurrences|
+-----------------+--------+-----------+--------------+-----------+
|1st checksum_test| 50| 2.57868| 128933869| 1|
+-----------------+--------+-----------+--------------+-----------+
|pc_overhead |6.98e-06| 0.00000| 18| 1|
+-----------------+--------+-----------+--------------+-----------+
|ts_overhead |2.79e-05| 0.00000| 72| 1|
+-----------------+--------+-----------+--------------+-----------+
Goodbye from Nios II - returning from main()!

pc_overhead is the performance counter peripheral overhead of a
single invocation to BEGIN MACRO for that peripheral. This number is
inclusive of the BEGIN and END MACRO pair invocation used to take the
measurement with a performance counter.

ts_overhead is the timestamp overhead of a single function call to read
the timer. This number is inclusive of the performance counter overhead
used to measure the timestamp overhead.

Conclusion The Nios II development environment provides a variety of ways to
analyze the performance of your project. Depending on your needs, you
can take the software-only GNU profiler approach. For the more
deterministic real-time performance issues, you can leverage a hardware
timer or performance counter. The wide range of tools available means
that time should be taken to consider the class of problem that you are
trying to solve in order to choose the best tool for the job.

Troubleshooting The following sections describe several problems that might occur, and
suggest ways to deal with them.

nios2-elf-gprof –annotated-source Switch Has No Effect

basic-block-count information is not tracked, so switches such as
–annotated-source will not work.
Altera Corporation 23
Preliminary

Profiling Nios II Systems
Writing to the Registers of a Non-Existent Section Counter

The following performance counter report shows the results of an
attempt to use a non-existent section counter of the performance counter
peripheral.

Suppose that a fourth section counter is specified for a performance
counter peripheral that has been defined in SOPC Builder to have only
three section counters (the default value).

In this case, the test was performed on a hardware design that did not
have any other peripheral defined with registers mapped immediately
after the performance counter peripheral's registers, so no other
peripheral was impacted. Depending on how the peripheral register base
addresses have been configured in SOPC Builder for a particular
hardware design, unpredictable system behavior could occur.

--Performance Counter Report--
Total Time: 5.78751 seconds (289375582 clock-cycles)
+--------------------+--------+-------------+---------------+-----------+
| Section | % | Time (sec) | Time (clocks) |Occurrences|
+--------------------+--------+-------------+---------------+-----------+
|sleep_tests | 49.4| 2.86162| 143081026| 1|
+--------------------+--------+-------------+---------------+-----------+
|perf_begin_overhead | 7.6e-06| 0.00000| 22| 1|
+--------------------+--------+-------------+---------------+-----------+
|timestamp_overhead | 7.6e-06| 0.00000| 22| 1|
+--------------------+--------+-------------+---------------+-----------+
|non_existent_counter|6.37e+12|368934881474.19104| -1| 4294967295|
+--------------------+--------+-------------+---------------+-----------+

Output From a printf() or perf_print_formatted_output() Call
Near the End of main() May Get Prematurely Truncated

This occurs when the Nios II application executes a BREAK instruction to
transfer profiling data to the development workstation during the
exit() or return() from main().

As a workaround, call usleep(500000). This action allows enough of a
delay for the I/O to be transmitted over the JTAG UART before main
returns (or calls exit()). If the output is still partially truncated, increase
the delay value passed into usleep(). Use #include <unistd.h>
for the usleep() function prototype.
24 Altera Corporation
Preliminary

Further Reading
Fitting a Performance Counter Into a Hardware Design That
Consumes Most of an FPGA's Resources

The system could be measured in a larger FPGA for development than
the size of the FPGA in a deployed system.

Configure a performance counter to have only one section counter to save
the most resources.

The Histogram for the gmon.out File Is Missing, Even Though
My main() Function Terminates

If no system timer is defined for the system, the nios2_pcsample()
function will never get called, and the histogram for the gmon.out file
will not be produced. Define a system timer on the system properties
page in the Nios II IDE.

Further Reading For information on the GNU profiler, gprof, refer to
c:\Altera\kits\nios2\documents\gnu-tools\binutils\gprof.html.
Altera has rewritten the lib-gprof library, so the information in this
manual on how data is collected doesn’t match Altera’s implementation.

For information on the Nios II IDE Profiling Perspective views, use the
Nios II IDE Help facility, and search for the word "Profiler".

For information on the performance counter, refer to
c:\Altera\kits\nios2\documents\performance_counter_readme.html.

For information on the high-speed timer, refer to the Timer Core with
Avalon Interface chapter in the Altera Embedded Peripherals Handbook.

Appendix A:
Full_Featured
Reference
Design

This section demonstrates execution of the performance_project on the
full_featured Nios II hardware design.

To open the project file, perform the following steps:

1. Run the Quartus II software, version 5.1.

2. Open the Quartus II project file for the full_featured Nios II
hardware design project for your board. For example, the Stratix
Edition full_featured project file name for the 1S40 device is
full_featured.qpf, located in the directory <Nios II kit path>\
examples\verilog\niosII_stratix_1s40\full_featured.
Altera Corporation 25
Preliminary

Profiling Nios II Systems
Program the Full_Featured Hardware Design to an FPGA

Now you can program your new design into the FPGA.

1. On the Tools menu, click Programmer.

2. Turn on Program/Configure, located on the same row as
full_featured.sof.

3. Click Start to program the full_featured.sof hardware design to the
FPGA.

Create the Performance_Project Software Design

Create a software project to test the full hardware full_featured design.

1. On the Tools menu, click SOPC Builder.

The SOPC Builder window appears.

2. Click the System Generation tab.

3. Click Run Nios II IDE.

4. Leave the default workspace, <Nios II kit path>\bin\eclipse\
workspace, selected and click OK.

5. Close any projects that are open (except leave the Nios II Device
Drivers project open).

6. Create a new project.

a. On the File menu, point to New and click C/C++ Application.

b. In the Name field, type performance_project.

c. Verify that the SOPC Builder System file is the one specified for
the full_featured hardware. For example, the PTF file for the
1S40 device is located at <Nios II kit path>\
examples\verilog\niosII_stratix_1s40\full_featured\
full_1s40.ptf.

d. In the Select Project Template box, select Blank Project.

e. Click Finish.
26 Altera Corporation
Preliminary

Appendix A: Full_Featured Reference Design
7. From Windows Explorer, copy the
high_res_timestamp_performance_project.c, checksum_test.c, and
checksum_test.h source files (included with this tutorial) into the
performance_project folder on the Navigator tab in the Nios II IDE.

8. On the C/C++ Projects tab, right-click performance_project and
click Properties.

9. In the Properties window, select C/C++ Build in the left column. In
the Active Configuration box, select Release.

10. Click OK.

11. In the C/C++ Projects tab, right-click performance_project_syslib
and click Properties.

12. In the Properties window, click System Library. From the menu for
Timestamp timer, select high_res_timer.

13. In the Properties window, select C/C++ Build in the left column. In
the Active Configuration box, select Release.

14. Click OK.

Build and Run the Performance_Project Software Design

1. In the C/C++ Projects tab, right-click performance_project. On the
Run As menu, click Nios II Hardware. The build is performed
automatically.

2. The performance counter report will be printed to STDOUT (JTAG
UART). The following performance counter report was generated
on a Nios 1S40 development board with Nios II version 5.1
full_featured hardware design running at 50 MHz.
Altera Corporation 27
Preliminary

Profiling Nios II Systems
Hello from Nios II Performance Checksum Test!
timestamp measurement for checksum_test = 51447341 ticks
timestamp measurement overhead = 49 ticks
Actual time in checksum_test = 51447292 ticks
Timestamp timer frequency = 50000000
--Performance Counter Report--
Total Time: 2.0589 seconds (102944904 clock-cycles)
+-----------------+--------+-----------+--------------+-----------+
| Section | % | Time (sec)| Time (clocks)|Occurrences|
+-----------------+--------+-----------+--------------+-----------+
|1st checksum_test| 50| 1.02897| 51448545| 1|
+-----------------+--------+-----------+--------------+-----------+
|pc_overhead |1.75e-05| 0.00000| 18| 1|
+-----------------+--------+-----------+--------------+-----------+
|ts_overhead |4.47e-05| 0.00000| 46| 1|
+-----------------+--------+-----------+--------------+-----------+
Goodbye from Nios II - returning from main()!

pc_overhead is the performance counter peripheral overhead of a
single invocation to BEGIN MACRO for that peripheral. This number is
inclusive of the BEGIN and END MACRO pair invocation used to take the
measurement with a performance counter.

ts_overhead is the timestamp overhead of a single function call to read
the timer. This number is inclusive of the performance counter overhead
used to measure the timestamp overhead.
28 Altera Corporation
Preliminary

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com
Applications Hotline:
(800) 800-EPLD
Literature Services:
literature@altera.com

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

	Profiling Nios II Systems
	Introduction
	Tools
	GNU Profiler
	Performance Counter Peripheral
	High Resolution Timer

	Use the GNU Profiler to Measure Code Performance
	GNU Profiler Advantage
	GNU Profiler Drawback
	Software Considerations
	Profiler Mechanics
	Profiler Overhead
	Memory
	CPU Cycles

	Hardware Considerations

	Tutorial 1: Program the Standard Hardware Design to an FPGA
	Create the Profiler_Project Software Design
	Create the Profiler Report Based on the Profiler_Project Design
	Analyze the Command Line Generated Profiler Report

	Use the Nios II IDE Profiling Perspective
	Editor View
	Call Hierarchy View
	Samples - Line by Line View and Function Total
	Task View
	Context Sensitive Help

	Use Performance Counters and Timers
	Performance Counter Advantage
	Timer Advantage
	Performance Counter Drawback
	Timer Drawback
	Performance Counter & Timer Drawbacks
	Performance Counter Software Considerations
	The Global Counter
	Hardware Considerations

	Tutorial 2: Use Performance Counters and Timers to Measure Code Performance
	Create the standard_perf_counter Hardware Design
	Program the standard_perf_counter Hardware Design to an FPGA
	Create the Performance_Project Software Design
	Build and Run the Performance_Project Software Design

	Conclusion
	Troubleshooting
	nios2-elf-gprof -annotated-source Switch Has No Effect
	Writing to the Registers of a Non-Existent Section Counter
	Output From a printf() or perf_print_formatted_output() Call Near the End of main() May Get Prematurely Truncated
	Fitting a Performance Counter Into a Hardware Design That Consumes Most of an FPGA's Resources
	The Histogram for the gmon.out File Is Missing, Even Though My main() Function Terminates

	Further Reading
	Appendix A: Full_Featured Reference Design
	Program the Full_Featured Hardware Design to an FPGA
	Create the Performance_Project Software Design
	Build and Run the Performance_Project Software Design

