Measurement systems

Lecturer: Andras Kis

Chapter 4: Data Acquisition

Measurement chain

Data analysis (recording, averaging, etc.)

Arduino UNO board
Conditioning circuit

Measurement chain

Chapter 1
Chapter 3
Chapter 4

Chapter 2

Analog signal

- Continuous both in amplitude and time and can assume an infinite number of different values - infinite resolution

Analog music recording

- Late 1980's, early 90s

Digital signal

- Signal is represented as two values ("low" and "high"), with distinct voltage levels

Signal
voltage

Bit and byte

- A digital signal can represent either a state of a quantity (bit) or be an element of a unit of information (byte)

Possible values

Analog - digital conversion

- The digital signal is:
- Less perturbed by noise
- Easier to process, transmit or store
- Signal is often converted between analog - digital forms
- Music playback, generation of analog voltages using computercontrolled instruments etc.
- AD and DA converters

Analog signal

Sampling

Sampling

- Before the conversion, the analog signal is sampled
- The signal to be sampled is multiplied with a pulse train signal

Reminder: frequency spectrum

- Sinusoidal signals

Time domain
Frequency domain

Representation

- Periodic signal

Signal

$$
\begin{aligned}
& x(t) \\
& x(t)=A \frac{4}{\pi}\left[\sin \omega_{o} t+\frac{\sin 3 \omega_{o} t}{3}+\frac{\sin 5 \omega_{o} t}{5}+\ldots\right]
\end{aligned}
$$

- Non-periodic signal

Reconstruction of a square signal

Multiplication operation

- Product:
$\cos \left(2 \pi f_{1} t\right) \cdot \cos \left(2 \pi f_{2} t\right)=\left[\cos \left(2 \pi\left(f_{2}-f_{1}\right) t\right)+\cos 2 \pi\left(f_{2}+f_{1}\right) t\right] / 2$

Signal A

$\Delta f=f_{\text {max }}$ bandwidth, continuous signal $m(t)$

Signal B
FFT

periodic signal
Signal $A \times B$

Sampling of a periodic signal

Frequency domain

Time domain

$$
x(t)=A \cdot \sin \omega_{1} t \quad f_{1}=\frac{\omega_{1}}{2 \pi}
$$

Sampling of an arbitrary signal

Time domain
Frequency domain

Choice of the sampling frequency

Analog signal

Good sampling

(b) Waveform sampled above the Nyquist rate

(c) Waveform sampled below the Nyquist rate

Example: sinusoidal signal, frequency f_{0}

Original signal + sampling points

$$
f_{\mathrm{s}}=2 f_{0}
$$

$A M$

Recovered signal

Example: fixed sampling frequency

Good sampling

Bad sampling

Reconstructed signal

Nyquist - Shannon theorem of sampling

$$
f_{s}>2 f_{\max }
$$

Reconstruction filter

In practice f_{s} several times larger then $f_{\text {max }}$

Spectral folding

Good $f_{\text {s }}$

$\operatorname{Bad} f_{\mathrm{s}}$

Distorted signal
f_{s}
$2 f_{s}$

Antialiasing filter

Without filter
With filter

Eliminates unwanted frequencies $\left(<f_{\mathrm{s}} / 2\right)$ before sampling

Bloc diagram for sampling

Original signal

Antialiasing
filter

Perfectly recovered original signal

Reconstruction filter

$$
T_{s}=\frac{1}{f_{s}}
$$

Decimal - binary number conversion

- Decimal system

$$
1234_{10}=\left(1 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(3 \times 10^{1}\right)+\left(4 \times 10^{0}\right)
$$

- Binary system

$$
1101_{2}=\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right)
$$

Conversion binary -> decimal

$$
\begin{aligned}
11010_{2}=\left(1 \times 2^{4}\right) & +\left(1 \times 2^{3}\right)+\left(0 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(0 \times 2^{0}\right) \\
& =16+8+0+2+0 \\
& =26_{10}
\end{aligned}
$$

Conversion decimal -> binary number

- Decimal to binary number

26_{10}		quotient	remainder
	$\div 2$	26	
	$\div 2$	6	0
	$\div 2$	3	1
	$\div 2$	1	0
	$\div 2$	0	1
		1	

read the number from starting from the last digit
=11010

Encoding

Continuously changing variable

\rightarrow Digital form
 (binary code)

$$
\begin{aligned}
3 \longrightarrow & 0011_{2}=0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}= \\
& =2+1=3_{10}
\end{aligned}
$$

Conversion of a decimal number $N_{\text {dec }}$ into a binary code

$$
N_{\text {dec }} \longrightarrow a_{1} a_{2} a_{3} \ldots a_{\mathrm{n}-1} a_{\mathrm{n}}
$$

$$
N_{\text {dec }}=\sum_{i=1}^{n} a_{i} 2^{n-i}=a_{1} 2^{n-1}+a_{2} 2^{n-2}+\cdots+a_{n-1} 2^{1}+a_{n} 2^{0} \quad a_{1} \quad \text { MSB - most significant bit }
$$

$$
=2^{n} \sum_{i=1}^{n} a_{i} 2^{-i}=2^{n}\left(a_{1} 2^{-1}+a_{2} 2^{-2}+\cdots+a_{n} 2^{-n}\right)
$$

Quantisation

Example

- Convert 4.5V with an 8-bit AD converter with a FS $=5 \mathrm{~V}$

$$
\begin{aligned}
& N_{d e c}=256 \times \frac{4.5}{5}=230=(11100110)_{2} \\
& \text { Resolution }=\frac{5}{256}=0.019 \mathrm{~V}(0.01953 \mathrm{~V})
\end{aligned}
$$

- Convert an ADC value of 156 to volts (8 bit converter and FS $=5 \mathrm{~V}$)

$$
U_{D}=\frac{N_{d e c}}{2^{n}} F S=\frac{156}{256} 5=3.0469 \mathrm{~V} \quad U_{i n}=3.0469 \pm 0.0098 \mathrm{~V}
$$

Quantisation error

Quantisation error $=\left|U_{D}-U_{\text {in }}\right|$

$$
=\left|\frac{N_{d e c}}{2^{n}} F S-U_{i n}\right|
$$

Max quantisation error $= \pm \frac{0.5 \cdot F S}{2^{n}}= \pm \frac{q}{2}$

Quantisation error as noise

Power of the noise associated with the quantisation error $(R=1 \Omega)$

$$
\begin{aligned}
P_{n} & =\frac{1}{T} \int_{0}^{T} u_{n}^{2}(t) d t=\frac{2}{T_{s}} \int_{0}^{T_{s} / 2}\left(\frac{q / 2}{T_{s} / 2} t\right)^{2} d t= \\
& =\frac{2}{T_{s}} \frac{q^{2}}{T_{s}^{2}}\left[\frac{t^{3}}{3}\right]_{0}^{T_{s} / 2}=\frac{2 q^{2}}{T_{s}^{3}} \frac{T_{s}^{3}}{24}=\frac{q^{2}}{12}
\end{aligned}
$$

Resolution

- The smallest detectable variation of the input

Example

- Convert 4.5V with an 8-bit AD converter with a FS $=5 \mathrm{~V}$

$$
\begin{aligned}
& N_{\text {dec }}=256 \times \frac{4.5}{5}=230=(11100110)_{2} \\
& \text { Error }=\left|\frac{230}{256} 5-4.5\right|=|4.4922-4.5|=0.0078 \mathrm{~V} \\
& \text { Max error }=\frac{0.5 \times 5}{256}=0.0098 \mathrm{~V} \\
& \text { Resolution }=\frac{5}{256}=0.0195 \mathrm{~V} \quad(0.01953 \mathrm{~V})
\end{aligned}
$$

- Convert an ADC value of 156 to volts (8 bit converter and FS $=5 \mathrm{~V}$)

$$
U_{D}=\frac{N_{d e c}}{2^{n}} F S=\frac{156}{256} 5=3.0469 \mathrm{~V} \quad U_{i n}=3.0469 \pm 0.0098 \mathrm{~V}
$$

Example: 12 bit converter

Resolution $=\frac{1}{2^{12}} F S=\frac{F S}{4096}$

FS	Resolution
0 à 10 V	$2,44 \mathrm{mV}$
0 à 5 V	
0 à $2,5 \mathrm{~V}$	$1,22 \mathrm{mV}$
0 à $1,25 \mathrm{~V}$	$610 \mu \mathrm{~V}$
0 a 1 V	$305 \mu \mathrm{~V}$
0 a $0,1 \mathrm{~V}$	$244 \mu \mathrm{~V}$
0 mV a 20 mV	$24,4 \mu \mathrm{~V}$
-5 à 5 V	$4,88 \mu \mathrm{~V}$
$-2,5$ a $2,5 \mathrm{~V}$	$2,44 \mathrm{mV}$
$-1,25$ a $1,25 \mathrm{~V}$	$1,22 \mathrm{mV}$
$-0,625$ a $0,625 \mathrm{~V}$	$610 \mu \mathrm{~V}$
$-0,5$ a $0,5 \mathrm{~V}$	$305 \mu \mathrm{~V}$
-50 mV à 50 mV	$244 \mu \mathrm{~V}$
-10 mV à 10 mV	$24,4 \mu \mathrm{~V}$
-10 a 10 V	$4,88 \mu \mathrm{~V}$
-5 a 5 V	$4,88 \mathrm{mV}$
$-2,5$ a $2,5 \mathrm{~V}$	$2,44 \mathrm{mV}$
$-1,25$ a $1,25 \mathrm{~V}$	$1,22 \mathrm{mV}$
-1 a 1 V	$610 \mu \mathrm{~V}$
$-0,1$ a $0,1 \mathrm{~V}$	$488 \mu \mathrm{~V}$
-20 mV a 20 mV	$48,8 \mu \mathrm{~V}$

Digital/Analog (D/A) Converter

D/A converter: binary weighted ladder

- Each input resistor is twice the value of the previous one
- Inputs are weighted according to their resistors

D/A converter: binary weighted ladder

$$
\begin{array}{c|ccc}
V_{\text {ref }} \\
\hline 1 & V_{\text {out }}=-I R_{f}= \\
\hline
\end{array}
$$

$\operatorname{code}\left(N_{d e c}\right): a_{1} a_{2} a_{3} \ldots a_{n-1} a_{n}$

D/A converter: binary weighted ladder

R-2R resistor ladder

-only two resistor values (R and $2 R$)
-does not require high precision resistors

R-2R resistor ladder

R-2R resistor ladder

R-2R resistor ladder

$$
\begin{aligned}
& V_{3}=\frac{1}{8} V_{r e f}, V_{2}=\frac{1}{4} V_{r e f}, V_{1}=\frac{1}{2} V_{r e f} \\
& V_{o u t}=-V_{r e f}\left(\frac{a_{1}}{2}+\frac{a_{2}}{4}+\frac{a_{3}}{8}+\frac{a_{4}}{16}\right)
\end{aligned}
$$

likewise:

$$
\begin{aligned}
& V_{2}=\frac{1}{2} V_{1} \\
& V_{1}=\frac{1}{2} V_{\text {ref }} \\
& V_{\text {out }}=-I R
\end{aligned}
$$

Successive approximation ADC

- Basic elements
- digital to analog converter
- analog comparator
- control logic module
- register

conversion time $=n / f_{0}$

Successive approximation ADC

Sample and hold (SH) circuits

- used in the input stage of A / D converters
- captures the voltage of a varying analog signal and keeps it at a constant level during the sampling time

(a) Basic arrangement (through the capacitor)

(b) A typical circuit

Example

- We would like to convert a sinusoidal signal with the frequency f using a successive approximation converter with n bits and clock frequency f_{o}. Calculate a frequency above which we need to use a S / H circuit ($n=12, f_{o}=1 \mathrm{MHz}$)
- Conversion time $t_{c}=n / f_{o}$
- $u(t)=\hat{U} \cos (2 \pi f t)$

Condition : change of $u(t)$ during $t_{c} \leq$ less than the quantization error
a smaller change of signal would not change the outcome of digitization

$$
\begin{aligned}
& \Delta u(t)_{\text {max }} \leq \frac{1}{2} \frac{F S}{2^{n}} \\
& \Delta u(t)_{\text {max }}=\frac{d u(t)}{d t} \Delta t=\frac{d u(t)}{d t} t_{c}=2 \pi f \hat{U}_{\max } t_{c}=2 \pi f \frac{F S}{2} t_{c} \leq \frac{1}{2} \frac{F S}{2^{n}}
\end{aligned}
$$

- Answer : $t_{c}=12 \mu \mathrm{~s}, f_{\text {limit }}=3.2 \mathrm{~Hz}$

$$
f \leq \frac{1}{2 \pi 2^{n} t_{c}}=f_{\text {limit }}
$$

Multiplexing

- Measurement instruments often have multiple inputs and outputs
- Instead of putting an A/D or D/A converter for every input/output, we can use multiplexing:
- use an electronic switch for selecting input/output
- antialiasing and reconstruction filters for each input/output

Input multiplexing

Input multiplexing with SH

Output multiplexing

Key points

- The conversion from analog to digital forms requires sampling
- Sampling frequency $f_{\mathrm{s}}>2 f_{\text {max }}$
- In order to eliminate components with undesired frequencies, the signal can be filtered using a low-pass filter (antialiasing filter) with a cut-off frequency $f_{\mathrm{c}}<f_{\mathrm{s}} / 2$
- Another low-pass filter allows us to reconstruct the signal by removing the high-frequency components due to sampling
- AD/DA converters
- SH circuits reduce conversion errors
- Multiplexing reduces the number of A / D and D / A converters and saves money

