Measurement systems

Lecturer: Andras Kis

Chapter 4: Data Acquisition

Measurement chain

Data analysis (recording, averaging, etc.)

Measurement chain

Analog signal

 Continuous both in amplitude and time and can assume an infinite number of different values – infinite resolution

Analog music recording

• Late 1980's, early 90s

Digital signal

 Signal is represented as two values ("low" and "high"), with distinct voltage levels

Bit and byte

• A digital signal can represent either a state of a quantity (bit) or be an element of a unit of information (byte)

Analog – digital conversion

- The digital signal is:
 - Less perturbed by noise
 - Easier to process, transmit or store
- Signal is often converted between analog digital forms
 - Music playback, generation of analog voltages using computercontrolled instruments etc.
- AD and DA converters

Sampling

- Before the conversion, the analog signal is sampled
- The signal to be sampled is multiplied with a pulse train signal

Reminder: frequency spectrum

• Sinusoidal signals

Representation

• Periodic signal

FFT

Signal t

$$x(t) = A \frac{4}{\pi} \left[\sin \omega_o t + \frac{\sin 3\omega_o t}{3} + \frac{\sin 5\omega_o t}{5} + \dots \right]$$

Non-periodic signal

Reconstruction of a square signal

Multiplication operation

• Product:

 $\Delta f = f_{max}$ bandwidth, continuous signal m(t)

16

Sampling of a periodic signal

(c) Waveform sampled below the Nyquist rate

Example: fixed sampling frequency

Bad sampling

Nyquist - Shannon theorem of sampling

Antialiasing filter

Without filter

With filter

Bloc diagram for sampling

Decimal – binary number conversion

• Decimal system

 $1234_{10} = (1 \times 10^3) + (2 \times 10^2) + (3 \times 10^1) + (4 \times 10^0)$

• Binary system

 $1101_2 = (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)$

Conversion binary -> decimal

$$11010_{2} = (1 \times 2^{4}) + (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0})$$

= 16 + 8 + 0 + 2 + 0
= 26_{10}

Conversion decimal -> binary number

• Decimal to binary number

26 ₁₀		quotient	remainder	
		26		
	÷ 2	13	0	
	÷ 2	6	1	
	÷ 2	3	0	
	÷ 2	1	1	
	÷ 2	0	1	
				read the number from starting from

read the number from starting from the last digit =11010

Encoding

Conversion of a decimal number N_{dec} into a binary code

$$N_{dec} \longrightarrow a_1 a_2 a_3 \dots a_{n-1} a_n$$

$$N_{dec} = \sum_{i=1}^{n} a_i 2^{n-i} = a_1 2^{n-1} + a_2 2^{n-2} + \dots + a_{n-1} 2^1 + a_n 2^0$$
$$= 2^n \sum_{i=1}^{n} a_i 2^{-i} = 2^n (a_1 2^{-1} + a_2 2^{-2} + \dots + a_n 2^{-n})$$

 a_1 MSB – most significant bit a_n LSB – least significant bit

Quantisation

Example

• Convert 4.5V with an 8-bit AD converter with a FS = 5V

$$N_{dec} = 256 \times \frac{4.5}{5} = 230 = (11100110)_2$$

Resolution
$$=\frac{5}{256}=0.019V~(0.01953V)$$

• Convert an ADC value of 156 to volts (8 bit converter and FS = 5V)

$$U_D = \frac{N_{dec}}{2^n} FS = \frac{156}{256} 5 = 3.0469V \qquad U_{in} = 3.0469 \pm 0.0098V$$

Quantisation error

Quantisation error =
$$\left| U_D - U_{in} \right|$$

$$= \left| \frac{N_{dec}}{2^n} FS - U_{in} \right|$$

Quantisation error as noise

 $\begin{array}{c|c} q/2 \\ -q/2 \\ -q/2 \end{array} \xrightarrow{\text{error}} T_s \\ \hline \\ \hline \\ -q/2 \end{array}$

Power of the noise associated with the quantisation error $(R = 1\Omega)$

$$P_{n} = \frac{1}{T} \int_{0}^{T} u_{n}^{2}(t) dt = \frac{2}{T_{s}} \int_{0}^{T_{s}/2} \left(\frac{q/2}{T_{s}/2}t\right)^{2} dt =$$
$$= \frac{2}{T_{s}} \frac{q^{2}}{T_{s}^{2}} \left[\frac{t^{3}}{3}\right]_{0}^{T_{s}/2} = \frac{2q^{2}}{T_{s}^{3}} \frac{T_{s}^{3}}{24} = \frac{q^{2}}{12}$$

Resolution

• The smallest detectable variation of the input

Example

- Convert 4.5V with an 8-bit AD converter with a FS = 5V $N_{dec} = 256 \times \frac{4.5}{5} = 230 = (11100110)_2$ $Error = \left|\frac{230}{256}5 - 4.5\right| = \left|4.4922 - 4.5\right| = 0.0078V$ *Max error* = $\frac{0.5 \times 5}{256} = 0.0098V$ Resolution = $\frac{5}{256} = 0.0195V$ (0.01953V)
- Convert an ADC value of 156 to volts (8 bit converter and FS = 5V)

$$U_D = \frac{N_{dec}}{2^n} FS = \frac{156}{256} 5 = 3.0469V \qquad U_{in} = 3.0469 \pm 0.0098V$$

Example: 12 bit converter

Resolution
$$=\frac{1}{2^{12}}FS = \frac{FS}{4096}$$

FS	Resolution
0 à 10 V	2,44 mV
0 à 5 V	1,22 mV
0 à 2,5 V	610 μV
0 à 1,25 V	305 μV
0 à 1 V	244 μV
0 à 0,1 V	24,4 μV
0mV à 20 mV	4,88 μV
-5 à 5V	2,44 mV
-2,5 à 2,5 V	1,22 mV
-1,25 à 1,25 V	610 μV
-0,625 à 0,625 V	305 μV
-0,5 à 0,5 V	244 μV
-50mV à 50 mV	24,4 μV
-10mV à 10 mV	4,88 μV
-10 à 10 V	4,88 mV
-5 à 5 V	2,44 mV
-2,5 à 2,5 V	1,22 mV
-1,25 à 1,25 V	610 μV
-1 à 1 V	488 μV
-0,1 à 0,1 V	48,8 μV
-20mV à 20 mV	9,76 μV

Digital/Analog (D/A) Converter

D/A converter: binary weighted ladder

- Each input resistor is twice the value of the previous one
- Inputs are weighted according to their resistors

D/A converter: binary weighted ladder

 $code(N_{dec}): a_1a_2a_3...a_na_n$

D/A converter: binary weighted ladder

 V_{ref}

Major disadvantage:

- needs a large range of resistors with high precision (2048:1 for 12-bit DAC)
- this limits it to 4-8 bit in practice

-only two resistor values (R and 2R)-does not require high precision resistors

 $V_{out} = -IR$

 $V_{out} = -IR$

Successive approximation ADC

- Basic elements
 - digital to analog converter
 - analog comparator
 - control logic module
 - register

conversion time = n/f_0

Successive approximation ADC

conversion time = n/f_0

Sample and hold (SH) circuits

- used in the input stage of A/D converters
- captures the voltage of a varying analog signal and keeps it at a constant level during the sampling time
 x(t)

Example

- We would like to convert a sinusoidal signal with the frequency f using a successive approximation converter with n bits and clock frequency f_o. Calculate a frequency above which we need to use a S/H circuit (n = 12, f_o = 1MHz)
 - Conversion time $t_c = n/f_o$
 - $u(t)=\hat{U}cos(2\pi ft)$

Condition : change of u(t) during $t_c \le less$ than the quantization error

a smaller change of signal would not change the outcome of digitization

$$\Delta u(t)_{\max} \le \frac{1}{2} \frac{FS}{2^n}$$

$$\Delta u(t)_{\max} = \frac{du(t)}{dt} \Delta t = \frac{du(t)}{dt} t_c = 2\pi f \hat{U}_{\max} t_c = 2\pi f \frac{FS}{2} t_c \le \frac{1}{2} \frac{FS}{2^n}$$

- Answer : t_c =12 μ s, f_{limit} =3.2 Hz

$$f \le \frac{1}{2\pi 2^n t_c} = f_{\text{limit}}$$

Multiplexing

- Measurement instruments often have multiple inputs and outputs
- Instead of putting an A/D or D/A converter for every input/output, we can use multiplexing:
 - use an electronic switch for selecting input/output
 - antialiasing and reconstruction filters for each input/output

Input multiplexing

Input multiplexing with SH

Output multiplexing

Key points

- The conversion from analog to digital forms requires sampling
- Sampling frequency $f_{\rm s} > 2f_{\rm max}$
- In order to eliminate components with undesired frequencies, the signal can be filtered using a low-pass filter (antialiasing filter) with a cut-off frequency $f_{\rm c} < f_{\rm s}/2$
- Another low-pass filter allows us to reconstruct the signal by removing the high-frequency components due to sampling
- AD/DA converters
- SH circuits reduce conversion errors
- Multiplexing reduces the number of A/D and D/A converters and saves money