Measurement Systems

Problem set n° 4

Exercise 1 (First Order Systems)

We want to build an Infrared (IR) sensor using a **pyroelectric element**. The radiation flux is first converted into a temperature change ΔT through absorption (see point a); the latter is converted into a charge variation ΔQ through the pyroelectric element (see point b). The pyroelectric effect is based on the physical principle according to which, for certain materials, a temperature change generates a change in the electrical polarization (i.e. a variation of the charge).

$$\Phi \stackrel{(a)}{\Longrightarrow} \Delta T \stackrel{(b)}{\Longrightarrow} \Delta Q$$

a) For the conversion of the flux into the temperature change, we find the following balance equation, assuming a constant flux Φ_o en W/m^2 that is initiated at the time t_o (see "step response") and a temperature T(t) at the time instant t:

	e : Coefficient of emissivity
dT(t)	S : Surface area
$e \cdot S \cdot \Phi_o = C_T \cdot \frac{dT(t)}{dt} + (T(t) - T(t_o)) \cdot G_T$	C_T : Thermal capacitance of the sensor
at	G_T : Thermal conductivity

Give the expression of the time response of the temperature T(t), the value of the temperature T_{stable} in the steady state and the time constant τ of the response.

b) The pyroelectric effect relates the charge $Q_p(t)$ to the temperature variation $\Delta T(t)$ according to the following equation:

$$Q_p(t) = \gamma_p \cdot S \cdot \Delta T(t)$$
 (with: γ_p pyroelectric coeff. in $C/m^2/s$ and S the surface)

We model the pyroelectric element as a current source $I_p(t)$ following the electrical scheme on Figure 1. The resistor R allows conditioning of the element to measure the voltage $U_o(t)$

Figure 1. Modeling and conditioning of the pyroelectric element

- Give the expression for $U_o(t)$ as a function of the temperature T(t).
- Insert the expression for the temperature time response T(t) in the expression for the voltage $U_o(t)$ (see point **a**). Give the expression $U_{o,stable}$ in the steady state.

Exercise 2 (2nd order system: accelerometer)

We would like to characterize the uniaxial accelerometer shown on Figure 2.

Figure 2: Model of the accelerometer

a) We first find the time response of the system:

- The sensitivity *S* is determined statically when the system is subjected to gravity alone, resulting in an output value *y*_{stat}. Calculate *S*.
- A step input of amplitude x_o is applied to the accelerometer to determine the natural frequency f_o and damping coefficient ξ . We obtain a response where the amplitude of the first oscillation is y_1 and a measured oscillation frequency f_T . Calculate the values of f_o and ξ .

b) We now characterize the frequency response of the system by applying a sinusoidal signal $\underline{a}(j\omega)$:

- Determine $y(j\omega)$ as a function of $\underline{a}(j\omega)$.
- Calculate the cutoff frequency f_c of the system and determine if the accelerometer is of low-pass or high-pass type.

Numerical data :

$y_{stat} = 200 \ \mu m$	$x_o = 49.05 \ m/s^2$
$y_1 = 1050 \mu m$	$f_T = 1 \ kHz$