Measuring systems

Problem set $\mathrm{n}^{\circ} 6$

Exercise 1 (Differential amplifier and uncertainty of the measurement)

A differential amplifier is characterized by a gain A_{d} and a common mode rejection ratio $\left.C M R R\right|_{d B}$. We want to use the amplifier in a Wheatstone bridge to amplify the voltage $U_{a b}$ (see Figure 1). The bridge is connected to a voltage source U_{s} and consists of a strain gauge of resistance $R+\Delta R$ and three other resistances R. We assume that the input resistance of the amplifier is large compared to the resistances R.

Figure 1: Wheatstone bridge and a differential amplifier

- What is the residual voltage U_{o} at the output of the differential amplifier when the bridge is in equilibrium, i.e. when the relative variation of resistance $\Delta R / R$ is zero?
- Which value of $\Delta R / R\left(\varepsilon_{\Delta R / R}\right)$ corresponds to an output voltage equal to U_{o} ? Make a conclusion about the precision of the measurement.

Numerical data :

$$
\begin{array}{ll}
\left.C M R R\right|_{d B}=80 d B & A_{d}=100 \\
U_{s}=10 V &
\end{array}
$$

Exercise 2 (Power and RMS of thermal noise)

a) Considering the resistor network depicted on Figure 2, calculate the total power of thermal noise transmitted to a connected circuit. The ambient temperature is ambient $T_{a}=290 \mathrm{~K}$. Consider bandwidths of $\Delta f_{1}=3.1 \mathrm{kHz}$ (analogue telephone line) and $\Delta f_{2}=5 \mathrm{MHz}$ (television broadcast).
b) Determine the RMS of voltage due to thermal noise, appearing between the two terminals of the network shown on Figure 1 if the temperature is 290 K and the considered bandwidth is 100 kHz .

Figure 2: Resistor network

Exercise 3 (Intrinsic noises)

Consider the circuit on Figure 3. We know that the voltage U is a sinusoid with an amplitude \widehat{U} and frequency f. Calculate the parasitic voltage $e_{n R}$ between terminals A and B due to intrinsic noises (Johnson noise, shot noise and $1 / f$ noise), during the positive and negative alternations respectively, for a bandwidth $\Delta \mathrm{f}$. You can neglect the voltage drop across the diode itself.

Figure 3 : Electrical circuit
Numeric values:

$$
\begin{array}{ll}
\widehat{U}=5 \mathrm{~V} & R_{1}=20 \Omega \\
f=50 \mathrm{~Hz} & R_{2}=10 \Omega \\
\Delta f=10 \mathrm{~Hz}-1 \mathrm{MHz} & T=25^{\circ} \mathrm{C} \\
K_{\frac{1}{f}}=1.7 \mathrm{fV}^{2} &
\end{array}
$$

