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Chapter 6: Comparing measurement results

• Dispersion diagram

• Regression and correlation

• Hypothesis testing
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Examples of questions to answer

• Metrology

Q1: does the average value supplied by the sensor correspond to 
the actual (real) value we are trying to measure?

Q2: which one of two or more measurement methods is more 
precise (smaller σ) / correct (closer to the real value)?

Q3: which of the two or more noise reduction methods is more 
efficient (results in a smaller σ)?

• Other domains

- effectiveness of a medical treatment

- differences between populations

6.7



Dispersion diagram

• Presentation of (x,y) coordinate pairs

• Highlighting a relationship

• Statistical distribution?

• Total number of measurements?
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Regression and correlation

• Identifying a linear relationship between x and y

• Linear regression line ye=ax + b
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Regression and correlation

• All these data sets result in the same regression line:

6.10

Linear relationship Dependence No dependence

• How do we measure the significance of the regression line, 
how faithfully it represents the original data?



Correlation coefficient

• R measures the strength of the linear relationship
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Examples of correlation

6.12

N=11, R=0.81

Source: wikipedia



Correlation and causation

6.13

Correlation does not mean causation: correlation is necessary
but not sufficient
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Source: Gizmodo

Correlation and causation

http://gizmodo.com/5977989/internet-explorer-vs-murder-rate-will-be-your-favorite-chart-today


Correct use of regression

• Show the 95% confidence interval

- Calculate the standard deviation of the difference se

- trace the zones of ±1.96 se (normal distribution, z = 1.96 for 
a = 2.5%) 
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Hypothesis test
Q1: Does the average value supplied by the sensor correspond to 
the actual value we are trying to measure?

How do we answer this?

By doing a hypothesis test which consists of:

- Making the initial assumption

- Collecting evidence (data)

- Based on the available evidence (data), deciding whether to reject 
or not reject the initial assumption.

6.16



Hypothesis test
Q1: Does the average value supplied by the sensor correspond to 
the actual value?

• We know the theoretical average (actual value, µ) of a 
population and its confidence interval:

• We collect N samples from this population (make N
measurements), calculate the average and find:

• The question now is whether the average      is significantly 
different from the actual value µ or if the difference is due to 
chance
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Hypothesis test

• is significantly different from the actual value µ -

- is outside the confidence interval

• The difference between    and µ is due to chance

- is inside the confidence interval
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Hypothesis test - example

• Specification sheet: the voltage source provides µ = 10 V with a 
s = 0.2 V (This is the claim, hypothesis)

• How do we test this?
- Perform N = 100 measurements (N can be any large number of measurements 

> 30 so we can apply the normal distribution) and calculate ҧ𝑥

- Estimate if ҧ𝑥 is in the specified confidence interval

- If

- If  
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Hypothesis test - example

• For p = 95% za0.025=1.96

• For ҧ𝑥=10.1V

• We reject the hypothesis (claim) of the manufacturer. We are 95% 
sure that the difference between ҧ𝑥=10.1V and µ=10V is significant.

• For ҧ𝑥=10.03V

• We do not reject the hypothesis of the manufacturer. We can 
however not claim that the source actually delivers 10V, only that 
the difference is due to chance (random error).

• A hypothesis is never accepted: only rejected or not rejected.
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Usefulness of the hypothesis test

• How do we know if the hypothesis on the measured values is 
right or probable

• Example: Hypothesis – the value provided by the voltage 
source is 10.01 V

• How do we check this?
- do an infinitely large number of measurements and calculate the 

average

- perform sampling and calculate the average – SIGNIFICANCE

• Significant difference: the difference between two values is not 
due to chance (systematic error)

• No significant difference: the difference is due to chance 
(random error)
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Main uses of hypothesis testing

• Comparison of an experimental average with a theoretical one

• Comparison of two experimental averages

• Comparison of two variances (precisions)

• Comparison of an experimental variance with a theoretical 
variance

6.22



• Data analysis procedure with the outcome of rejecting or failing to reject 
(not the same as accepting!) a hypothesis based on the data

• There are always two hypotheses:

- H0 – the result of an estimation does not significantly differ from the actual 
value (theoretical or supposed). This is the null hypothesis

- Ha – the result of an estimation significantly differs from the actual value 
(theoretical or supposed). This is the alternative hypothesis.

• During a hypothesis test, we always assume H0 is true and announce it in 
the form of a sentence: Example – Can we say that the voltage source 
provides 10V?

H0 – “The estimated average is not different from 10V”

H0 – “The difference between the estimated value and 10V is zero.”

H0 – “The voltage source provides 10V.”

Definition of the hypothesis test

6.23

H0: x  

Ha: x  

there is no difference between the estimated 

average and the theoretical value 



Bilateral test

• Used when we do not know in advance the particular direction of 
the alternative hypothesis (if ҧ𝑥 > μ or ҧ𝑥 < μ )

• Use α to determine the risk of error which is β=2α

6.24
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Flowchart for the realisation of a bilateral test

6.25

A sentence expressing the lack of difference:
“The voltage source is providing 10V”
or “The tension of the voltage source is 
not different from 10V”

Formulate the hypothesis H0

Define the statistical distribution (z)

Set the risk β=2α

Calculate zα

Calculate zobs

Compare with CI(1-2α)%

If 𝒛𝒐𝒃𝒔 > 𝒛𝜶 – reject H0

Formulate the conclusion

in general 1%, 5%, 10%

tables

reject H0 reject H0

-za za

fail to reject H0

𝑧𝑜𝑏𝑠 =
ҧ𝑥 − 𝜇

ൗ
𝜎

𝑁



Example: bilateral z-test

• According to the specifications, a sensor should draw 2.80 mA of 
current with a standard deviation of 0.14 mA. To test this, we take 
40 sensors and find an average current draw of 2.72 mA. What can 
we conclude with a risk of 5% about the specifications?

6.26

H0: µ=2.80 mA – The sensor draws 2.80 mA

α = 5%/2 = 0.025
zα = - 1.96
zobs= (2.72-2.80)/(0.14/6.3)=-3.61
-3.61<-1.96 : we reject Ho

Conclusion: the average current draw is 
different from 2.8 mA, with a risk of 5%.

𝑧𝑜𝑏𝑠 =
ҧ𝑥 − 𝜇

ൗ
𝜎

𝑁



Unilateral test

• Used when we expect the average to be above or below the 
theoretical average (specifications)

• Use α to determine the risk of error (in this case it’s α!)

• Formulate the null hypothesis

H0: ҧ𝑥 > 𝜇 therefore Ha: ҧ𝑥 < 𝜇 H0: ҧ𝑥 < 𝜇 therefore Ha: ҧ𝑥 > 𝜇

Fail to reject H0
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z
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Flowchart for the realisation of a unilateral test

6.28

Formulate the hypothesis H0:

ഥ𝒙 ≥ 𝝁

Define the statistical distribution (z)

Set the risk α

Calculate zα

Calculate 𝑧𝑜𝑏𝑠 =
ҧ𝑥−𝜇

ൗ
𝜎

𝑁

Compare with CI(1-α)%

If 𝒛𝒐𝒃𝒔 < − 𝒛𝜶 – reject H0

Formulate the conclusion

Formulate the hypothesis H0:

ഥ𝒙 ≤ 𝝁

Define the statistical distribution (z)

Set the risk α

Calculate zα

Calculate 𝑧𝑜𝑏𝑠 =
ҧ𝑥−𝜇

ൗ
𝜎

𝑁

Compare with CI(1-α)%

If 𝒛𝒐𝒃𝒔 > 𝒛𝜶 – reject H0

Formulate the conclusion



Example: unilateral z-test

• According to the specifications, a sensor should draw 2.80 mA of 
current with a standard deviation of 0.14 mA. To test this, we take 
40 sensors and find an average current draw of 2.72 mA. What can 
we conclude about the specifications with a 5% risk?

• Express the null hypothesis

H0 : the current draw is higher than 2.80 mA

(because the only thing we can do is reject a hypothesis, we can’t accept it)

6.29
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Example: unilateral z-test

• According to the specifications, a sensor should draw 2.80 mA of current with a 
standard deviation of 0.14 mA. To test this, we take 40 sensors and find an 
average current draw of 2.72 mA. What can we conclude about the specifications 
with a 5% risk?

6.30

H0: ഥ𝒙 ≥ 𝝁 the current draw is higher 
than 2.80 mAx

z

N

 


s

α = 5% = 0.05
zα = - 1.645
zobs= (2.72-2.80)/(0.14/6.3)=-3.61
-3.61<-1.645 : we reject Ho

Conclusion: the average current draw is 
smaller than 2.8 mA, with a risk of 5%.



Comparison of an experimental average with a 
theoretical one – t-test

• In cases where the number of measurements N < 30 or if the 
standard deviation is estimated from an experiment (and not 
specifications), we use the Student distribution instead of the 
normal one and the t-test instead of the z-test

• The procedure is the same as in the z-test:

- we replace zα with tα, defined by the Student distribution

- tobs is given by:

6.36
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Example: t-test

• In order to estimate the error of a gyroscope reading, we carry out 22 identical 
tests. They consist of turning the gyroscope by 360°, taking the angular velocity 
readings while the gyroscope is turning and then integrating the velocity (which 
should give us the total angle or 360°). We find in this way an average value of 
359.2° and a standard deviation of 4.4°. Can we say with a 5% risk that the sensor 
is producing a systematic error?

6.37

H0: The sensor is not making a systematic error
The difference between the result and the theoretical value is not significant

2α = 5%; α = 0.025 (bilateral test)
tα = 2.08
tobs= (359.2-360)/(4.4/4.7)=-0.85
-0.85>-2.08 : we do not reject H0

Conclusion: the difference is not significant with a risk of 5%.

𝑡 =
ҧ𝑥 − 𝜇
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Comparison of two experimental averages: z-
test

• Comparing 𝑥1 with 𝑥2 is the equivalent of comparing 𝑥1 − 𝑥2
with 0.

• If x1 and x2 are independent, then:
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Example

• Two sensors have noisy outputs with U1 = 9.8 V (s1 = 1V) and 
U2 = 9.6 V (s2 = 1.32 V). Can we say with a risk of 2% that the 
values U1 and U2 are different after taking 500 measurements?

6.39

H0: The two averages are not different

α = 2%/2 = 0.01 (bilateral test)
z1% = - 2.33
zobs= (9.8-9.6)/(1.66/22.4)=2.69
2.69>2.33 : we reject H0

Conclusion: the averages are significantly different, with a risk of 2%.
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Comparison between two variances

• We can also compare two sets of data according to their 
variance

6.40

Same average Different average

Same
variance

Different
variance

t-test

F-test



Comparing two measured variances
• Let us assume that we have two sets of data (populations) with 

distributions that can be described using the normal (Gaussian) 
distribution

• Let 𝑠1
2 and 𝑠2

2 be the variances estimated using 𝑁1 and 𝑁2 samples 
with 𝑠1

2 > 𝑠2
2 (𝑠 not 𝜎, to stress that the variance is measured)

• In this case the quantity 𝑓 =
𝑠1
2

𝑠2
2 follows the Fisher distribution 

𝑓(𝜈1, 𝜈2)
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Example: bilateral F-test

• Two sensors have noisy outputs with U1 = 9.35 V (s1 = 1.5V) and 
U2 = 9.8 V (s2 = 1 V). Can we say with a risk of 5% that the two 
sensors have different noise levels? s1 and s2 have been calculated 
based on 31 measurements.

6.43

H0: The two noise levels are not different

α = 5%/2 = 0.025 (bilateral test)
f1-a(n1, n2)=1/fa(n2, n1)

f2.5%(30,30)=2.07, f97.5%(30,30)=0.483

fobs=(1.5)2/1=2.25 > 2.07: we reject H0

Conclusion: the noise levels are significantly different, with a risk of 5%.
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Comparing two measured variances – F-test

45

Formulate the hypothesis H0 𝒔𝟏 =
𝒔𝟐

Define the test variable (f)

Set the risk 2α

Calculate 𝑓𝛼 and 𝑓1−𝛼

Calculate 𝑓𝑜𝑏𝑠 =
𝑠1
2

𝑠2
2

Compare with CI(1-2α)%

If fobs >fα  or fobs <f1-α – reject H0

Formulate the conclusion

Formulate the hypothesis H0 𝒔𝟏 ≥
𝒔𝟐

Define the test variable (f)

Set the risk α

Calculate 𝑓1−𝛼

Calculate 𝑓𝑜𝑏𝑠 =
𝑠1
2

𝑠2
2

Compare with CI(1-α)%

If fobs <f1-α – reject H0

Formulate the conclusion

bilateral unilateral



Comparison between an experimental and a 
theoretical variance: c2 test

• Let 𝜎2 be the theoretical variance and 𝑠2 the 
experimentally determined variance, estimated using
𝑁 samples

• The variable c2 is defined as 𝜒2 =
𝑁−1 𝑠2

𝜎2
with a distribution 

𝜒2(n)

6.46
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Example: c2 test

• An amplifier is characterised by noise s  2.2 µV. A filter is used at 
the output in order to reduce this noise. The noise amplitude after 
filtering is estimated to be s  1.92 µV based on 31 measurements. 
Determine with a risk of 5% if the filter is effective in reducing the 
noise.

6.47

H0: The noise level after filtering is higher than before the 
filtering

α = 5% (unilateral test)
c2

95%(30)=18.49 

c2
obs=(30)×1.922/2.22 = 22.85

22.85 > 18.49 : we do not reject H0

Conclusion: the filter is not effective
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Comparison between an experimental and a 
theoretical variance: bilateral c2 test

6.49

Formulate the hypothesis H0

𝒔 = 𝝈

Define the test variable (𝜒2)

Set the risk 2α

Calculate 𝜒𝛼
2 and 𝜒1−𝛼

2

Calculate 𝜒𝑜𝑏𝑠
2 =

𝑁−1 𝑠2

𝜎2

Compare with CI(1-2α)%

If 𝜒𝑜𝑏𝑠
2 >𝜒𝛼

2 or 𝜒𝑜𝑏𝑠
2 < 𝜒1−𝛼

2

reject H0

Formulate the conclusion



Comparison between an experimental and a 
theoretical variance: unilateral c2test

50

Formulate the hypothesis H0 𝒔 ≥
𝝈

Define the test variable (𝜒2)

Set the risk α

Calculate 𝜒1−𝛼
2

Calculate 𝜒𝑜𝑏𝑠
2 =

𝑁−1 𝑠2

𝜎2

Compare with CI(1-α)%

If 𝜒𝑜𝑏𝑠
2 < 𝜒1−𝛼

2 reject H0

Formulate the conclusion

Formulate the hypothesis H0 𝒔 ≤
𝝈

Define the test variable (𝜒2)

Set the risk α

Calculate 𝜒𝛼
2

Calculate 𝜒𝑜𝑏𝑠
2 =

𝑁−1 𝑠2

𝜎2

Compare with CI(1-α)%

If 𝜒𝑜𝑏𝑠
2 >𝜒𝛼

2 reject H0

Formulate the conclusion



General procedure for a bilateral test

6.51

Formulate the hypothesis H0

Define the test statistics (q)

Set the risk 2α

Calculate 𝑞𝛼 and 𝑞1−𝛼

Calculate 𝑞𝑜𝑏𝑠

Compare with CI(1-2α)%

If qobs >qα  or qobs <q1-α – reject H0

Formulate the conclusion

for example ҧ𝑥 = 𝜇
or  𝑠1 = 𝑠2, etc. 

for example 
q = z, q = t, etc

tables

Reject H0 Reject H0

qaq1-a

s known?

N>30?

Use z

Use z and s for s

Use t and s for s

y = yes
n = no

y

n

N>30?
y

n

y

n

𝑧𝑜𝑏𝑠 =
ҧ𝑥 − 𝜇

ൗ
𝜎

𝑁



General procedure for a unilateral test

52

Formulate the hypothesis H0 ഥ𝒙 ≥
𝝁

Define the test variable (𝑞)

Set the risk α

Calculate 𝑞1−𝛼

Calculate 𝑞𝑜𝑏𝑠

Compare with CI(1-α)%

If 𝑞𝑜𝑏𝑠 < 𝑞1−𝛼 reject H0

Formulate the conclusion

Formulate the hypothesis H0 ഥ𝒙 ≤
𝝁

Define the test variable (𝑞)

Set the risk α

Calculate 𝑞𝛼

Calculate 𝑞𝑜𝑏𝑠

Compare with CI(1-α)%

If 𝑞𝑜𝑏𝑠>𝑞𝛼 reject H0

Formulate the conclusion



Key points

53

Comparison Test Conditions Variable

A
V

ER
A

G
ES

Theoretical vs. 
experimental

z-test σtheoretical known and 
N>30

𝑧 =
ҧ𝑥 − 𝜇

ൗ
𝜎

𝑁

t-test sexperimental known
or N<30

𝑡 =
ҧ𝑥 − 𝜇

ൗ
𝑠

𝑁

Experimental vs. 
experimental

z-test z follows a normal 
distribution
N1 ≥ 30 and N2 ≥ 30

𝑧 =
𝑥1 − 𝑥2

ൗ
𝜎1

2

𝑁1
+ ൗ
𝜎2

2

𝑁2

t-test N1 < 30 or N2 < 30
𝑡 =

𝑥1 − 𝑥2

ൗ𝑠1
2

𝑁1
+ ൗ𝑠2

2

𝑁2

V
A

R
IA

N
C

ES

Theoretical vs. 
experimental

c2-test 𝜒𝑜𝑏𝑠
2 =

𝑁−1 𝑠2

𝜎2

Experimental vs. 
experimental

F-test
𝑓𝑜𝑏𝑠 =

𝑠1
2

𝑠2
2


