
CS-323 – Final Preparation
23 May 2019



Question 1: Disk optimization 
Two of the primary disk optimizations are disk scheduling and clever disk 
allocation. One is known to be more effective under high load, and the other is 
known to be more effective under low load. Which one is which and why? 
Structure your answer as follows:

1. Disk scheduling is more effective under low load / high load (pick one).

2. Reason for answer to 1

3. Clever disk allocation is more effective under low load / high load (pick one).

4. Reason for answer to 3



Answer: 

● Disk scheduling is more effective under high load.
● Why?

○ Many scheduling opportunities

■ Many requests in the queue

○ Allocation gets defeated

■ By interleaved requests for different files 



Answer: 

● Clever disk allocation is more effective under low load.
● Why?

○ Not much scheduling opportunities 
■ Not many requests in the queue

○ Sequential user access → sequential disk access
○ Cache tends to reduce load



Question 2:
Suppose that a disk drive has 5000 cylinders, numbered from 0 to 4999. The drive 
is currently serving a request at cylinder 143, and the previous request was at 
cylinder 125. The queue of pending requests is: 

86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130

Starting from the current head position, what is the total distance (in cylinders) that 
the disk arm moves to satisfy all the pending requests for each of the following 
disk-scheduling algorithms?

1. FCFS
2. SSTF
3. SCAN
4. C- SCAN



Req: 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130



Req: 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130



Req: 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130



Req: 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130



Question 3: In-memory and on disk data structures

Active File Table Open File Table

Scope

Each entry 
corresponds 
to

Each entry 
contains



Question 3: In-memory and on disk data structures
A. Fill in the following table, comparing the Active File Table and the Open File 

Table.

B. List the steps that take place when a process invokes tid = Open(uid). In 
particular, show any accesses to disk and any updates to the above data 
structures. Assume that the file with identifier uid exists, but that all in-memory 
data structures are empty when the operation is invoked. 



Answer:
Active File Table Open File Table

Scope ● System-Wide
● One array for the entire 

system 

● Per-Process
● One array per process

Each entry 
corresponds 
to

● An open file
● A file open by the 

process

Each entry 
contains

● Device directory entry of file
● Reference count of number 

of file opens
● Additional info

● Pointer to entry in 
active file table

● File pointer fp
● Additional info



Answer:

Steps:

1. Check in the Active File table to see if the file is used by another process. In 
this case it won't be.

2. Find free entry in Active File Table
3. Read inode and copy it in an Active File Table entry
4. Refcount = 1
5. Allocate entry in Open File Table
6. Point to entry in Active File Table
7. Set fp = 0 





Question 4: Log-structured Key-Value Stores
Similar principles that are used by the log-structured file system can be applied to 
different contexts. One such example is log-structured merge key-value stores 
(LSMs).  LSMs are data stores holding key-value pairs. They have a sorted 
in-memory component and an on-disk component. All writes are performed (only) 
on the in-memory component. Once the in-memory component gets full, it is 
sequentially written to the disk component. The disk component hence contains 
multiple files corresponding to the former memory components, which were 
persisted to disk.
 



Question 4: Log-structured Key-Value Stores
A. Describe what a read operation look likes in this LSM. In other words, given a 

particular key, how do you find the corresponding value.
 
B. A problem of the described LSM is that the files stored on disk could contain 

many duplicates of the same key, wasting space. Describe a “cleanup” 
operation that would solve this problem.

 
C. For what kinds of workloads or applications would the LSM described above 

be the most suitable for? Motivate your answer.



Answer:
A.

First, check if the key is in the in-memory component.

If the key is not found, search for it in all files on disk in reverse chronological 
order.

To keep read performance acceptable, LSM KV stores usually sort the files on 
disk.



Answer:
B.

This cleanup operation is called "compaction".

Compaction is performed by merging multiple files on disk into a single file, 
removing any duplicate and deleted keys. As the files are sorted on disk, a simple 
parallel merge sort can be used to implement compaction.



Answer:
C. 

High write workloads such as transactions log file, persistent message queues, 
social network updates, file backups, etc.

LSM KV stores are better than B+ Trees for such workloads as they remove the 
need to perform dispersed write/update operations.



Question 5: RAID 
Consider a 4-disks, 256GB-per-disks RAID array. What is the available data 
storage capacity if:

A. Disks are organized as RAID 0?

B. Disks are organized as RAID 5?



Answer - RAID 0:
- No redundancy
- Data striped across all available disks



Answer - RAID 5:
- For each disk with data - 1 parity
- Interleave parity with data



Question 6: SSDs and LFS
What makes a log-structured file system suitable as a file system for SSDs?



Answer:
● LFS is basically working the same way as SSDs

○ Append changes at the end of the log

○ As a result, you never update in place!

○ Writes are copy-on-write

■ Mark the old version as free space (~ erase)

■ Write the new version at the end of the log 
 

  

 

 





Question 7: Virtualization 
Assume an architecture that meets the Popek/Goldberg criteria for virtualization 
and follows the layering of this figure. 



Question 7: Virtualization 
Provide one example of a transition across each of the 5 boundaries that are 
pictorially represented in the figure, i.e.

A. Application layer – x86

B. Application – OS

C. OS – x86

D. OS – VMM

E. VMM – x86



Answer:
A - Application layer  -x86 

Unprivileged instructions (ex. Addition of two registers), regular CPU 
instructions in user mode

B - Application - OS

System calls: fork/wait, raise/signal, open/read/write/close file

C - OS - x86

Unprivileged instructions of the guest kernel 



D - OS - VMM

Privileged instructions of the guest kernel (generate a trap by the VMM). 
Hardware emulated by the virtual machine used by the virtualized OS.

E - VMM - x86

Any monitor instruction. Management of the real hardware 
emulated/multiplexed by the VMM, for use by the virtualized OS. 

Answer:


