

Problem 1 : spin detection

- a) Indicate the nuclear spin I of the three following nuclei : ⁴He, ⁶Li and ⁷Li. In general, can all the nuclei be detected by NMR? If not what is the condition on their nuclei to be detectable and which nuclei among the three above can be detected?
- b) What is the energy difference between the two spin states of 1 H in a magnetic field of 5.87 T? And that of 13 C?
- c) For both nuclei ¹H and ¹³C, calculate which fraction of the spin population is in the upper state (higher energy)? What can you deduce for the magnetization of the two nuclei?
 Hint: assume T=300K.
- d) Explain why proton signal is used for imaging in NMR and not another nucleus.
- e) One wants to measure glucose signal, using proton (H¹) and carbon (C¹³) MR spectroscopy. Investigating total Glc signal, calculate sensitivity ratios between both techniques for Glc.

Problem 2 : B₁ field and radiofrequency

In many MR experiments it is necessary to flip a spin which is initially aligned along the z axis into the x'-y' plane by using an appropriate rotating magnetic field B_1 during a certain amount of time (pulse) (in the rotating frame, B_1 is a static field orthogonal to B_0). This is referred to as a 90° pulse. If the desired pulse time is 1.0ms, what B_1 magnitude is required for

- a) A proton spin?
- b) A carbon spin?
- c) At which frequency is the magnetization originating from each of the two atoms precessing ?
- d) At a B_0 of 9.4T, at which frequency must B_1 rotate (in the lab frame) in resonance conditions for a proton spin?
- e) What is then the wavelength and energy of a photon of this field? Compare it to what is used for X-ray imaging.

Problem 3 : Rotating frame and effective field

In a static frame, the equation of motion for a spin, m(t), in a magnetic field $B_0 = B_0 e_z$ is given by:

$$\frac{d\vec{m}(t)}{dt} = \gamma \vec{m}(t) \times \vec{B_0}$$

a) Write down the equation of motion in a rotating frame with precession speed of $\vec{\omega} = \omega \cdot \vec{e_z}$ Hint: use the following theorem, for any vector $\vec{A}(t)$

$$\left[\frac{d\vec{A}(t)}{dt}\right]_{static\ frame} = \left[\frac{\partial\vec{A}(t)}{\partial t} + \vec{\omega} \times \vec{A}(t)\right]_{rotating\ frame}$$

- b) Explain graphically what happens to the spin's precession speed, if we increase the precession speed of the rotating frame gradually from 0 to $\omega_0 = \gamma B_0$,. Hint: draw **B**_{eff} in the rotating frame as ω increases.
- c) Now we have an exciting magnetic field B_1 perpendicular to B_0 and precessing around B_0 at angular frequency ω . Calculate the effective field, B_{eff} , in the rotating frame (where B_1 is fixed) and the tangent of the angle between the B_0 field and the B_{eff} .

Hint: Replace γB_0 by $\omega_0 = -\gamma B_0$

 $tan\theta = f(\omega, \omega_0, \omega_1)$

- d) Discuss the effect of B_{eff} on the spin motion depending on ω .
- e) Draw the precession of the spin in case of resonance ($\omega = \omega_0$).