Solution 1: MR Quiz

a) False. As the magnetisation vector returns to the z axis, necessarily the transverse component goes to zero.
b) True. If the B_{0} field is inhomogeneous, nuclei at different positions will process at different rates and hence the spin system de-phases faster, which results in a shorter free induction decay.
c) False. When the magnetization relaxes, excess energy in the spin system is released to the environment (the lattice).
d) False. A shorter T_{1} means that it takes shorter time for the spin system resumes to its thermal equilibrium state.
e) False.
f) A solid-state sample.

Solution 2: Precession

a) $\quad v=\frac{\gamma B_{0}}{2 \pi}=\frac{\left(267.512 \cdot 10 \frac{\mathrm{rad}}{\mathrm{Ts}}\right) \cdot 5.87 \mathrm{~T}}{2 \cdot 3.14 \mathrm{rad}}=250 \mathrm{Mhz}$

Since \mathbf{B}_{1} is $10^{-5} \mathbf{B}_{0},{ }^{1} \mathrm{H}$ nuclei will precess around \mathbf{B}_{1} at $10^{-5} *(250 \mathrm{MHz})=2.5 \mathrm{kHz}$
b) The cycle time $\mathrm{t}_{0}=1 / \mathrm{v}=0.400 \mathrm{~ms}$.
c) Since one complete cycle requires $0.4 \mathrm{~ms}, \mathrm{M}$ will rotate 360° in 0.4 ms . The tip angle will start at 0° at $\mathrm{t}=0$. After 0.1 ms it will have rotated one-fourth of a cycle $\left(90^{\circ}\right)$ and 180° after 0.2 ms .
d) See figure:

e) A tip angle of 180° results in a perfectly inverted M, where the population of down spins now outnumbers up spins. No T_{2}-controlled relaxation is needed since M already lies along the $-z$ axis. But the normal Boltzmannn distribution must be reestablished by longitudinal relaxation (controlled by T1). See figure
below.

Solution 3: Longitudinal Relaxation
a) The z-component of magnetization is given by:

$$
M_{z}(\tau)=M_{z}(\tau=0)\left(1-2 e^{-\tau / T_{1}}\right)
$$

By setting the left hand side equal to zero, and solving for τ we obtain:

$$
\tau=T_{1} \ln (2)
$$

b) Inversion recovery experiment. A 180° pulse is applied, then a relaxation delay t_{ir} is applied before flipping the relaxed magnetization into the xy plane. The 90° pulse allows to access magnetization along the longitudinal axis, which means the relaxation at time $t_{i r}$. Redoing this experiment several times varying the relaxation delay t_{i} allows to rebuild the relaxation curve given by the equation in point a). Especially, you can determine the point such as $M_{2}(\tau)=0$ and then calculate relaxation time T_{1}.
c) The experiment would consist in applying a 180° pulse and waiting a time $T_{I R}$ such that the CSF would be in the xy plane (but not the WM magnetization that has a different T_{1}) before applying a 90° pulse. The basic idea of the experiment is that after the 90° pulse, the CSF magnetization would return along the z axis and wouldn't be measured while the remaining WM along the z axis would be flip into the xy plane. Using the equation found in a) :

$$
T_{I R}=T_{1} \ln (2)
$$

As $T_{1, \text { CSF }}=2800 \mathrm{~ms}, \mathrm{~T}_{\mathrm{IR}}=1941 \mathrm{~ms}$.
At time $T_{I R}$ the $W M$ magnetization (along the z axis) will be :

$$
M_{z, W M}\left(T_{I R}\right)=M_{z, W M}(t=0)\left(1-2 e^{-\frac{T_{I R}}{T_{1, W M}}}\right)=0.82 M_{z, W M}(t=0)
$$

Using this experiment CSF signal would be cancelled while WM signal would have fully recovered!!!

Solution 4: Liver Experiment

Signal decrease (in xy plane) is governed by T_{2} relaxation. It is described by the following equation : $S(t)=$ $S_{0} e^{-t / T_{2}}$

So for $\mathrm{t}=40 \mathrm{~ms}$
$S(40 \mathrm{~ms})=S_{0} e^{-40 / 40}=0.37 S_{0}$
And for $\mathrm{t}=500 \mathrm{~ms}$
$S(500 \mathrm{~ms})=S_{0} e^{-500 / 40}=3.7 \times 10^{-6} S_{0}$

Solution 5: Excitation Pulses

The excitation profile is given by:
$H(f)=\int_{0}^{2 \tau} A e^{-i 2 \pi f t} d t=A \int_{0}^{2 \tau} \cos (2 \pi f t) d t-i A \int_{0}^{2 \tau} \sin (2 \pi f t) d t$
$=\left.\frac{A}{2 \pi f} \sin (2 \pi f t)\right|_{0} ^{2 \tau}+\left.\frac{i A}{2 \pi f} \cos (2 \pi f t)\right|_{0} ^{2 \tau}=\frac{A}{2 \pi f}[\sin (4 \pi f \tau)+i(\cos (4 \pi f \tau)-1)]$
$=\frac{A}{2 \pi f} \sqrt{2-2 \cos (4 \pi f \tau)} \mathrm{e}^{\mathrm{i} \varphi}=\frac{A}{2 \pi f} \sqrt{4 \sin ^{2}(2 \pi f \tau)} \mathrm{e}^{\mathrm{i} \varphi}=\frac{A}{\pi f}|\sin (2 \pi f \tau)| \mathrm{e}^{\mathrm{i} \varphi}$, with
$\varphi=\operatorname{arctg}\left(\frac{\cos (4 \pi f \tau)-1}{\sin (4 \pi f \tau)}\right)=-2 \pi f \tau:$ a phase modulation
$\frac{A}{\pi f}|\sin (2 \pi f \tau)|$: the amplitude of each frequency contributing to the signal
The excitation bandwidth is given by the frequency interval between the two first zeros of the sinc function: $\frac{A}{\pi f}|\sin (2 \pi f \tau)| \mathrm{e}^{-\mathrm{i} 2 \pi f \tau}$.

Thus the excitation bandwidth is $\frac{1}{2 \tau}$.

