

Solution 1: MR Quiz

- a) False. As the magnetisation vector returns to the z axis, necessarily the transverse component goes to zero.
- b) True. If the B₀ field is inhomogeneous, nuclei at different positions will process at different rates and hence the spin system de-phases faster, which results in a shorter free induction decay.
- c) False. When the magnetization relaxes, excess energy in the spin system is released to the environment (the lattice).
- d) False. A shorter T₁ means that it takes shorter time for the spin system resumes to its thermal equilibrium state.
- e) False.
- f) A solid-state sample.

Solution 2: Precession

- a) $\nu = \frac{\gamma B_0}{2\pi} = \frac{\left(267.512 \cdot 10^6 \frac{rad}{Ts}\right) \cdot 5.87 T}{2 \cdot 3.14 rad} = 250 Mhz$ Since **B₁** is 10^{-5} **B**₀, ¹H nuclei will precess around **B**₁ at 10^{-5} *(250MHz)=2.5kHz
- b) The cycle time $t_0=1/v=0.400$ ms.
- c) Since one complete cycle requires 0.4ms, **M** will rotate 360[°] in 0.4ms. The tip angle will start at 0[°] at t=0. After 0.1ms it will have rotated one-fourth of a cycle (90[°]) and 180[°] after 0.2ms.
- d) See figure:

e) A tip angle of 180⁰ results in a perfectly inverted M, where the population of down spins now outnumbers up spins. No T₂-controlled relaxation is needed since M already lies along the –z axis. But the normal Boltzmannn distribution must be reestablished by longitudinal relaxation (controlled by T1). See figure

Fundamentals of Bioimaging (Prof. Gruetter)

Solutions to Problem Set No. 9

below.

Solution 3: Longitudinal Relaxation

a) The z-component of magnetization is given by:

$$M_z(\tau) = M_z(\tau = 0)(1 - 2e^{-\tau/T_1})$$

By setting the left hand side equal to zero, and solving for τ we obtain:

$$\tau = T_1 \ln(2)$$

- b) Inversion recovery experiment. A 180° pulse is applied, then a relaxation delay t_{ir} is applied before flipping the relaxed magnetization into the xy plane. The 90° pulse allows to access magnetization along the longitudinal axis, which means the relaxation at time t_{ir} . Redoing this experiment several times varying the relaxation delay t_{ir} allows to rebuild the relaxation curve given by the equation in point a). Especially, you can determine the point such as $M_z(\tau) = 0$ and then calculate relaxation time T_1 .
- c) The experiment would consist in applying a 180° pulse and waiting a time T_{IR} such that the CSF would be in the xy plane (but not the WM magnetization that has a different T_1) before applying a 90° pulse. The basic idea of the experiment is that after the 90° pulse, the CSF magnetization would return along the z axis and wouldn't be measured while the remaining WM along the z axis would be flip into the xy plane. Using the equation found in a) :

$$T_{IR} = T_1 \ln(2)$$

As $T_{1,CSF} = 2800$ ms, $T_{IR} = 1941$ ms.

At time T_{IR} the WM magnetization (along the z axis) will be :

$$M_{z,WM}(T_{IR}) = M_{z,WM}(t=0) \left(1 - 2e^{-\frac{T_{IR}}{T_{1,WM}}}\right) = 0.82 M_{z,WM}(t=0)$$

Using this experiment CSF signal would be cancelled while WM signal would have fully recovered!!!

Solution 4: Liver Experiment

Signal decrease (in xy plane) is governed by T_2 relaxation. It is described by the following equation : $S(t) = S_0 e^{-t/T_2}$

So for t = 40ms

$$S(40ms) = S_0 e^{-40/40} = 0.37 S_0$$

And for t = 500ms

 $S(500ms) = S_0 e^{-500/40} = 3.7 \times 10^{-6} S_0$

Solution 5: Excitation Pulses

The excitation profile is given by:

$$\begin{split} H(f) &= \int_{0}^{2\tau} Ae^{-i2\pi ft} dt = A \int_{0}^{2\tau} \cos(2\pi ft) dt - iA \int_{0}^{2\tau} \sin(2\pi ft) dt \\ &= \frac{A}{2\pi f} \sin(2\pi ft) \left|_{0}^{2\tau} + \frac{iA}{2\pi f} \cos(2\pi ft) \right|_{0}^{2\tau} = \frac{A}{2\pi f} \left[\sin(4\pi f\tau) + i \left(\cos(4\pi f\tau) - 1 \right) \right] \\ &= \frac{A}{2\pi f} \sqrt{2 - 2\cos(4\pi f\tau)} e^{i\varphi} = \frac{A}{2\pi f} \sqrt{4 \sin^{2}(2\pi f\tau)} e^{i\varphi} = \frac{A}{\pi f} \left| \sin(2\pi f\tau) \right| e^{i\varphi} \text{, with} \\ \varphi &= \arctan\left(\frac{\cos(4\pi f\tau) - 1}{\sin(4\pi f\tau)}\right) = -2\pi f\tau \text{ : a phase modulation} \\ &\frac{A}{\pi f} \left| \sin(2\pi f\tau) \right| \text{: the amplitude of each frequency contributing to the signal} \end{split}$$

The excitation bandwidth is given by the frequency interval between the two first zeros of the sinc function: $\frac{A}{\pi f} |\sin(2\pi f\tau)| e^{-i2\pi f\tau}.$

Thus the excitation bandwidth is $\frac{1}{2\tau}$.