## Exam 16.June 2009 Neural Networks and Biological Modeling

- Write your name in readable letters on top of this page
- The exam lasts 160 minutes
- All responses must be on these exam sheets
- Except for one paper A4 of handwritten notes, no documentation is allowed.
- You may use a pocket calculator, but not a programmable computer
- The total number of points that can be achieved is 44


## Evaluation

Section 1: ....../7 pts

Section 2: ....../12 pts

Section 3: ....../9 pts

Section 4: ....../10 pts

Section 5: $\qquad$ /6 pts
$\qquad$
$\qquad$
The exam has 10 pages, the back of the pages is also used!

## Question 1: ION CHANNEL

## We consider the following model of a ion channel

$$
I_{i o n}=g_{0} x^{p}(u-E)
$$

where $u$ is the membrane potential. The parameters $g_{0}, p$ and $E=0$ are constants.
(a) What is the name of the variable $E$ ? $\qquad$
Why does it have this name, what does it signify (give answer in one sentence)
$\qquad$
(b) The variable $x$ follows the dynamics

$$
\frac{d x}{d t}=-\frac{x-x_{0}(u)}{\tau}
$$

Suppose we make a voltage step from a fixed value $E$ to a new constant value $u_{0}$. Give the mathematical solution $x(t)$ for $t>0$
$x(t)=$ $\qquad$ /2 points

An electrophysiologist tells you that he is able to apply voltage steps as in (b) and that by measuring the current he wants to determine the parameters $g_{0}$ and $x_{0}(u)$ of the ion channel in (a) and (b)
(c) How should he proceed to measure the parameter $p$ ? What would be different between the case $p=1$ and $p=4$ ? You can sketch a little figure to illustrate your answer.
(d) Under the assumption that $x_{0}(u)$ is bounded between zero and 1 , how can he measure $g_{0}$ ?
$\qquad$
$\qquad$
$\qquad$
(e) Given the value of $g_{0}$ and $p$, how can he measure the value $x_{0}\left(u_{1}\right)$ at some arbitrary value $u_{1}$ ? If possible, give a mathematical expression to illustrate your explanation.
$\qquad$
$\qquad$

## Question 2: Integrate-and-Fire Model/Phase Plane analysis (12 points)

An integrate-and-fire neuron model with adaptation is described by the two differential equations

$$
\begin{align*}
\frac{d u}{d t} & =F(u)-w+I  \tag{1}\\
\tau \frac{d w}{d t} & =-w+a(u+10) \tag{2}
\end{align*}
$$

If $u \geq 10$ the variable $u$ is reset to $u=0$. The variable $w$ is increased by an amount of 4 during reset.

We take

$$
\begin{array}{ll}
F(u)=-(u+10) & \text { for } u \leq 0 \\
F(u)=-10+5 u & \text { for } u>0 \tag{4}
\end{array}
$$

(a) Plot the nullclines in the phase plane $(u, w)$ for $I=0$ and $a=0.5$ using the space here:
(b) In the same graph, add representative arrows indicating qualitatively the flow on the nullclines and in different regions of the phase plane (you may assume $\tau=2$ ). / 2 points
(c) In the same graph, mark the rest state.
/1 point
(d) In the same graph, indicate a trajectory in the phase plane, after a stimulus $I(t)=11 \delta(t)$ has been applied starting from rest [ $\delta$ denotes the Dirac delta function].
(e) In the same graph, indicate a trajectory in the phase plane, after a stimulus $I(t)=15 \delta(t)$ has been applied starting from rest
[ $\delta$ denotes the Dirac delta function].
/1 point
(f) Plot qualitatively the solution $u(t)$ for $t>-1$ for the cases in (d) and (e) in the space below. Pay particular attention to the moment around $t=0$ and to the situation after a very long time.
(g) assume that $\tau \gg 1$ (e.g. $\tau=5$ ). Assume that we have applied for a long time in the past a negative (hyperpolarizing) current $I=-40$. Draw the nullclines again for this situation in the space below.

What happens if we stop the hyperpolarizing current at $t=0$ so that $I=0$ for $t \geq 0$ ? Explain in words the evolution of the voltage after the current has been stopped and draw a sketch of the trajectory $u(t)$ for $t \geq-1$

## Question 3: Stochastic Model: Poisson process

We consider a linear neuron model under stochastic spike arrival. The neuron receives input at a rate $r$ at a synapse with weight $w$. Each input causes a postsynaptic potential $\alpha(s)=2-s$ for $0<s<2$ and zero elsewhere. The total membrane potential is

$$
\begin{equation*}
u(t)=\sum_{t^{f}} w \alpha\left(t-t^{f}\right)+u_{0} \tag{5}
\end{equation*}
$$

The sum is over all spike times arriving at the synapse.
(a) Suppose a fixed value of $u_{0}$. What is the mean membrane potential?
$\langle u\rangle=\bar{u}=$ $\qquad$
(b) What is the variance of the membrane potential?
$\left\langle(u-\bar{u})^{2}\right\rangle=$. $\qquad$
(c) Suppose now that because of external input the reference $u_{0}$ is periodically modulated at a period of $T=20$ (e.g., $T=20 \mathrm{~ms}$, but you can do the calculation unit-free)

$$
u_{0}(t)=\Delta u \sin (2 \pi t / T)
$$

Stochastic input is the same as before and arrives at a constant rate of $r=2$ (e.g. $r=2 k H z$ ). Sketch 2 sample trajectories of the potential $u(t)$ corresponding to 2 repetitions of the experiment in the space here. Indicate in your sketch $u_{0}(t)$ as well as the mean and the variance. Pay attention to the relation between $r$ and $1 / T$.
(d) Suppose that the neuron fires whenever the membrane potential $u(t)$ hits the threshold $\theta$ from below. Starting from the figure in (c), choose three different values of theta that lead to qualitatively different firing behavior, and discuss the results. Use 1 sentence for each of the three cases You can use the space below if you want to make additional sketches.
case 1 : $\qquad$
case 2: $\qquad$
case 3 : $\qquad$
$\qquad$

## Question 4: Dynamics of Hopfield model

Consider a network of $N=20000$ neurons that has stored 4 patterns
$\xi^{1}=\left\{\xi_{1}^{1}, \ldots \xi_{N}^{1}\right\}$
$\xi^{2}=\left\{\xi_{1}^{2}, \ldots \xi_{N}^{2}\right\}$
$\xi^{3}=\left\{\xi_{1}^{3} \ldots \xi_{N}^{3}\right\}$
$\xi^{4}=\left\{\xi_{1}^{4} \ldots \xi_{N}^{4}\right\}$
using the synaptic update rule $w_{i j}=(J / N) \sum_{\mu} \xi_{i}^{\mu} \xi_{j}^{\mu}$ where $J>0$ is a parameter. Each
pattern has values $\xi_{i}^{\mu}= \pm 1$ so that exactly 50 percent of neurons in a pattern have $\xi_{i}^{\mu}=+1$.
Assume stochastic dynamics: neurons receive an input $h_{i}(t)=\sum_{j} w_{i j} S_{j}(t)$ where $S_{j}(t)= \pm 1$ is the state of neuron $j$. Neurons update their state

$$
\begin{equation*}
\operatorname{Prob}\left\{S_{i}(t+1)=+1 \mid h_{i}(t)\right\}=0.5\left[1+g\left(h_{i}(t)\right)\right] \tag{6}
\end{equation*}
$$

where $g$ is an odd and monotonically increasing function: $g(h)=2 h$ for $|h|<0.5$ and $g(h)=1$ for $h \geq 0.5$ and $g(h)=-1$ for $h \leq-0.5$.
(a) Rewrite the righ-hand-side of equation (6) by introducting an overlap $m^{\mu}(t)=(1 / N) \sum_{j} \xi_{j}^{\mu} S_{j}(t)$.
(b) What is the significance of the overlap? Describe its meaning in one sentence; give examples if necessary.
$\qquad$
$\qquad$
(c) Assume that the four patterns are orthogonal, i.e., $\sum_{i} \xi_{i}^{\mu} \xi_{i}^{\nu}=0$ if $\mu \neq \nu$. Assume that the overlap with pattern 4 at $t=0$ has a value of 0.3 and $m^{\mu}(0)=0$ for all other patterns.
Suppose that neuron $i$ is a neuron with $\xi_{i}^{4}=-1$.
What is the probability that neuron $i$ fires in time step 1? Give the formula for arbitrary $J$ and evaluate then for $J=1$.

What is the probability that another neuron $k$ with $\xi_{k}^{4}=+1$ fires in time step 1? Give the formula for arbitrary $J$ and evaluate then for $J=1$.
(d) For the same assumptions as in (c), what is the expected overlap for $<m^{4}(t)>$ after the first time step.
$<m^{4}(1)>=$ $\qquad$
$\qquad$
/2 points
(e) For the same assumptions as in (c) and (d), write the evolution of the overlap for $m^{4}(t)$ for an arbitrary time step and arbitrary $J$. Assume that $N$ is large $(N \rightarrow \infty)$. Because of the orthogonality of the patterns, you may also assume that $m^{\mu}(t)=0$ for $\mu \neq 4)$.
$m^{4}(t+1)=$ $\qquad$
(f) Can you relate the evolution of the overlap to the more general picture of mean-field analysis of coupled networks?
$\qquad$
$\qquad$

## Question 5: Fokker-Planck equation

For a population of integrate-and-fire neurons the continuity equation reads

$$
\begin{equation*}
\tau \frac{\partial}{\partial t} p(u, t)=-\frac{\partial}{\partial u} J(u, t) \tag{7}
\end{equation*}
$$

(a) What is the meaning of the term $p(u, t)$. Give the name and mathematical definition. Describe its significance of $p$ in your own words
$\qquad$
$\qquad$
$\qquad$
(b) What is the meaning of the term $J(u, t)$ ? Give the name or definition. Describe the significance of $J$ in your own words.
$\qquad$
$\qquad$
$\qquad$
(c) A professor who sometimes makes mistakes on the blackboard writes

$$
A(t)=J(\vartheta, t)
$$

Is this formula correct? Justify your answer.
$\qquad$
$\qquad$
$\qquad$
(d) How can we include the reset of integrate-and-fire models in the continuity equation above?
$\qquad$
$\qquad$
$\qquad$

