→Modeling & Models...

Some skills in setting up mathematical models for bioprocesses

Introduction to ASM: Activated Sludge Model WWTP modeling approach of International Water Association (IWA)  $\rightarrow$  For Simulation & Control

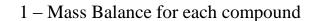
Some skills in control and simulation of biological processes

Introduction to Aquasim: Computer program for the identification and simulation of aquatic systems IBE

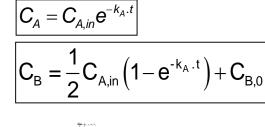
(PA)

### Models...? & Simulation

 $\frac{d(C_A V)}{dt} = -r_A V \qquad (In = Out = 0)$ 


 $\frac{d(C_{\rm B}V)}{dt} = \frac{1}{2}(r_{\rm A}V) \qquad \text{as } V = Cst$ 

 $\frac{d(C_A)}{dt} = -r_A; \frac{d(C_B)}{dt} = \frac{1}{2}r_A; r_A = k_A.C_A$ 


REACTION in a batch reactor of V=101:

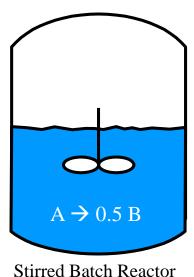
Stoichiometry : A  $\rightarrow$  0.5 B Process rate  $r_A = k_A C_A$  with  $C_A [mg/l]$ ;  $C_{Ainit} = 1 [mg/l]$ ;  $k_A = 1 [h^{-1}]$ 

Plot the concentration of A and B as a function of time  $\rightarrow$  Dynamic answer of the process !!!



2 – Analytical Integration

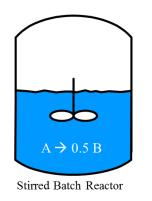





 $2 - Computation \rightarrow$ 

 $\Leftrightarrow$  Simple !!!

2cd ORDER REACTION 1.20 ♦ CA 1.00 СВ 0.80 [**J** 0.60 0.40 0.20 0.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 Time [h]


??? HOW ???



Surreu Balch Reactor

| kA   | 1      | 1/h  |
|------|--------|------|
| Cain | 1      | mg/L |
| Time | CA     | СВ   |
| 0.0  | 0 1.00 | 0.00 |
| 0.2  | 5 0.78 |      |
| 0.50 | 0.61   | 0.20 |
| 0.7  | 0.47   | 0.26 |
| 1.00 | 0.37   | 0.32 |
| 1.2  |        | 0.36 |
| 1.50 | 0.22   | 0.39 |
| 1.7  |        | 0.41 |
| 2.00 | 0.14   | 0.43 |
| 2.2  | 5 0.11 | 0.45 |
| 2.50 | 0.08   | 0.46 |
| 2.7  | 5 0.06 | 0.47 |
| 3.00 | 0.05   | 0.48 |
| 3.2  | 5 0.04 | 0.48 |
| 3.50 | 0.03   | 0.48 |
| 3.7  | 0.02   | 0.49 |
| 4.00 | 0.02   | 0.49 |
| 4.2  | 5 0.01 | 0.49 |
| 4.50 | 0.01   | 0.49 |
| 4.7  | 0.01   | 0.50 |
| 5.00 | 0.01   | 0.50 |

#### Marc Deront (Sirous Ebrahimi)



## Models...? & Simulation

- Simple process : 1 compound
  - with 1 kinetic process (linear)
  - in 1 reactor in batch mode V=cst,

### In Wastewater Treatment Plants

 $\rightarrow$  Complexity  $\uparrow$ 

 $\rightarrow$  (Very) SIMPLE ...

- 1. Complexity increases due to # compounds :
  - More than13 (ASM Activated Sludge)
  - Up to 25 ( ADM Anaerobic Digestion)

| Dissolve         | ed compounds                            |
|------------------|-----------------------------------------|
| $S_{O_2}$        | Dissolved oxygen                        |
| SI               | Soluble inert organics                  |
| Ss               | Readily biodegradable substrates        |
| $S_{\rm NH_4}$   | Ammonium                                |
| $S_{N_2}$        | Dinitrogen, released by denitrification |
| SNOX             | Nitrite plus nitrate                    |
| SALK             | Alkalinity, bicarbonate                 |
| Particul         | ate compounds                           |
| $X_{\rm I}$      | Inert particulate organics              |
| $X_{\rm S}$      | Slowly biodegradable substrates         |
| $X_{\rm H}$      | Heterotrophic biomass                   |
| $X_{\rm STO}$    | Organics stored by heterotrophs         |
| $X_{\mathrm{A}}$ | Autotrophic, nitrifying biomass         |
| Xss              | Total suspended solids                  |

BE



### BE

## Models...? & Simulation

### In Wastewater Treatment Plants $\rightarrow$ Complexity $\uparrow$

2. Complexity increase with more than 12 complex multi-parameter multivariate kinetic processes :  $r_A = k_A \cdot C_A \rightarrow r_S = q_S^{max} (C_S / C_S + k_S) \cdot C_X$ 

3. Complexity due to:

- multiple reactors
  - multiple steps and treatment lines
  - multiple operating mode batch, continuous and sequencing

Dynamic answer of such complex model CANNOT be solved analytically !!!

This can be achieved with the followings tools:

- Modeling approach/tool which can cope with model complexity: **Matrix formulation** in ASM created by IWA task group
- Computing environment with **numeric integration**, identification and **simulation** such AQUASIM

| Het | erotrophic organisms    |
|-----|-------------------------|
| 2   | Aerobic storage of S    |
| 3   | Anoxic storage of $S_S$ |

1 Hydrolysis

- 4 Aerobic growth
- 5 Anoxic growth (denitrification)
- 6 Aerobic endogenous respiration
- 7 Anoxic endogenous respiration
- 8 Aerobic respiration of  $X_{\text{STO}}$
- 9 Anoxic respiration of  $X_{\text{STO}}$
- Autotrophic organisms, nit
- 10 Aerobic growth of  $X_A$ , nitrification
- 11 Aerobic endogenous respiration
- 12 Anoxic endogenous respiration

(FPA)

Engineering tools for environmental bioprocess engineer

# →Modeling & Models...

ASM - Activated Sludge Model This modeling formulation has been popularized in the 80' by specialists and professionals (IWA – Modeling task groups International Water Association)

- This modeling was first used for Activated Sludge Model (ASM1→ASM3)
- And then used for Anaerobic Digestion Model (ADM1)

## $\rightarrow$ For Simulation & Control

AQUASIM a software tool designed for the simulation and identification of aquatic systems in the laboratory, in technical plants and in natural environment.

- 1.Simulation
- 2.Parameter sensitivity
- 3. Parameter Identification

In GBE course  $\rightarrow$  Assignment #1 = Self training to ASM + Aquasim

- Introduction to ASM modelling
- Tutorial + Use of Aquasim (Dynamic Simulation)

Marc Deront (Sirous Ebrahimi)



More about WWTP Modeling, Design and Control  $\rightarrow$  Simulation Benchmark

It's the result of 2 COST (European Union) programs

- 1. COST682 « Integrated Wastewater Management » 1992-1998 Focusing on optimization of design and control of dynamic biological wastewater processes
- 2. COST624 "Efficiency and optimization of biological wastewater treatments" 1998-2002 to increase knowledge about microbial biosystems and integrated wastewater treatments for sustainable development

 $\rightarrow$  COST « Simulation Benchmark » Manual

It consists of a complete protocol for evaluation of efficiency and control strategy of Activated Sludge wastewater treatments

- $\rightarrow$  Full description of the WWTP modeling system with
- 1. Description of implementation on multiple simulation environments dedicated to WWTP (with specificities, adaptations, tunings and bias)
- 2. Check of steady state and dynamic answers
- 3. Comparison of performance and quality of control strategy

See Official COST Report The COST Simulation Benchmark Description and Simulator Manual.pdf (in Readings folder)

IBE