

Environmental Bioprocesses Engineering

BE

1

Marc Deront marc.deront@epfl.ch

ENAC-LBE

Lab. de Biotechnologie Environnementale

based on lecture from Sirous Ebrahimi (sirous.ebrahimi@epfl.ch)

Marc Deront (Sirous Ebrahimi)

What do you learn in this course?

You will learn the engineering tools you need as a bioprocess engineer

What are the tools?

The ways to calculate microbial rates

Quantification of Microbial Rates Consumption or Production

?

Rates of consumption or production are obtained from Mass balances

Over reactor, for **each compound** and from measured:

- 1. Volumes
- 2. Concentrations
- 3. Flow rates

Mass Balances over reactors

Accumulation [amount/h] = In [amount/h] – Out [amount/h] + Conversions [amount/h]

For each compound C_i in the biosystem:

Accumulation_i =
$$\sum R_i^{IN} - \sum R_i^{OUT} + \sum R_i^{Conversions}$$

Important: At Steady State, Accumulation = 0

Mass Balances over reactors

Accumulation_i =
$$\sum R_i^{IN} - \sum R_i^{OUT} + \sum R_i^{Conversions}$$

Accumulation = 0, at Steady State

Rates from Mass Balances

How are rates defined? (1)

Rates from mass balance

How are rates defined? (2)

Rates from mass balance

How are rates defined? (3)

 q_i Specific rate = R_i / Biomass amont

 q_i Specific rate = r_i / Biomass concentration

But who do the job? Microorganisms!!!

- Do both microorganisms have equal rates?
- How fast do they "work"?

[amount S.amount X⁻¹.h⁻¹],[kgS.kgX⁻¹.h⁻¹] or [moleS.moleX⁻¹.h⁻¹] $V_{reactor} = 2 m^3$ Microorganism (20 kg biomass.m⁻³ Mass rate = $R_s = -4 \text{ kgS.hr}^{-1}$ Volumetric rate $r_s = R_s / 2 = -2 \text{ kgS.m}^{-3}.\text{hr}^{-1}$ Specific rate $q_s = R_s / (2 \cdot 20) = -0.1 \text{ kgS.kgX}^{-1}.hr^{-1}$ Specific rate $q_s = r_s / (20) = -0.1 \text{ kgS.kgX}^{-1}.hr^{-1}$ $V_{reactor} = 5 \text{ m}^3$ Microorganism (2) 2 kg biomass.m⁻³ Mass rate = R_s = - 4 kg.hr⁻¹ Volumetric rate $r_{s} = R_{s} / 5 = -0.8 \text{ kg}.\text{m}^{-3}.\text{hr}^{-1}$ Specific rate $q_s = R_s / (5 \cdot 2) = -0.4 \text{ kgS.kgX}^{-1}$.hr⁻¹ Specific rate $q_s = r_s / (2) = -0.4 \text{ kgS.kgX}^{-1}.hr^{-1}$

Microorganism (2) is 4 times more efficient than microorganism (1)!

Yield = ratio of rates

Definition of yield Y_{ij} of compound **j** over **i** :

$$\mathbf{Y}_{ij} = \left| \frac{rate_j}{rate_i} \right| = \left| \frac{R_j}{R_i} \right| = \left| \frac{\frac{R_j}{V_R}}{R_i} \right| = \left| \frac{r_j}{-r_i} \right| = \left| \frac{q_j \cdot C_X}{q_i \cdot C_X} \right| = \left| \frac{q_j}{q_i} \right|$$

Often, yields are related to biomass growth rate i.e Y_{ix}

$$\mathbf{Y}_{SX} = \left| \frac{r_{X}}{-r_{S}} \right| = \left| \frac{\mu \cdot C_{X}}{-q_{S} \cdot C_{X}} \right| = \left| \frac{\mu}{-q_{S}} \right|$$

But all \mathbf{Y}_{ij} yields can be obtained with \mathbf{Y}_{ix} yields

$$Y_{SP} = \left| \frac{q_{P}}{-q_{S}} \right| = \left| \frac{q_{P}}{\mu} - q_{S} \right| = \left| \frac{1}{Y_{PX}} - q_{S} \right| = \left| \frac{1}{Y_{PX}} - q_{S} \right| = \left| \frac{1}{Y_{PX}} - q_{S} \right|$$

Yield = ratio of rates

$$\mathbf{Y}_{SX} = \left| \frac{r_{X}}{-r_{S}} \right| = \left| \frac{\mu \cdot C_{X}}{-q_{S} \cdot C_{X}} \right| = \left| \frac{\mu}{-q_{S}} \right| = \frac{1}{\gamma_{XS}}$$

IBE

Quantification of r_i , q_i , Y_{ij} in BATCH reactor

#1 Rates

(FPA)

Quantification of r_i , q_i , Y_{ij} in CHEMOSTAT reactor

(1) Calculation of \mathbf{R}_i and \mathbf{r}_i rates for Biomass X, Substrate S and Product P

X: growth + in – out = 0; R_X = growth = - (in – out) [kg X.hr⁻¹]

S: consumption + in – out = 0; R_s = consumption = - (in – out) [kg S.hr⁻¹]

P: production + in – out = 0; R_P = production = - (in – out) [kg P.hr⁻¹]

Mass Balance at Steady State \rightarrow No accumulation

(1) Calculation of \mathbf{R}_i and \mathbf{r}_i rates for Biomass \mathbf{X}

 r_i Volumetric rate = $R_i / V_{reactor}$

X: growth + in – out = 0;
$$R_X + (0*0.3) - (14*0.4) = 0$$
 [kgX.h⁻¹]
 $R_X = -[0 - (14*0.4)] = 5.6$ [kgX.h⁻¹]
 $r_X = R_X / V = (14*0.4)/1.5 = 3.73$ [kgX.m⁻³.h⁻¹]

Quantification of r_i , q_i , Y_{ij} in CHEMOSTAT reactor

Mass Balance at Steady State \rightarrow No accumulation

(1) Calculation of \mathbf{R}_i and \mathbf{r}_i rates for Substrate S

 r_i Volumetric rate = $R_i / V_{reactor}$

S: consumption + in – out = 0; $R_{s} + (30*0.3) - (5*0.4) = 0$ [kgS.h⁻¹] $R_{s} = -[(30*0.3) - (5*0.4)] = -7$ [kgS.h⁻¹] $r_{s} = R_{s} / V = -7/1.5 = -4.66$ [kgS.m⁻³.h⁻¹]

Quantification of r_i , q_i , Y_{ij} in CHEMOSTAT reactor

Mass Balance at Steady State \rightarrow No accumulation

(1) Calculation of \mathbf{R}_i and \mathbf{r}_i rates for Product \mathbf{P}

 r_i Volumetric rate = $R_i / V_{reactor}$

P: production + in – out = 0; R_P + (0*0.3) –(2*0.4) = 0 [kgP.h⁻¹]

$$R_{P} = -[(0*0.3) - (2*0.4)] = 0.8 [kgP.h^{-1}]$$

$$r_{P} = R_{P} / V = 0.8 / 1.5 = 0.53 [kgP.m^{-3}.h^{-1}]$$

 q_i Specific rate = r_i / Biomass concentration

$$r_{X} = 3.73 \text{ [kgX.m}^{-3}.h^{-1}\text{]}$$

$$r_{S} = -4.66 \text{ [kgS.m}^{-3}.h^{-1}\text{]}$$

$$r_{P} = 0.53 \text{ kg [kgP.m}^{-3}.h^{-1}\text{]}$$

X:
$$q_X = \mu = r_X/C_X = 3.73/14 = 0.26 [kgX.m^{-3}.h^{-1}.(kgX.m^{-3})^{-1}] = 0.26 [h^{-1}]$$

S: $q_S = r_S/C_X = -4.66/14 = -0.33 [kgS.kgX^{-1}.h^{-1}]$
P: $q_P = r_P/C_X = 0.53/14 = 0.037 [kgP.kgX^{-1}.h^{-1}]$

(3) Calculation of Y_{ij} yields

 $\begin{array}{ll} q_{\rm X} = 0.26 \ [h^{-1}] & r_{\rm X} = 3.73 \ [kgX.m^{-3}.h^{-1}] \\ q_{\rm S} = -0.33 \ [kgS.kgX^{-1}.h^{-1}] & r_{\rm S} = -4.66 \ [kgS.m^{-3}.h^{-1}] \\ q_{\rm P} = 0.037 \ [kgPS.kgX^{-1}.h^{-1}] & r_{\rm P} = 0.53 \ kg \ [kgP.m^{-3}.h^{-1}] \end{array}$

 $\begin{aligned} \mathbf{Y}_{SX} &= |\mu/q_S| = |0.26/-0.33| = 0.8 = |\mathbf{r}_X/\mathbf{r}_S| = |3.73/-4.66| = 0.8 \ [kgX.kgS^{-1}] \\ \mathbf{Y}_{SP} &= |\mathbf{r}_P/\mathbf{r}_S| = |0.53/-4.66| = 0.11 \ [kgP.kgS^{-1}] \\ \mathbf{Y}_{XP} &= |\mathbf{r}_P/\mathbf{r}_X| = |0.53/3.73| = 0.14 \ [kgP.kgX^{-1}] \end{aligned}$