Environmental Bioprocess Engineering Assignment #2 (A.2.1 & A.2.2)

Marc Deront EPFL-LBE

Don't remain alone and stuck if you don't' understand a step and if you have difficulties with the problem.

SHARE TOGETHER and again, use intensively the Moodle forum!

This assignment is the study of the biodegradation of organic pollution by heterotrophic biomass under aerobic conditions. The following aspects will be studied

- Microbial growth kinetics and yields with kinetics parameters (A.2.1)
- Analytical determination of the bioprocess (chemostat) behavior (Steady state study) (A.2.2)
- Dynamic simulation of the bioprocess, modeling (Simplified ASM approach) and simulation (Aquasim) (A.2.3)

For A.2.1 and A.2.2., you will provide an Excel file and its PDF version.

A.2.1. Stoichiometry and kinetics of microbial growth study (in 1 Excel sheet)

One considers the study of the microbial aerobic heterotrophic growth of biomass on acetate with NH_4^+ as N-Source at atmospheric pressure and 25°C.

Available acetate stock is in the form sodium acetate CH₃COONa with an $\Delta^{f_{G}^{01}}$ of -369.41 kJ.mol⁻¹ (= Acetate)

- a. (4) Using the required Gibbs Energy of heterotrophic growth Y_{GX}^{max} correlation, compute and provide the global growth reaction. Then provide all Y_{IX}^{max} stoichiometric coefficients of global growth reaction... You will see that the growth will produce protons and bicarbonate ions (H⁺ and HCO₃⁻). According the stoichiometry of the growth reaction, is the bioprocess alkalinizing or acidifying?
 b. (2) Establish the catabolic reaction, which gives the ΔG_{cat} of the catabolic reaction.
 c. (2) Establish the anabolic reaction.
 d. (3) Check that the global reaction is the sum of the anabolic and the catabolic respiration of the growth (using 1/Y_{OX} stoichiometric yield) of global growth reaction)
 e. (3) Using the Gibbs Energy correlations:

 compute the maximal specific growth rate μ^{max}
 and from Gibbs Energy m_G correlation, provide the rates m_i required for the
- maintenance
 (4) Express all specific rates q_I (biomass, Acetate, O₂, NH4⁺, H⁺...) and yields Y_{IX} as function of growth rate μ

Provide a double Y scatter plot of the q_I rates and the yields Y_{IX} vs μ [0 – 1.2 μ ^{max}]

A.2.2. Reactor study (Steady state) (in 1 Excel Sheet)

According this previous A.2.1, one wants to do an experiment to study this growth biosystem to determine its biological kinetic parameters. For this purpose, a 1.5 L of CSTR chemostat bioreactor will be used. Assume an inlet organic loading concentration of C_{Sin} 1500 mg COD/L. Suppose K_S the affinity constant of the biomass for this substrate is 20 mg COD/L

- a. (1) As A.2.1. Stoichiometry and kinetics of microbial growth study is developed and expressed in C-mole of biomass and mole of sodium acetate, convert units of C_{Sin} and k_S .
- b. (5) Provide the expression of putative concentrations of Biomass C_X , Substrate C_S as function of dilution rate D (use Chemostat lecture notes)
 - Build mass balance for Biomass C_X, Substrate C_S state variables, provide volumetric rates

- From two known expressions of q_s (Herbert-Pirt and hyperbolic link q_s to μ and C_s provide.
 - expression for $C_S = f(D)$ which doesn't depend on C_{Sin} inlet concentration
 - expression for $C_X = f(C_S)$
 - expression $\mu = f(C_S)$ using minimal substrate concentration (for maintenance) C_{Smin} which occurs when $\mu=0$, but when residual C_S allows biomass maintenance (see lecture on Chemostat).
- c. (2) From $\mu = f(C_S)$ expression, give and compute the maximum critical dilution rate and determine DCrit, which occurs when $C_S=C_{Sin}$...

Compute C_{Smin} of minimal residual substrate concentration for maintenance

- d. (4) Then, from Cs mass balance $r_s=q_s.C_x$, using observed Ysx yield (q_x/q_s rate ratio) or using one of the q_s expression, give 3 expression of
 - $-C_{X} = f(C_{S}, Y_{SX}, D)$
 - $C_X = f(D, C_S)$ Herbert Pirt q_S
 - $C_X = f(D, C_S)$ Hyperbolic q_S

Then with expressions of $C_X = f(\mu) = f(D)$ and $C_S = f(\mu) = f(D)$ from [0 to DCrit] in 30 steps compute C_S and C_X (also all qi for all global growth components) Check same calculated for C_S by the 3 expressions

Plot them on one graph, the two 2 state variables C_X & C_S as function of D (DCrit)

e. (6) From mass balances, express all other state variables as function of D (NH_4^+ , dissolved O₂, dissolved CO₂ and H⁺) using:

- C_Nin = YSN * C_Sin * 120%, YSN obtained from Y_{SX} and Y_{NX} of global growth equation

- C_Oin=0 mole.m³, Kla = 90 hr⁻¹, C_02sat 25°C =0.258 mole.m⁻³. We consider that there is no limitation, and there no O_2 switch function. [same recommendations that will be used in **A.2.3** (below)]

Once all C_i states variables can be expressed from their respective mass balance, compute and plot on one graph, all these C_i component concentrations of global growth equation using same dilution rates of d.)

Do the same for all r_i volumetric rates.

- f. (2) Check K_S affinity constant effect on chemostat behavior, by modifying ks. Note: C_X , C_S and DCritical depend on to μ^{max} or q_S^{max} and K_S. Compute C_X and C_S as function f(K_S, μ) = f(K_S,D), for Half Ks, Ks and 2 times Ks. Then plot Cs and Cs vs dilution rate D. Comment!
- g. (4) The aim of this chemostat study will be to use an experimental chemostat for the estimation of the 4 biological kinetic parameters (μ^{max} , Y_{SX}^{max} , k_S , and m_S) of heterotrophic biomass growing aerobically on sodium acetate. According estimation tools (See Chemostat lecture: Lineweaver-Burk and Hanes-Woolf linearization), the quality of the estimation depends on the covered range of Cs substrate residual concentration, which is fixed by the dilution rate D chosen, for each chemostat Steady State.

Using the $C_S=f(D)$ expression (provide 10 dilution rate values, providing 10 C_S values which cover the range from $0.1xC_{Sin}$ to C_{Sin} , in an equal distributed manner...

h. (3) During Practical Labs Chemostat experiment, even if C_{sin} and D are supposed to be chosen and fixed, pumping reality of inlet medium, real outlet flow, bioreactor volume as well as inlet substrate concentration make observed/measured C_{Sin} and D quite different from what has been supposed to be chosen. As residual substrate and biomass concentration depends mainly on these 2 applied operating parameters C_{Sin} and D, provide an easy calculation of C_S and C_X using applied observed C_{Sin} and D dilution rate. Use C_S and C_X expressions above.