Simulation with
ModelSim-Altera
from Quartus II

Quick Start Guide
Embedded System Course

LAP —IC— EPFL—- 2010

Version 0.5 (Preliminary)

René Beuchat, Cagri Onal

1 Installation and documentation
Main information in this document has been found on:

http:\\www.altera.com

This guide has been prepared to help students following the Embedded System Course in 1&C by René Beuchat at
EPFL. A development board FPGA4U is use during the laboratories with Quartus Il froma Altera and ModelSim-

Altera from Mentor.

Copy of the tools can be found at LAP for personal installation:

‘ \\lapsrvi\distribution\Altera\Tools_For_Windows\To_install_Quartusil_10_0\

(or you can follow http:\\www.altera.com to download the install files after registration).

Simulation with ModelSim-Altera from Quartus II

2 Launching QuartusII
This document is to be used with Quartusll with external tools for simulation. That is necessary from version 10.0
of QuartuslI.

2.1 New QuartusllI Project

To create new Quartusll project, select menu “File—> Create New Project Wizard”

4, New Project Wizard x|

Directory, Name, Top-Level Entity [page 1 of 5]

“What is the warking directory for this project?
IZ:)’Lahnramiresmva\ﬂnjst _I
‘What is the name of this project?
| fwvalon _sGR1c]

“What is the name of the top-level design entity For this project? This name is case sensitive and must exactly match the entity name in the design File.

| Awalon_sGro [

< Back | Text = I FEinish Cancel

Fig. 1. Create a Quartusll project

NO space or special characters in your project, directory or files names.

26/09/2010 Page |2
Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

#', New Project Wizard x|

Family & Device Settings [page 3 of 5]

Select the Family and device wou want to target For compilation.

—Device Family —Show in "Bvailable devices' list
Eamily: ICYC|D|'"3 Ir =l Package: IFBGA =l

Devices: I""” I~ Pin count: I.ﬂnv x|

—Target device Speed grade: I'c'“"V ll
£ auto device selecked by the Fitter W shov advanced devices
¥ Specific device selected in 'Available devices' list ™ HardCopy compatible anly
 Othery nfa

fvailable devices:

Name Core Yoltage LE= User I/0s Memory Bits Embedded multiplier 9-bit elements PLL G;I
EP2C20F484C6 | 1.2V 18752 315 239616 52 4 16
EPZCZ0F484C7 [1.2Y 18752 315 239616 52 4 16

z 16 4

EPZCZ0F48418 [1.2Y 18752 315 239616 52 4 16 —
EP2C35F484C6 | 1.2V 33216 322 433840 70 4 16
EPZC35F4840C7 [1.2W 33216 322 433540 70 4 16
EPI2C35F484C8 1.2y 23216 222 433840 70 | 4 16 X

4 3
—Companion device

HardZopy: I ;I

I~ Limit DSP & Rt ko HardCopy device resources

< Back I Mext = I Finish Cancel

Fig. 2. FPGA selection

For FPGA4U:

» Cyclone Il family

> EP2C20F484C8 device
For Cyclone Robot:

» Cyclone Family

> EP1C12Q240C8 device
26/09/2010 Page |3

Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

In creating the project, specify the ModelSim-Altera simulation option.

New Project Wizard

EDA Tool Settings [page 4 of 5]

Specify the other EDA tools used with the Quartus I software bo develop vour project,

EDW bools:

Tool Type Tool Mame Formakis) Fun Tool Aukomatically
Design EntryiSynkhesis | <Mone= ;I <Mone: ;I ™ Run this taal automatically ko synthesize the current design
Simulation <Mone> ;I =Momes ;I I™ Run gate-level simulation automatically after compilation
Timing Analysis =hone =Hones ;I T Run this ool automatically after compilation

Active-HOL
Formal Werification Riviera-PRO
Board-Level Mode S “Mones LI

Cuueskasinn =hane = ;l

MCSim

S <Maone = ;I

MIZS M

<M = R
Zuskarm one —I
< Back I Mext = I Finish Cancel
Fig. 3. Simulator selection
Notes:

» Some other external tools could be added here if available.

» ModelSim complete version could be used if licenses are available, but the libraries need to be build in

this case. With ModelSim-Altera, all the libraries are directly available and linked to the tools.

26/09/2010

Page |4

Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

It can be specified later with :

Assignments 2 Settings = EDA Tool Settings = Simulation

Settings - Avalon_SGPIO

Cakegory:

- zEneral

- Files

- Libraries

- Operating Settings and Conditions

- Wolkage
o Temperature

Compilation Process Settings

- Early Timing Estimate
- Incremental Compilation
- Physical Synthesis Optimizations

EDA Tool Settings

- Design Entry/Synthesis
- Timing &nalysis

- Formal Verification

- Board-Lewel

-Analysis & Synthesis Settings

- WHOL Inpuk
- Yerilog HOL Input
- Defaulk Parameters

- Fitker Settings
- Timing Analysis Settings

’ TimeQuest Timing Analyzer
(= Classic Timing Analyzer Settings

o Classic Timing Analyzer Reporting

- Assembler

-~ Diesign Assiskant

-~ SignalTap II Logic Analyzer

- Logic Analyzer Interface

- PowerPlay Power Analyzer Sethings
55N Analyzer

Il -0 x|

Specify options For generating output Files For use with other EDA tools,

Tool name: IModelSim—.ﬂ.Itera

I Run gate-level simulation automatically after compilation

—EDA Metlist \Writer settings

Format For output netlist; I\-'HDL LI Time scale: |100/us

Oukput directory: Isimulation,l'modelsim

u Map ilegal HOL characters [Enable glitch Filkering

i

Options for Power Estimation

[Generate Yalue Change Dump (VCD) file script Scripk Setbinags, ., |

Design instance name: I

More EDVA Metlist \Writer Setkings. .. |

—Mativelink settings

& one

™ Compile kest bench: I

I

Test Benches. ..

= Idse script ko set up simulation: I

™ Script ko compile test bench: I

More Mativelink Settings... |

fesperdes. |
L
L
et |

Reset

Zancel

[o |

Apply

| Help |

Fig. 4. Settings Tool selection for simulation

26/09/2010

Page |5

Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

Tools 2 Options - General 2 EDA Tool Options

allows the specification of the tools path. Assign the ModelSim-Altera directory

&' Dptions

Category:

= iGeneral
- ED Tool Options
- Faonks
= Internet Conneckivity
- Libraries
- License Setup
- Preferred Text Editor
- Processing
= Toolkip Settings
[=]- Messages
- Suppression
- Colors
- Faonks

EDA Tool Options

Specify the location of the tool executable for each third-party EDA bool:

ED Tool

Location of Executable

LeonardoSpeckrum

Precision Svnthesis

Synplify

Synplify Pro

Active-HDL

Riviera-PRO

ModelSim

CQueskasim

ModelSim-alkera

S

™ Use Nativelink with a SynplifyfSynplify Pro node-locked license

I ancel Help |

Fig. 5. Eda Tools path

3 Program example to start

A very simple parallel port with direction programmable for each bit is
created for the Avalon slave bus.

File 2 New - Design Files 2 VHDL File

[New x|

- Mew Quartus I Project
i S0P Builder System
[Design Files

- BHOL File

- Block Diagram{Schematic File
- EDIF File

- State Machine File

- Systemverilog HOL File

- Tl Scripk File

- Yerilog HOL File
- Memory Files

P Hexadecimal {Intel-Format) File

Memory Initialization File

[Werification/Debugging Files

- In-Syskem Sources and Probes File
- Logic Analyzer Interface File

-~ SignalTap II Logic Analyzer File
[} Other Files

- BHOL Include File

- Block Symbol File

- Chain Description File

- Synopsys Design Constraints File
- et File

OF I Cancel Help |

Fig. 6. Create VHDL File

26/09/2010

Page |6

Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

-- Design of a simple parallel port
-- Avalon slave unit

-- Parallel Port with programmable direction bit by bit on 8 bits

-- 3 address:

0: data

1: direction 0: input (reset state), 1: output
2: read data pin Read only

LIBRARY ieee;
USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY Avalon_SGPIO 1S

PORT(

Clk : IN std_logic;

nReset : IN std_logic;

CSs : IN std_logic;

Rd : IN std_logic;

Wr : IN std_logic;

RDData : OUT std_logic_vector (7 DOWNTO 0);
WRData : IN std_logic_vector (7 DOWNTO 0);
Adr : IN std_logic_vector (1 DOWNTO 0);
PortP : INOUT std_logic_vector (7 DOWNTO 0)

)
END Avalon_SGPIO ;

ARCHITECTURE bhv OF Avalon_SGPIO IS

signal iRegPort : std_logic_vector (7 DOWNTO 0);

signal iRegDir : std_logic_vector (7 DOWNTO 0);

signal iRegPin : std_logic_vector (7 DOWNTO 0);
BEGIN

-- internal registers
-- internal registers
-- Driver for reading pin value

-- Process to write internal registers through Avalon bus interface

-- Synchronous access in rising_edge of clk

-- Addresses allows to select write registers if CS and Wr activated

WrReg: -- Write by Avalon slave access
Process(Clk, nReset)
Begin
if nReset = "0" then
iRegDir <= (others => "0"); -- input at reset
iRegPort <= (others => "0"); -- Port value = 0 at reset
elsif rising_edge(Clk) then
IT (CS = "1") and (Wr = "17) then
case Adr is
when 00" =>
iRegPort <= WRData;
When "01" =>
iRegDir <= WRData;
When others =>
null;
End case;
End if;
End if ;
end process WrReg ;
26/09/2010 Page |7

Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

-- interfal buffer for reading external pin value
iRegPin <= PortP; -- Parallel Port direct access

-- Process to read the different sources of data by the Avalon bus interface
-- could be sometimes better with synchronous access on rising_edge of clk with 1 wait cycle

RdReg: -- Read by Avalon slave access
Process(CS, Rd, Adr, iRegPort, iRegDir, iRegPin)
Begin

RDData <= (others => "0%);
IT (CS = "1") and (Rd = "17") then
case Adr is
when 00" =>
RDData <= iRegPort ;
when 01" =>
RDData <= iRegDir ;
when 10" =>
RDData <= iRegPin;
When others =>
RDData <= (others => "0%);
End case;
End if;
End process RdReg;

-- Process to control the buffer output for external output accesses or selecting input direction
-- and putting the output in Z (tri-state) state

PortloO: -- Effect on Parallel port
process(iRegPort, iRegDir)
begin

for 1 in O to 7 loop
if IRegDir(i) = "1" then
PortP(i) <= iRegPort(i);
else
PortP(i) <= "Z°;
end if;
End loop;
end process;

END bhv;

The file can then be compiled:
Processing = Start compilation or click the 2l 8

If there are no error the design can be simulated.

26/09/2010 Page |8
Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

4 Simulation

4.1 Preparation to simulation
The simulator ModelSim-Altera can be launched from Quartusll in 2 modes:

» RTL simulation, without real delay, only functional simulation
> Gate level simulation, can have “real” delay from place and route timing generation

A file with .sdo extension is created after compilation in Quartusll and contains the delay from technology and
place & route. It is necessary to specify it in ModelSim to have gate level delay.

In ModelSim:

Simulate -2 Start Simulation = SDF =2 Add... and search in your project_directory\simulation\xxx.sdo

Iﬁj‘Start Simulation entré
Design] YHDL] Yerilog] Libraries ~ SDF I COthers]
5DF Files Select SDF file 2 x]
ﬁ'ndd Sd Regarder dans Ib rnadelzim j = E‘F e
—3DF File gate_work
rEl_work
—_— Avalon_SGPIO_whd.sdo
L Apply ko Regior
~aDF Opkions: | |/
[Disable ¢
[~ Reduce

Marn du fichier : I j Ouperie
Fichiers de type ISDF Files [* sdf.* sda] J Annuler /l
2

o [[T

Fig. 7. Specify timing information

To open the simulation file, Open in the navigator windows the work library and select the architecture of the
entity to simulate.

26/09/2010 Page |9
Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

]S

[l Librarsy

Mame Tvpe Path
—j]l‘ll vk, Library qgate_work,
=HE] avalon_sgpio Enkity Z:\Laboratoiresfu:

| structure

Architecture

1.—ﬂjl gake_wiark,
1.—ﬂjl rtl_wiork
+HlL 2z0madel

Nl arienmdal e

Fig. 8.

4.2 Signals to simulate

Library Z:[Laborataoires) vz
Library Z:[Laborataoires)fw:
Library $MODEL_TECH), .Ja
ik = Y Tt g] TS e

File to simulate

You select from the object windows all the signals to simulate and drag and drop on the Wave windows. If the

Wave window is not displayed, select them from View = Wave

File Edit view Compile Simulate Add Objects Tools Layout ‘Window Help

7] ModelSim ALTERA STARTER EDITION 6.5¢

g -0 x|

& HE T TEEREECE]
@] 4 e 1EF 00 pe 2 ELEIELRE D B TR B | %0% ol m % H Lvout [srmuiate Wl
EEEE I EE
Es\m Bt
dlnstancs
+ Yado]~Ty
:—. \Partp[0]~T), cyclaneii_ia. ..
:—. \PartP[1]~} cycloneii_io... At
:—. \PartP[2]~T), cycloneii_io... At
:—. \PartP[3]~T), cycloneii_io... At
:—. \PartP[4]~T), cycloneii_io... At
:—. \PartP[5]~T), cycloneii_io... At
:—. \PartP&]~ cycloneii_io... At (IS
:—. \PartP[7]~T), cycloneii_io... At a
:—. Wl cycloneii_io... At
- ke, cycloneii_cl... Ar
:—. \WRData[O]~T} cycloneii_io... At
:—. \nReset~T} cycloneii_io... At
:—. \nReseteclketrl, cycloneii_d... At
:—. \freeT} cycloneii_io... At
:—. WCS~TY cycloneii_io... At
I W Ad1]-Ty cycloneii_io... &t
; VRegPort[7]~0| cyclaneiilc... & ?
- WRegPortlD]| cyconsi_k... 0 2
_+r W iRedDir[Fl~0% cycloneii_lc,. At >
_+r W YiRegDir0]} cyclonsii_lc,,. A >
_+r W "WRData[1]~I cycloneiiio... At >
_+r W tiRegPort[1]} cyclonsii_lc,,. A rY
_+r W VRegDi 1]} cyclonsii_lc,,. A >
_+r W "WRData[2]~IY cyclonei_io.. At >
_+r W tiRregPort[2]} cycloneii_lc... A Y
_+r W YiRegDir2]} cycloneii_lc... A Y
_+r W "WRData[3]~IY cyclonei_io... At >
LI iR eaPartT T Fwelansi e ‘
ol | =
i terary | & sm S N |
l Transcript
Loading cycloneii.cycloneii_asynch_io(behave) ;I
Loading cycloneii.cycloneii_clketrl(wvital clkctrl)
Loading cycloneii.cycloneii ena reg{behave)
Loading cycloneii.cycloneii leell comb(wital lcell comhb)
Loading cycloneii.cycloneii_lcell £f(wital lcell f£F)
Loading cycloneil.cycloneii_andl (altwital)
WSIM 3 =
MNow: 0ps Delea: 0 |sim:,iava\on75gpm 4

Fig. 9.

ModelSim windows

With commands from Modelsim it is possible to simulate the design.

26/09/2010 Page |10

Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

Some useful commands:

> restart
force -r 20ns, clk 0, 1 10ns
run xx

force nreset 1 10ns, 0 100ns, 1 200ns

vV Vv ¥V V

force -deposit sim:/avalon_sgpio/portp LHLHLHLH 100ns

#clear timing diagram and reload SDF files, put timing at 0
#force the clk signal with a repeat periode of 20ns, 0 now and 1 at 10ns

#run for xx time ex: 200ns, all initialized values are in RED as U or X

specify the level and when to put it

just put the signal, but can be modified
by the simulation result

The commands can be send through the commands windows or from a script file. In this case it has the .do

extension.

Example that can be put in a xxx.do Ffile:

To run it: do xxx.do

restart

force -r 20ns, clk 0, 1 10ns
force nreset 1 10ns, O 100ns,
run 200 ns

force rd O

force cs 1, 0 40ns, 1 80ns
force wr 1, 0 40ns, 1 80ns
force -freeze sim:/avalon_sgpio/wrdata 11110000 O
force -freeze sim:/avalon_sgpio/Zadr 00 O

force -deposit sim:/avalon_sgpio/portp LHLHLHLH 100ns
run 200ns

force cs 1, 0 40ns, 1 80ns

force wr 1, 0 40ns, 1 80ns

force -freeze sim:/avalon_sgpio/wrdata 00111100 O
force -freeze sim:/avalon_sgpio/adr 01 O

run 200ns

force -deposit sim:/avalon_sgpio/portp 222727777 0O

run 100ns

1 200ns

4.3 Simulation by Test bench

A testbench can be written in VHDL. This VHDL doesn’t needs to be synthesizable and can contain WAIT UNTIL
structure. This means that it is possible to wait on some signals activation before continuing the simulation.

Testbench —p Component
. —>
signals —» Device Under Test (DUT))
Fig. 10. Testbench structure
26/09/2010 Page |11

Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

The simulation VHDL program can be seen as a sequential suite of instructions to execute.

A testbench contains the sequence of events to send to the tested module inferred as a component. Structural
connection is done in the main structure to the component through port map.

An example is provided with a package and his body package with 2 procedures:
- awrite procedure simulating a simplified Avalon slave write transfer: WrBus
- aread procedure simulating a simplified Avalon slave read transfer: RdBus

A procedure is like a process and executed sequentially. Parameters can be passed as signal or constant values.

Put the 2 files in the active directory where the tested architecture is. This is the work library place.

4.3.1 A Package to help Avalon access for test bench
2 procedures are provided to simulate Read and Write Access as Avalon slave.

The procedures are proposed under the ways of a package and a package body.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

PACKAGE CycleAvalon 1S

-- Procedures

-- need to be adapted depending on address bus size and data size
-- Access by Avalon bus --> FPGA for simulation
procedure WrBus(

sAdresse - IN STD_LOGIC_VECTOR (31 downto 0); -- provide the address to read the data
sDhata : IN STD_LOGIC_VECTOR (31 downto 0); -- provide the data to read

SIGNAL Address : OUT STD_LOGIC_VECTOR (2 downto 0); -- Generated address for module

SIGNAL WriteData : OUT STD_LOGIC_VECTOR (7 downto 0); -- data write to module to test

SIGNAL Clk : IN STD_LOGIC; -- clk generated in a process at tb level
SIGNAL ChipSelect : OUT STD_LOGIC; -- Avalon CS signal generated

SIGNAL Write : OUT STD_LOGIC; -- Avalon Write signal generated

SIGNAL Read : OUT STD_LOGIC; -- Avalon Read signal generated

SIGNAL nBE : OUT STD_LOGIC_VECTOR (3 downto 0); -- nBE generated

NbWait, NbSetUp, NbHold : IN integer range O TO 20; -- constant values for write timing
SIGNAL WaitRequest : IN STD_LOGIC -- WaitRequest from another process

);

-- need to be adapted depending on address bus size and data size
-- Access by Avalon bus --> FPGA for simulation

-- Reading

procedure RdBus(
sAdresse : IN STD_LOGIC_VECTOR (31 downto 0);
SIGNAL sData : OUT STD_LOGIC_VECTOR (31 downto 0);
SIGNAL Address : OUT STD_LOGIC_VECTOR (2 downto 0);
SIGNAL ReadData : IN STD_LOGIC_VECTOR (7 downto 0);
SIGNAL Clk : IN STD_LOGIC;
SIGNAL ChipSelect : OUT STD_LOGIC;
SIGNAL Write : OUT STD_LOGIC;

26/09/2010 Page |12

Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

SIGNAL
SIGNAL
NbWait

Read
nBE
, NbSetUp

: OUT STD_LOGIC;
: OUT STD_LOGIC_VECTOR (3 downto 0);

SIGNAL WaitRequest

):
END Cycle

Avalon;

IN integer range O TO 20;

IN STD_LOGIC

4.3.2 Body package:
And the implementation in a body package.

LIBRARY S

TD;

USE STD.TEXTI0O.all;

LIBRARY i

eee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

PACKAGE BODY CycleAvalon 1S

-- delay
constant
constant
constant
constant
constant
constant

-- Proced
-- Access
procedure
sAdres
sData
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL

for simulation Avalon cycle

tAD : TIME :
tCS - TIME :
tba : TIME :
tWR : TIME :
tRD : TIME :
tBE : TIME :
ures

by Avalon
WrBus(
se

Address
WriteData
Clk
ChipSelect
Write

Read

nBE

ns;
ns;
ns;
ns;
ns;

g o g o g o

ns;

--> FPGA

NbWait, NbSetUp, NbHold
SIGNAL WaitRequest

) is

for simulation

IN STD_LOGIC_VECTOR (31 downto 0);
- IN STD_LOGIC_VECTOR (31 downto 0);
: OUT STD_LOGIC_VECTOR (2 downto 0);
: OUT STD_LOGIC_VECTOR (7 downto 0);
: IN STD_LOGIC;
: OUT STD_LOGIC;
: OUT STD_LOGIC;
: OUT STD_LOGIC;
: OUT STD_LOGIC_VECTOR (3 downto 0);

IN integer range 0 TO 20;

IN STD_LOGIC

-- simulation simple write cycle
-- WrBus (CONV_STD_LOGIC_VECTOR(X'00001,20), CONV_STD_LOGIC_VECTOR(X"1234",16), ..)

begin
Address(2 downto 0) <= sAdresse(2 downto 0) after tAD;
WriteData(7 downto 0) <= sData(7 downto 0) after tDa;
nBE <= '"'0000" after tBE;
ChipSelect <= "1° after tCS;
Write <= "0";
Read <= "0* after tRD;
26/09/2010 Page |13

Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

for i in O to NbSetUp loop

wait until Clk = "0%; -- attend flanc descendant Clk

wait until Clk = "1°%; -- attend flanc montant CIk
end loop;

Write <= "1° after tWR;

wait until Clk = "0";
wait until Clk = "1%;
for i in O to NbWwait loop
wait until Clk = "0%;
wait until Clk = "17;

end loop;
wait until WaitRequest = "0"; —-- attend quittance
Write <= "0* after tWR;

for i in O to NbHold loop
wait until Clk = "0%;
wait until Clk = "17;

end loop;
nBE <= "1111" after tWR;
ChipSelect <= "0¢ after tCS;
Read <= "0* after tRD;
end WrBus;
-- Reading
procedure RdBus(
sAdresse : IN STD_LOGIC_VECTOR (31 downto 0);
Signal sData : OUT STD_LOGIC_VECTOR (31 downto 0);
SIGNAL Address : OUT STD_LOGIC_VECTOR (2 downto 0);
SIGNAL ReadData : IN STD_LOGIC_VECTOR (7 downto 0);
SIGNAL Clk = IN STD_LOGIC;
SIGNAL ChipSelect : OUT STD_LOGIC;
SIGNAL Write : OUT STD_LOGIC;
SIGNAL Read : OUT STD_LOGIC;
SIGNAL nBE : OUT STD_LOGIC_VECTOR (3 downto 0);
NbWait, NbSetUp : IN integer range 0 TO 20;
SIGNAL WaitRequest : IN STD_LOGIC
) is

-- simulation simple reading cycle

-- RdBus (CONV_STD_LOGIC_VECTOR(X'00001,20), CONV_STD_LOGIC_VECTOR(X'1234',16), ..
begin
Address(2 downto 0) <= sAdresse(2 downto 0) after tAD;
nBE <= "0000" after tBE;
ChipSelect <= "1°¢ after tCS;
Write <= "0°;
Read <= "0* after tRD;
for 1 Iin O to NbSetUp loop
wait until Clk = "0%; -- wait falling edge Clk
wait until Clk = "1%; -- wait rising edge Clk
end loop;
26/09/2010 Page |14

Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

Read <= "1" after tWR;
for i in O to NbWwait loop
wait until Clk = "0";

wait until Clk = "1%;

end loop;
wait until WaitRequest = "0"; -- wait Acknowledge
nBE <= ""1111" after tWR;
ChipSelect <= "0* after tCS;
Read <= "0* after tRD;

sbata(7 downto 0) <= ReadData(7 downto 0);
shbata(31 downto 8) <= (others => "0%);
end RdBus;

END CycleAvalon;

4.3.3 TestBench
The tesbench itself provides processes:

e forclk generation,
e nReset activation/deactivation
e call to the procedures executed in simulation mode only

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

LIBRARY std;
USE std.textio.all;

LIBRARY work;
USE work.CycleAvalon.all;

entity testbench is

-- Nothing as input/output
end testbench;

ARCHITECTURE bhv OF testbench IS
-- The system to test under simulation

component ParallelPort is

Port (

CIk : in std_logic;

nReset : in std_logic;

Address : in std_logic_vector(2 downto 0);
ChipSelect : in std_logic;

Read : in std_logic;

Write : in std_logic;

ReadData : OUT std_logic_vector (7 DOWNTO 0);
WriteData : IN std_logic_vector (7 DOWNTO 0);
ParPort : INOUT std_logic_vector (7 DOWNTO 0)
)

end component;

-- The interconnection signals:

26/09/2010 Page |15
Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

signal Clk : std_logic;
signal nReset : std_logic;
signal Address : std_logic_vector(2 downto 0);
signal ChipSelect : std_logic;
signal Read : std_logic;
signal Write : std_logic;
signal nBE : std_logic_vector(3 downto 0);
signal WaitRequest : std_logic;
signal ReadData : std_logic_vector (7 DOWNTO 0);
signal SReadData : std_logic_vector (31 DOWNTO 0);
signal WriteData : std_logic_vector (7 DOWNTO 0);
signal ParPort : std_logic_vector (7 DOWNTO 0);
constant HalfPeriod : TIME := 10 ns; -- 50 MHz -> 20ns/2 -> 10 ns
BEGIN
DUT : ParallelPort -- Component to Test as Device Under Test
Port MAP(
Clk => Clk, -- from component => signals in the architecture
nReset => nReset,
Address => Address,
ChipSelect => ChipSelect,
Read => Read,
Write => Write,
ReadData => ReadData,
WriteData => WriteData,
ParPort => ParPort
)

-- All Byte Enable al
nBE <= "'0000";

-- Reset activation,
reset_process :
process
begin
nReset <= "0°;
wait for 50 ns;
nReset <= "17;
wait for 10 us;
end process;

ways activated (in this test)

active low pulse of 50ns every 10us

-- to repeat the cycle again and again at 10 us intervalle

-- Clock generation for all simulation time

clk_process :
process

begin

clk <= "0";

wait for HalfPeriod;

clk <= "1°7;

wait for HalfPeriod;

end process;

-- WaitRequest generation by a parallel process, start counting clock cycle when ChipSelect activated

26/09/2010

Page | 16
Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

waitreq_process:
process
begin
wait until ChipSelect = "1%;
WaitRequest <= "17;
wait for 10*HalfPeriod; -- 5 Clock cycle with WaitRequest activated
wait until Clk = "1%;
WaitRequest <= "07;
end process;

-- Bus acces to initialize the GPIO and use it
read_write:

PROCESS
BEGIN
wait for 50 ns;
loop
ParPort <= "Z7777777''; -- external state Z
WrBus (X'00000000", X'"OOOOOOFF" , Address, WriteData, Clk, ChipSelect, Write, Read,
nBE,1,1,1,WaitRequest); -- Write OxFF @addresse 0, with 1 setup time, 1 wait and 1 hold

wait for 50 ns;

RdBus (X'00000000", SReadData , Address, ReadData, Clk, ChipSelect, Write, Read, nBE,1,1,
WaitRequest); -- Read @addresse 0, with 1 setup time and 1 wait

wait for 50 ns;

WrBus (X'00000002*, X'0000009b* , Address, WriteData, Clk, ChipSelect, Write, Read, nBE,1,1,0,
WaitRequest); -- Write Ox9B @addresse 2, with 1 setup time, 1 wait and O hold

wait for 50 ns;

RdBus (X''00000002", SReadData , Address, ReadData, Clk, ChipSelect, Write, Read, nBE,1,1,
WaitRequest);

wait for 50 ns;

WrBus (X'"00000000"", X'00000000" , Address, WriteData, Clk, ChipSelect, Write, Read, nBE,1,1,1,
WaitRequest);

wait for 50 ns;

RdBus (X''00000000", SReadData , Address, ReadData, Clk, ChipSelect, Write, Read, nBE,1,1,
WaitRequest);

wait for 50 ns;
ParPort <= x"7d";

RdBus (X'00000001", SReadData , Address, ReadData, Clk, ChipSelect, Write, Read, nBE,1,1,
WaitRequest);

wait for 50 ns;
end loop;
END PROCESS;

END bhv;

The test needs to be adapted to the different unit to test on Avalon slave and the tesbend is easy to change.

With the assert test it is easy to verify if an answer is correct:

Syntaxe :
ASSERT condition -- Boolean condition
[REPORT “string”] -- if not correct, condition wrong, display the string
[SEVERITY severity_level]; -- with the severity_level indicated

with TYPE severity level IS (note, warning, error, failure);

With the assert condition it is necessary that the developer knows the result of the test !! Yes !

26/09/2010 Page |17
Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

26/09/2010 Page |18
Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

Sommaire
1 Installation and dOCUMENTAtION.......ciiiiiiiii ettt et e e st e e s abe e sbeeesabe e sabeesabeesbaeesabeesareenns 1
D I TU] ol Yo @ T =Y U1 | SRR 2
2.1 NN O (U E [{ U K] | = o Y=L ot A PP U 2
3 Program €XaMPIE T0 STAI ...ueeiicuiieeiiciiee e ceieee e ettt e e ettt e e ettt e e e tte e e e ettaeeeeaataeeesbteeeeanbaeeesantaeeeabteeeeataeeeeanraeeeaaree sares 6
Y 14101) o To o E U PP U PP ORURRUSRPRPRON 9
4.1 Preparation t0 SIMUIATION.......cii e e e tre e e e ree e e e ate e e e ebte e e esabaeesenteeeennnees 9
4.2 YT e{a = R (o I 4[] =1 o USSP 10
4.3 SIMUIAtioN DY TESE DENCN «.eeeieee e e e e rtee e et e e e e bae e e eabee e e eanees 11
4.3.1 A Package to help Avalon access for test BENCHcoociiiiiiiiii e 12
e T A - To Yo LV o - 1ol - - LU 13
A.3.3 TESEBENCN .ottt et b e bbb e en tere e beenes 15
I o =W TSR 20
26/09/2010 Page |19

Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

Simulation with ModelSim-Altera from Quartus II

Liste of Figures

Fig. 1. Create @ QUATTUSHE PrOJECTE ...t e e ee e e e e e eeeeeeee e e s e s e s e s e s e e e e eeeeeeaaeaeeaeeseaeaaaaees 2
Fig. 2. [G XY= =T a To] o IS 3
Fig. 3. YT g 101 oY gty =1 1= ox o) o ISR 4
Fig. 4. Settings Tool selection for SIMUIAtIoNuiiiii i e ae e 5
Fig. 5. o T oo KN o - o 1S 6
Fig. 6. CrEate VHDL FilE . .neieiiieeee ettt ettt e e e e e e e e e e e e e e e s bataeeaaeeeessseaaeeaaseeanstasaeeeaeasasnsees sennnrrnns 6
Fig. 7. Specify timINg INFOrMAtioN ...cccceeee e e e e e e et re e e e e e e e anbea e e e e e e sennnraaees 9
Fig. 8. 11 (oI [0 (U1 - | USSR 10
Fig. 9. VoY o F=] YT o TRV T o T Lo LY USSP 10
o= O R 1Y o o Y=Y o Tl g T U Lot U RSP 11
26/09/2010 Page |20

Z:\Laboratoires\UsingQuartusll_ModelSim_v0.5.docx

	1 Installation and documentation
	2 Launching QuartusII
	2.1 New QuartusII Project

	3 Program example to start
	4 Simulation
	4.1 Preparation to simulation
	4.2 Signals to simulate
	4.3 Simulation by Test bench
	4.3.1 A Package to help Avalon access for test bench
	4.3.2 Body package:
	4.3.3 TestBench

	Liste of Figures

