
Tutorial 5: Chemostat & Kinetic parameters

(From Sirous Ebrahimi) Provide an Excel file with PDF version.

SHARE TOGETHER and again, use intensively the Moodle forum!

5.1. Chemostat study (8:1+3+2+2)

Considering a chemostat bioreactor running an aerobic heterotrophic growth at steady state:

- 1. What may cause the lower out-flow rate
- 2. Calculate **D**, **r**x, **r**s, μ , **q**s, **Y**sx obs (observed) and units (use mass balances and check μ in front of D)
- 3. Cs, in is changed from 20 g/l to 40 g/l at the same flow rate! A new steady state is achieved. What is the new Cs?
- 4. Calculate the new Cx. What are the new μ (qx), qs, rx, rs, rx, Ysx obs?

Note: In the present case, the residual substrate Cs is high enough to neglect maintenance in front of the growth.

5.2. Chemostat study of Saccharomyces cerevisiae (15: 4+2+4+5)

The yeast *Saccharomyces cerevisiae* is studied. A chemostat, V = 1.5 L, is fed with a glucose medium (with C_{S,in}= 20000 mg/L) at different flow rates.

It can be assumed that in- and out-flow are the same. The following concentrations of glucose (Substrates $C_{Sin} \& C_S$), biomass (C_X) and ethanol (Product C_E) are found.

φ _L l/h	C _{Sin} mgS/L	Cs mgS/L	C _X gX/L	C _E gE/L
0.015	19780	1.2	5.0	0
0.060	20035	3	8.0	0
0.30	19990	16	9.5	0
0.33	20005	22	8.3	1.5
0.60	20120	180	5.3	5.3

a) Calculate Dilution rate D, the volumetric rates r_i, the specific rates q_i and the yields for biomass observed yields Ysx, substrate and YsE product. Note: Be aware of Cs unit.

фL	D	C _{Sin}	Cs	Cx	CE	r _X	-r _S	r _E	μ			Y _{sx}	Y _{SE}
L/hr	1/hr	mgS/L	mgS/L	gX/L			gS /(L.hr)	gE/ (L.hr)	1/hr	gS/ (gX.hr)	gS/ (gX.hr)	gx/gs	g⊧⁄gs
0.015													
0.06													
0.3													
0.33													
0.6													

b) Plot these states variables C_X , C_S and C_{Eth} , volumetric rates \mathbf{r}_i , specific rates \mathbf{q}_i on 3 charts vs D.

Notice that it seems that there are 2 regions of dilution rate which show 2 biokinetic behaviors according the applied dilution rate D which fix the substrate residual concentration $C_{S...}$ Try understanding and explain the biomass behavior in each phase.

- c) On the 3 first experimental data points, perform an estimation of the biological kinetic parameters:
 - Y_{SX}^{max} , m_S by using Herbert-Pirt Equation
 - qs^{max}, Ks by using the Hanes-Wolf linearization
- d) Determine Y_{SE}^{max} (yield of Ethanol production over Substrate) to fully reproduce observed q_s values with Herbert-Pirt Extended q_s expression.

Calculate q_s consumed susbtrate for Ethanol production, from TOTAL q_s consumption, MINUS consumption due to the biomass growth Herbert-Pirt Eq. (non catabolic) (with Y_{SX}^{max} , m_S). It allows to compute $Y_{SEt}h^{max}$ from $q_{SEth}=1/Y_{SE}^{max}$. q_E

Plot Observed q_s and Extended Herbert-Pirt q_s values as your auto-checking.