Measuring systems

Problem set n°12

Comparison of measured data

Exercise 1 (Noise due to capacitive coupling)

A signal of bandwidth B_p perturbs a stationary voltage by capacitive coupling, which we want to measure. The signal is then passed through a low-pass filter. We measure the effective value of the desired signal before filtering ($U_{b,A}$, with N_A samples) and after filtering (U_{b,B_b} with N_B samples). Does filtering reduce the noise significantly (risk of error α)?

Numeric data:

$$B_p \in [0.5; 100 \ kHz]$$
 $\alpha = 1 \%_0$ $U_{b,A} = 10 \ \mu V$ $U_{b,B} = 3 \ \mu V$ $N_A = 10$ $N_B = 20$

Exercise 2 (Asymmetric amplifier)

We want to amplify a stationary voltage U (value known a priori) using an asymmetric amplifier with gain A that generates a noise Φ_n with bandwidth B_n in output (values provided by the manufacturer). Moreover, the temperature interferes on the output offset of the amplifier as a consequence of $\varepsilon_{\Delta T}$ (reference temperature T_{ref} of 25 °C). We measure this output voltage with a voltmeter, which provides a signal averaged over N values.

- a) Calculate the average experimental voltage as a function of temperature and the standard deviation of the output voltage.
- b) What is the appropriate temperature range if we want to prove that the offset is not a systematic error with an error risk α ?

Numerical data:

$$\Phi_n = 100 \ \mu V / \sqrt{Hz}$$

$$A = 60 \ dB$$

$$B_n = [0; 100 \ kHz]$$

$$V = 1 \ mV$$

$$\varepsilon_{\Delta T} = 0.3 \ mV / {}^{\circ}C$$