

Bioprocesses → **Bioreactors**

The job to be done:Design and operate Bioprocesses towards best
efficiency and productivity, at minimal cost!

For achieve best efficiency or productivity [kgP.m⁻³.d⁻¹]:

- Optimal Biomass (active one)
- Optimal Operation allowing highest kinetics for growth (production)
- Designing optimal feeding profile
- Optimize required transports of substrates/products (transport processes)
- Scaling up optimization for biggest reactors avoiding transport processes limitation...

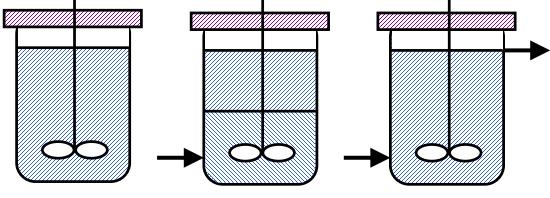
Such bioprocesses are operated in bioreactors, which are reactors where microbial growth and product formation occur.

 \rightarrow What about bioreactors...

From previous kinetic theory of specific rates \mathbf{q}_i :

- q_s (or) μ completely determines the microbial behavior
- q_S (or) μ must be controlled at an **optimal value** μ_{opt}

Generic type of process bioreactors:

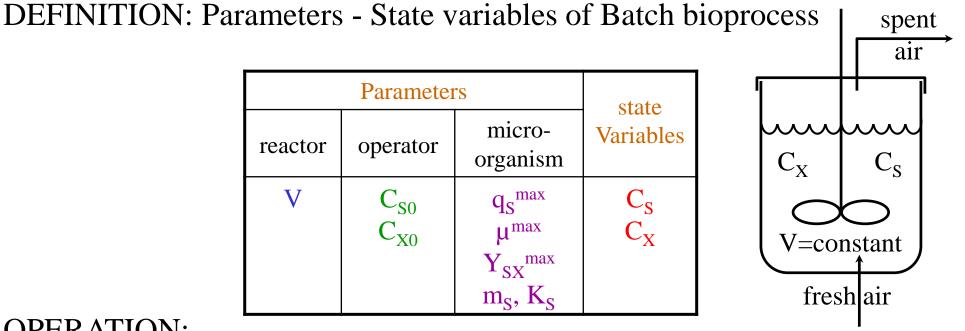


Batch	Fed batch	
2-12 days	1-3 days	(' 1
Industry	Industry	T

Continuous (Chemostat) 0 - 100 days Laboratory

1. Batch $\mu = \mu^{max}$ and $q_S = q_S^{max} \rightarrow \mu$ is not controlled2. Chemostat μ can be controlled as $\mu = D$ (Dilution rate) at μ^{opt} 3. Fed batch r_S is controlled by (C_S and inflow)

Batch process (1)



OPERATION:

- 1. Add growth medium solution (sterilized?): Substrate with initial concentration C_{S0} , N- and P-source, K⁺, Mg²⁺, salts, nutrients, vitamins, trace elements and chosen T, pH
- 2. Add electron acceptor (O_2 , NO_3^- , etc).
- 3. Add (inoculum) micro-organism, C_{X0}

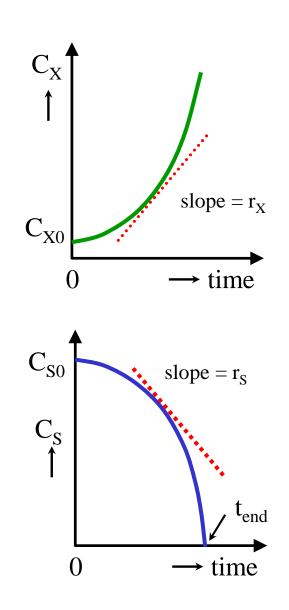
 \rightarrow t = 0; Biomass= C_{X0} and Substrate = C_{S0}

Batch process (2)

DYNAMIC of the state variables. How will C_S and C_X change with time? Using of mass balances...

For Biomass C_X : $\frac{d(C_X V)}{dt} = \overline{\text{transport-of-biomass}} + r_X V$ $V = \text{cst} \rightarrow r_X = \frac{dC_X}{dt} = \text{slope}$ For Substrate C_S : $\frac{d(C_S V)}{dt} = \overline{\text{transport-of-biomass}} + r_S V$

$$V = cst \rightarrow r_s = \frac{dC_s}{dt} = slope$$



DYNAMIC of the state variables from mass balances As $\mu \approx \mu^{\max} = \mathbf{cst}$, and $\mathbf{q}_{\mathbf{S}} \approx \mathbf{q}_{\mathbf{S}}^{\max} = \mathbf{cst}$, as $\mathbf{C}_{\mathbf{S}}$ is high. At t = 0, biomass = $\mathbf{C}_{\mathbf{X0}}$, substrate = $\mathbf{C}_{\mathbf{S0}}$.

For Biomass
$$C_X$$
: $r_X = \mu C_X \rightarrow \frac{dC_X}{dt} = \mu^{\text{max}} C_X$

→ Exponential Growth

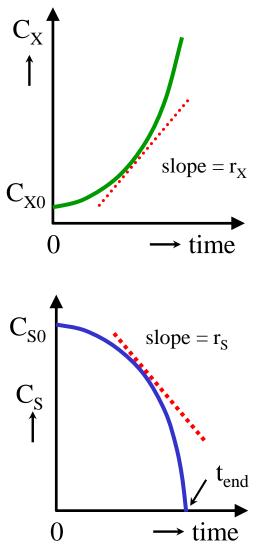
For Substrate C_S:
$$r_s = q_s C_x \rightarrow \frac{dC_s}{dt} = -q_s^{\max} C_x$$

$$\frac{dC_s}{dt} = -q_s^{\max}C_{x0}\exp(\mu^{\max}t)$$

 $C_x = C_{x0} \exp(\mu^{\max})$

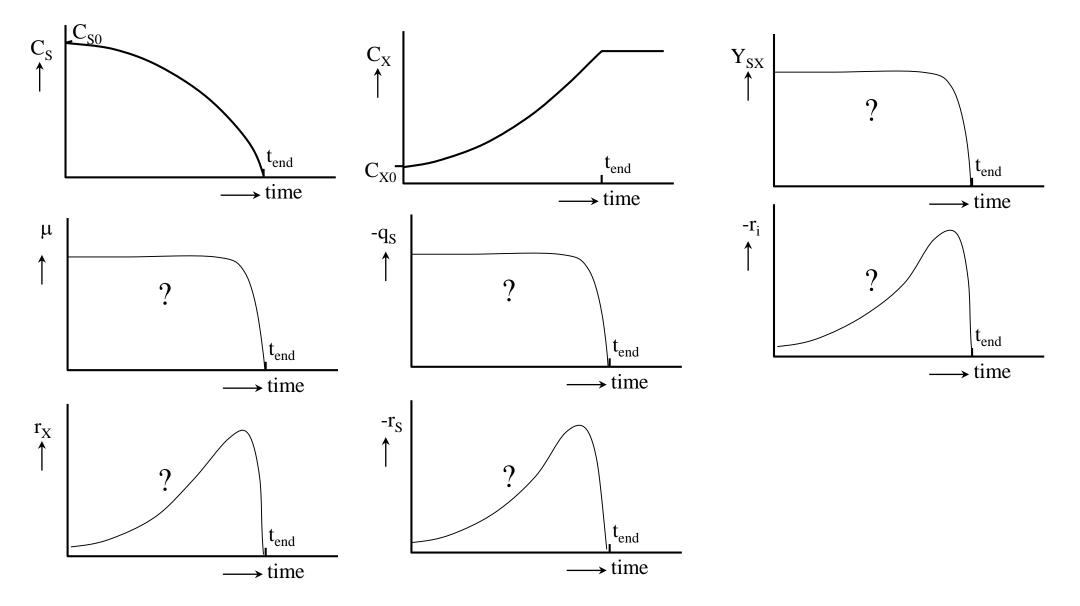
$$\boldsymbol{C}_{\boldsymbol{S}0} - \boldsymbol{C}_{\boldsymbol{S}} = \frac{\boldsymbol{q}_{\boldsymbol{S}}^{\max}}{\boldsymbol{\mu}^{\max}} \boldsymbol{C}_{\boldsymbol{X}0} \left[\exp(\boldsymbol{\mu}^{\max} \boldsymbol{t}) - 1 \right]_{P\left(\frac{1}{a}e^{i\boldsymbol{x}}\right) - \left[e^{i\boldsymbol{x}}\right]_{a}^{*}}$$

 \rightarrow t_{end} can be determined with C_S = 0!



BE

Batch process (Results)



BE

Batch process (Comments)

Batch bioprocess, under non limiting conditions (substrate), μ , Y_{SX} and q_S are constant $\rightarrow \mu^{max}$, Y_{SX}^{max} , q_S^{max} . This occur during Exponential Growth phase (and only during this phase!!!)

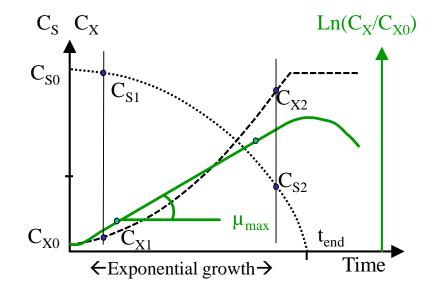
Microbiological biokinetic model parameters are easily determined by combining the exponential equation with C_S and C_X data versus time

$$\boldsymbol{C}_{x} = \boldsymbol{C}_{x0} \exp(\mu^{\max} t)$$

During Exponential Growth phase (only!)

$$\mu^{\text{max}} = \text{slope In} \begin{pmatrix} C_x \\ C_{x0} \end{pmatrix}$$

$$\mathbf{Y}_{sx} \approx \mathbf{Y}_{sx}^{\max} = \frac{\mathbf{C}_{\mathbf{X}2} - \mathbf{C}_{\mathbf{X}1}}{\mathbf{C}_{\mathbf{S}1} - \mathbf{C}_{\mathbf{S}2}}$$



→ But μ , the most important rate (Herbert-Pirt Eq.) can not be controlled in batch bioprocess!

Sampling of a bioprocess to access C_S and C_X . Once sampled, what behavior? - C_X does not significantly change within minutes

- But C_S may strongly drop within minutes according q_S

 C_{SR} is the Residual Substrate of the bioprocess to be measured. The sample tube can be considered as a batch bioreactor (V = cst, No transport). From substrate mass balance:

With
$$t = 0$$
; $C_{S} = C_{SR}$; $q_{S}^{max} = \text{cst}$; $C_{X} = \text{cst}$
Assuming
 $K_{S} = 20 \ 10{\text{-}}3 \ [\text{gS.L}^{-1}]$
 $q_{S}^{max} = 1*10^{-3} \ [\text{gS.gX}^{-1}.\text{s}^{-1}]$
 $C_{X} = 3.5 \ [\text{gX.L}^{-1}]$
 $C_{SR} = 20.10{\text{-}}3 \ [\text{gS.L}^{-1}]$
 $C_{SR} = 20.10{\text{-}}3 \$

 \rightarrow How to prevent this ?

TT 7' 1