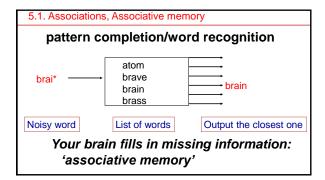
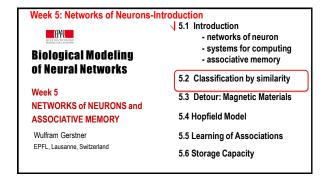
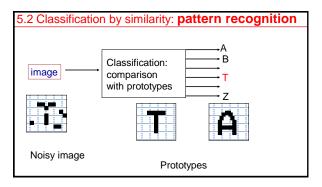
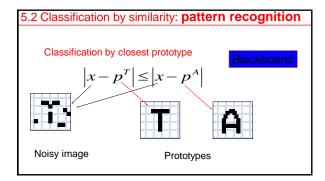
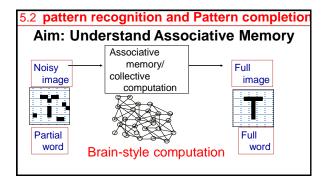

Biological Modeling of Neural Networks 5.1 Introduction (PAL - networks of neuron - systems for computing Week 5 - associative memory NETWORKS of NEURONS and 5.2 Classification by similarity ASSOCIATIVE MEMORY Wulfram Gerstner 5.3 Detour: Magnetic Materials EPFL, Lausanne, Switzerland 5.4 Hopfield Model Reading for week 5: 5.5 Learning of Associations **NEURONAL DYNAMICS** - Ch. 17.1 - 17.2.4 5.6 Storage Capacity Cambridge Univ. Press




5.1. Systems for computing and information processing		
Brain	Computer	
Cost in the min and popular		
	CPU	
	input	
Distributed architecture (10 10 proc. Elements/neurons)	Von Neumann architecture	
(10 proc. Elements/neurons) No separation of	1 CPU (10 ¹⁰ transistors)	
processing and memory		







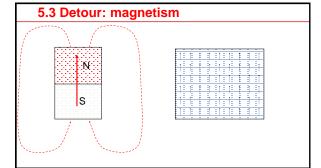
Quiz 5.1: Connectivity	
A typical nauron in the brain make	

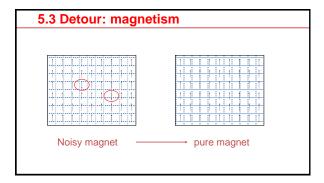
A typical neuron in the brain makes connections

- -To 6-20 neighbors
- -To 100-200 neurons nearby
- -To more than 1000 neurons nearby
- -To more than 1000 neurons nearby or far away.

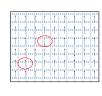
In a typical cristal in nature, each atom interacts -with 6-20 neighbors

- -with 100-200 atoms nearby
- -with more than 1000 atoms nearby
- -with more than 1000 atoms nearby or far away.


Week 5: Networks of Neurons-Introduction ↓ 5.1 Introduction


Biological Modeling of Neural Networks

NETWORKS of NEURONS and ASSOCIATIVE MEMORY


Wulfram Gerstner EPFL, Lausanne, Switzerland

- networks of neuron
- systems for computing
- associative memory
- **√** 5.2 Classification by similarity
 - 5.3 Detour: Magnetic Materials
 - 5.4 Hopfield Model
 - 5.5 Learning of Associations
 - 5.6 Storage Capacity

5.3 Detour: magnetism

Elementary magnet

$$S_i = +1$$

 $S_i = -1$

dynamics

$$S_i(t+1) = \operatorname{sgn}\left[\sum_{j} S_j(t)\right]$$

Sum over all interactions with i

5.3 Detour: magnetism

Anti-ferromagnet

Elementary magnet

$$S_i = +1$$
 $M_{ij} = +1$ $S_i = -1$

dynamics

$$S_i(t+1) = \operatorname{sgn}\left[\sum_{i,j} w_{ij} S_j(t)\right]$$

blackboard

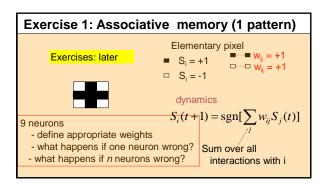
Sum over all interactions with i

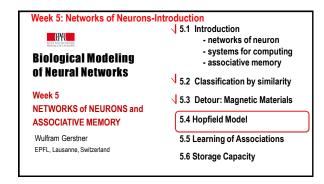
5.3 Magnetism and memory patterns

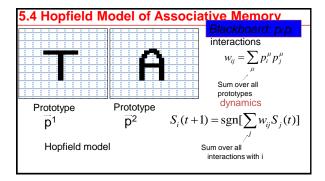
blackboard

Elementary pixel
$$S_i = +1$$

$$S_i = -1$$


$$S_i = -1$$


$$S_i(t+1) = \operatorname{sgn}[\sum w_{ij} S_j(t)]$$


□--- w_{ii} = -1

Hopfield model: Several patterns → next section

Sum over all interactions with i

4 Hopfield Model of Associative Memory

interactions $w_{ij} = \sum p_i^{\mu} p_j^{\mu}$

Sum over all

This rule is very good for random patterns

Prototype \vec{p}^1

prototypes **DEMO**

It does not work well for correlated patters

dynamics $S_i(t+1) = \operatorname{sgn}[\sum w_{ii} S_i(t)]$

Random patterns, fully connected: Hopfield model

j. all interactions with i

5.4 Hopfield Model of Associative Memory

$$S_{i}(t+1) = \operatorname{sgn}\left[\sum_{j} w_{ij}S_{j}(t)\right]$$

$$w_{ij} = \sum_{\mu} p_{i}^{\mu} p_{j}^{\mu}$$

$$\operatorname{overlap} \quad m^{\mu}(t) = \frac{1}{N} \sum_{j} p_{j}^{\mu} S_{j}(t)$$

$$m^{\mu}(t+1) = \frac{1}{N} \sum_{j} p_{j}^{\mu} S_{j}(t+1)$$

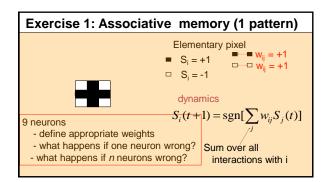
Blackboard

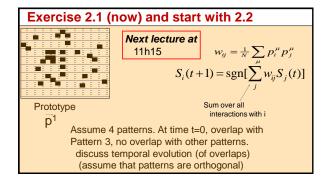
opfield Model of Associative Memory

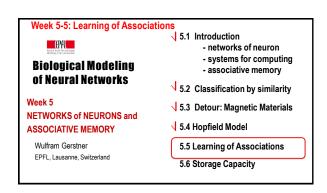
Interacting neurons

Prototype

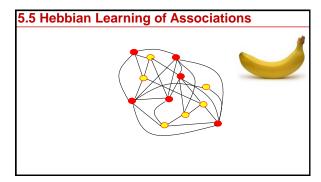
 p^1

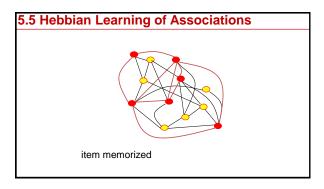

Finds the closest prototype i.e. maximal overlap (similarity)

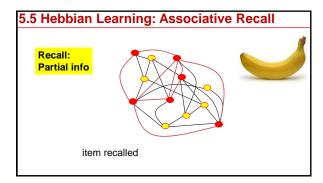

Hopfield model

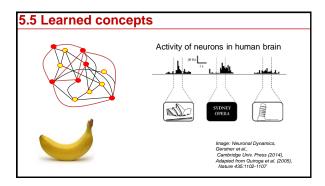

Computation

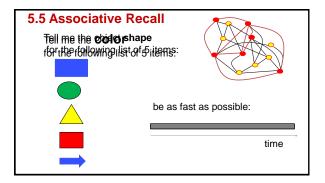
- without CPU,


- without explicit memory unit









5.5 Associative Recall Tell me the Color for the following list of 5 items:	
be as fast as possible:	
Stroop effect: time Slow response: hard to work	
Against natural associations	
5.5 Associative Recall	
Hierarchical organization of	
Associative memory	
animals	
birds fish	
Name as fast as possible	
an example of a bird swan (or goose or raven or)	
Write down first letter: s for swan or r for raven	
- F. A	1
5.5 Associative Recall	
Nommez au plus vite possible un exemple d'un /d'une	

Week 5-5: Learning of Associations

Biological Modeling of Neural Networks

Week 5

NETWORKS of NEURONS and ASSOCIATIVE MEMORY

Wulfram Gerstner EPFL, Lausanne, Switzerland

- **√** 5.1 Introduction
 - networks of neuron
 - systems for computing
 - associative memory
- 5.2 Classification by similarity
- **√** 5.3 Detour: Magnetic Materials
- **√** 5.4 Hopfield Model
- √ 5.5 Learning of Associations
- 5.6 Storage Capacity

5.6. learning of several prototypes

interactions

(1)
$$w_{ij} = \frac{1}{N} \sum_{\mu} p_i^{\mu} p_j^{\mu}$$

Sum over all prototypes

Question: How many prototypes can be stored?

dynamics

$$S_i(t+1) = \operatorname{sgn}\left[\sum_i w_{ij} S_j(t)\right]$$

all interactions with i

5.6. Storage capacity: How many prototypes can be stored?

rototype Prototype p¹ p²

Dynamics (2) $S_i(t+1) = \operatorname{sgn}\left[\sum_j w_{ij}S_j(t)\right]$

Minimal condition: pattern is fixed point of dynamics

-Assume we start directly in one pattern
-Pattern stays

Attention: Retrieval requires more (pattern completion)

Exercise 4 now: Associative memory			
Q; How many prototypes can be stored?			
		End of lecture, exercise+ Computer exercise : 12:00	
Prototype	Prototype	Interactions (1) $w_{ij} = \sum p_i^{\mu} p_j^{\mu}$	
p ¹ Dyr	p ² namics (2)	$S_i(t+1) = \operatorname{sgn}\left[\sum_{j=1}^{\mu} w_{ij} S_j(t)\right]$	
Random patterns random walk a) show relation to erf function: importance of p/N			
b) network of 1000 neurons – allow at most 1 wrong pixel? c) network of N neurons – at most 1 promille wrong pixels?			

The end