

\qquad

\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.1. Associations, Associative memory
pattern completion/word recognition
brai* \longrightarrowatom brave brain brass
List of words
Noisy word
Your brain fills in missing information:
'associative memory'

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Quiz 5.1: Connectivity

A typical neuron in the brain makes connections
-To 6-20 neighbors
-To 100-200 neurons nearby
-To more than 1000 neurons nearby
-To more than 1000 neurons nearby or far away.
In a typical cristal in nature, each atom interacts -with 6-20 neighbors
-with 100-200 atoms nearby
-with more than 1000 atoms nearby
-with more than 1000 atoms nearby or far away.

Week 5: Networks of Neurons-Introduction	
$\sqrt{ }$ 5.1 Introduction	
CPPfl	- networks of neuron
Biological Modeling	- systems for computing - associative memory
of Neural Networks	\checkmark 5.2 Classification by similarity
Week 5	5.3 Detour: Magnetic Materials
NETWORKS of NEURONS and	
ASSOCIATIVE MEMORY	5.4 Hopfield Model
Wulfram Gerstner	5.5 Learning of Associations
EPFL, Lausanne, Switzerland	5.6 Storage Capacity

5.3 Detour: magnetism	
	Elementary magnet $S_{i}=+1$ $S_{i}=-1$ Blackboara example dynamics $S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} S_{j}(t)\right]$ Sum over all interactions with i

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.3 Magnetism and memory patterns

Hopfield model:
Several patterns \rightarrow next section

Elementary pixel

- $S_{i}=+1$ ■ $W_{i j}=+1$
- $\mathrm{S}_{\mathrm{i}}=-1$
$\square \square \mathrm{w}_{\mathrm{ij}}=+1$
$\square-\mathrm{w}_{\mathrm{ij}}=-1$
dynamics

$$
\begin{gathered}
S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} w_{i j} S_{j}(t)\right] \\
\begin{array}{c}
\text { Sum over all } \\
\text { interactions with i }
\end{array}
\end{gathered}
$$

Week 5: Networks of Neurons-Introduction	
年.1 Introduction	
(Pf)	- networks of neuron
Biological Modeling	- systems for computing - associative memory
of Neural Networks	$\checkmark 5.2$ Classification by similarity
Week 5	\checkmark 5.3 Detour: Magnetic Materials
NETWORKS of NEURONS and	
ASSOCIATIVE MEMORY	5.4 Hopfield Model
Wulfram Gerstner	5.5 Learning of Associations
EPFL, Lausanne, Switzerland	5.6 Storage Capacity

$$
\begin{aligned}
& \text { 5.4 Hopfield Model of Associative Memory } \\
& \qquad \begin{array}{c}
S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} w_{i j} S_{j}(t)\right] \\
w_{i j}=\sum_{\mu} p_{i}^{\mu} p_{j}^{\mu} \\
\text { Blackboard } \quad \text { overlap } m^{\mu}(t)=\frac{1}{N} \sum_{j} p_{j}^{\mu} S_{j}(t) \\
m^{\mu}(t+1)=\frac{1}{N} \sum_{j} p_{j}^{\mu} S_{j}(t+1)
\end{array}
\end{aligned}
$$

Exercise 1: Associative memory (1 pattern)

Elementary pixel $\mathrm{w}_{\mathrm{ii}}=+1$

- $\mathrm{S}_{\mathrm{i}}=+1 \quad-\mathrm{w}_{\mathrm{ij}}=+1$
- $S_{i}=-1$ \qquad

9 neurons

$$
\begin{aligned}
& \quad \text { dynamics } \\
& \qquad S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} w_{i j} S_{j}(t)\right] \\
& \text { wrong? Sum over all }
\end{aligned}
$$

what happens if n neurons wrong? interactions with i

Exercise 2.1 (now) and start with 2.2

| Next lecture at |
| :---: | :---: |
| 11 h 15 |$w_{i j}=\frac{1}{N} \sum_{\mu} p_{i}^{\mu} p_{j}^{\mu}$

Week 5-5: Learning of Associations	
EPPIL	$\sqrt{ } 5.1$ Introduction - networks of neuron
Biological Modeling	- systems for computing - associative memory
Of Neural Networks	\checkmark 5.2 Classification by similarity
Week 5	\checkmark 5.3 Detour: Magnetic Materials
NETWORKS of NEURONS and	
ASSOCIATIVE MEMORY	$\checkmark 5.4$ Hopfield Model
Wulfram Gerstner	5.5 Learning of Associations
EPFL, Lausanne, Switzerland	5.6 Storage Capacity

5.5 Learning of Associations
Where do the connections come from?
When an axon of cell j repeatedly or persistently takes part in firing cell i , then j's efficiency as one of the cells firing i is increased - local rule - simultaneously active (correlations)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5.5 Associative Recall

Hierarchical organization of

\qquad

5.5 Associative Recall

Nommez au plus vite possible un exemple d'un /d'une

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Week 5-5: Learning of Associations	
	$\sqrt{ } 51$ Introduction
CPfll	- networks of neuron
Biological Modeling	- systems for computing
of Neural Networks	$\checkmark 5.2$ Classification by similarity
Week 5	$\sqrt{5.3}$ Detour:Magnetic Materials
NETWORKS of NEURONS and	
ASSOCIATIVE MEMORY	$\checkmark 5.4$ Hopfield Model
Wulfram Gerstner	$\checkmark 5.5$ Learning of Associations
EPFL, Lausanne, Swizzerland	5.6 Storage Capacity

5.6. learning of several prototypes	
Prototype \vec{p}^{1}	interactions (1) $w_{i j}=\frac{1}{N} \sum_{\mu} p_{i}^{\mu} p_{j}^{\mu}$ Sum over all prototypes
Question: How many prototypes can be stored?	
dynamics	$S_{i}(t+1)=\operatorname{sgn}\left[\sum_{j} w_{i j} S_{j}(t)\right]$

Minimal condition: pattern is fixed point of dynamics
-Assume we start directly in one pattern
-Pattern stays
Attention: Retrieval requires more (pattern completion)

Exercise 4 now: Associative memory

Q; How many prototypes can be stored?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

