Shape from X

e One image:
o Texture
e Shading
e TWO Images or more:
e Stereo G e
e Motion | .

.
~

=PrL Ot



m
"N

When objects move at equal speed, those
more remote seem to move more slowly.

Euclid, 300 BC




Velocity vs Distance
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Apparent velocity is:

e Inversely proportional to the distance of the
point to the observer.

e Proportional to the sine of the angle between
the line of sight and the direction of translation.
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Epipolar Plane Analysis

Image sequence
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Generalized Motion

Orthogonal Non-orthogonal View direction
viewing viewing varying
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Focus of Expansion

For a translational motion of the camera, all the
motion-field vectors converge or diverge from a
single point: The focus of expansion (FOE) or

contraction (FOC).
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Microflyer

The plane detects POEs and
uses them to avoid collisions.

=EPFL Qo Zufferey et al. , IMAR 2010. ]



Motion Field Estimation

Approaches can be classified with respect to the
assumptions they make about the scene:

e Images properties remain invariant under
relative motion between the camera and the
Scene.

e Feature points can be tracked across frames.

“P-L Qtab



Assumption 1: Brightness Constancy

Image measurements (e.g. brightness) in
a small region remain the same although
its location may change.

I(x+dx,y+dy,t+dt) =Ix,y,1)

=Pr-L Cilab




Assumption 2: Temporal Consistency

The image speed of a surface patch only changes
gradually over time.

=EpEL Otat P



Assumption 3: Spatial Consistency

* Neighboring points in the scene typically belong to
the same surface and hence have similar motions.
 Since they also project to nearby image locations,
we expect spatial coherence of the flow.

CPFL (G P



Spatio Temporal Derivatives

Under the assumptions of

e Brightness constancy,
e fTem pOI‘a| COnSiStenCy, Image projection at time t

~
I(z(t), y(t),t)
ol de ol dy ol
ox dt oy dt ot

we write: cst

= 0
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Normal Flow Equation
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Ambiguities

e At each pixel, we have 1 equation and 2 unknowns.

e Only the flow component in the gradient direction
can be determined locally.

The motion is parallel to the edge,
and it cannot be determined.

|
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Local Constancy

Assume the flow to be constant is a 5x5 window:

C L.(p1) Iy(p1) ] - Ii(p1) |
L(p2)  Iy(P2) [ u ] — _ | L(p2)
] Ix(b25) Iy(I.)25) _ i ft(li;25) ]

--> 25 equations for 2 unknown, which can be
solved in the least squares sense.




Enforcing Consistency

Under the assumption of spatial consistency:
. Hough Transform on the motion vectors.
. Regularization of the motion field.

. Multi scale approach.

But, the world is neither Lambertian nor smooth.

- These assumptions are rarely valid.

“PFL Qtab
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Tracking Points across Images




3D Shape Reconstruction
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Multi-View Projection

* n 1mage points are projected from 3-D scene points
OVEr m views via

where1=1,..., mandj=1, ..., n.

o« Here each Piis a 3 x 4 matrix and each Xj 1S a
homogeneous 4-vector.




Orthographic Projection
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Projection
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MULTI-VIEW ORTHOGRAPHIC PROJECTION

* The last row of each Piis (0, 0, 0, 1) for affine
cameras, so we can “ignore” 1t and write the
orthographic projection as:

xt = M'X, + t'
J J
where each Xj 1s now an inhomogeneous 3-vector.

* Here, each M a 2 x 3 matrix, and each ti a 2-vector.
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Reconstruction Problem

 Estimate affine cameras Mi, translations ti, and 3-D
points Xj that minimize the geometric error 1n 1mage

coordinates:

=PFL Qtab



Simplifying the Problem

* Normalization: We can eliminate the translation vectors ti by
choosing the centroid of the image points in each image as
the coordinate system origin

i i1 i
Xj<—Xj——E X,
n

e Working in “centered coordinafes”, the minimization
problem becomes:

. - ~ )2
min > (x} — M'Xj)
2¥,

* This works because the centroid of the 3-D points 1s
preserved under affine transformations

—PEL (hlab A



Matrix Formulation

e [et the measurement matrix be:

1 1 1

X% X% e Xg

w=| X X% ... X
m m m

X" x50 ... X,

e Since Xé. — Min, this means solving
S AL
W = : .
71 MM }
2mx3 b - 3xN
in the least squares sense.
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Solving with SVD

There will be no exact solution with noisy points, so we want the
nearest W~ to W that is an exact solution

— W’ is rank 3 since it’s the product of a 2IM x 3 motion matrix M’ and a 3

x N structure matrix X

Use singular value decomposition to get rank 3 matrix W’
closest to W

— LetSVDof W = UDVT
~ Then W’ =U D3X3V

— U2mx3 is the first 3 columns of U, D3X3 is an upper-left 3 x 3

where

2mx3 nX3 ’

submatrix of D,

-V

%3 T is first three columns of V.

(hlab A



Structure and Motion

e Set stacked camera matrix as
M, — U2mx3 Sqrt(D3X3)

e Set stacked 3-D structure matrix as

X, - Sqrt(D3X3)VnX3T
so that W = M’X’

“P-L Qtab

\



m
"N

Metric Upgrade

There 1s an affine ambiguity since an arbitrary 3 x 3 rank
3 matrix A can be inserted as:

W’ = (M’ A)(A-1X)

Get rid of ambiguity by finding A that performs “metric
rectification”

Affine camera provides orthonormality constraints on A:
— Rows of M=M’A are unit vectors: m. . m. = 1.

— Rows of M=M’A are orthogonal: m; . m; = 0.

Everything relies on linear algebra but 1s limited to
orthographic cameras.

C’yLob



Simultaneous Localization And Mapping

= Compute point tracks.
» Infer both camera motion and 3D structure.

=PEL Qriab Steedly et al., ICCV'03 e



Sequential Structure from Motion

Ia 0 \/X]R?ﬁ t3

AR}, Aty R,, t,

-> Trajectory and 3D points defined up to a Euclidean motion and scale

EPFL Gt PP



Bundle Adjustment

Ry t,

argminp, 4 a7, i Zj |

>

proj(R;, t;, M;) —m}||?
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Global Non-Linear Optimization

argming, ;o >0, > [[proj(Ri, ti, M;) —m?|?

* Often performed using the Levenberg-Marquardt algorithm.
* Many parameters to estimate, but sparse Jacobian matrix.
* Initial estimates computed using the eight point algorithm:

- Given 8 point correspondences between a pair of images, AR
and AT can be estimated in closed form by solving an SVD.
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Augmented Reality

Parallel Tracking and Mapping
for Small AR Workspaces

Extra video results made for
ISMAR 2007 conference

Georg Klein and David Murray
Active Vision Laboratory
University of Oxford




Simultaneous Localization And Mapping

A robot can reconstruct its environment and
position itself at the same time.

“P-L Qtab
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Fusing Depth Maps

= Both the depth camera and the person are
moving.

» Use a deformable model to combine the
data over time.

» Real-time implementation.

Grtab Newcombe et al., CVPR’15 A



Into the Commercial World

Facebook buys British virtual reality start-up Surreal
Vision

Surreal Vision aims to make a computerised version of the world so real that
users are unable to distinguish between the two

0614 @156 @0 @27

& 797 eEman

Real-Time
Object-Level Reconstruction
(floor, chairs, table)

Oculus Rift is expected to be launched next year

“PFL Qtab




Into the Commercial World

Microsoft Hololens

... and they are both being worked on in Zurich!

“PEL Ciab Gizmodo,. December 2015 A



Strengths And Limitations

Strengths:
e Combine information from many images.

Limitations:
e Requires multiple views.
e Requires either texture or a depth camera.

“P-L Qtab



