Biological Modelling of Neural Networks Exam 17 June 2013

- Write your name in legible letters on top of this page.
- The exam lasts 160 min .
- Write all your answers in a legible way on the exam (no extra sheets).
- No documentation is allowed apart from 1 sheet A5 of handwritten notes.
- No calculator is allowed.
- Have your student card displayed before you on your desk.

Evaluation:

1. / 20 pts
2. / 6pts
3. \qquad / 8 pts
4. \qquad / 12 pts (+ 4 Bonus)

Total: \qquad / 46pts (+4 Bonus)

1 Synaptic Plasticity and Phase Plane Analysis (20 points)

Suppose that a pair of neurons is coupled with weights w_{12} (from neuron 2 to neuron 1) and w_{21} (from neuron 1 to neuron 2). The two neurons fire with rates ν_{1} and ν_{2}, respectively. Weight values and rates are given in unit-free numbers.

The weights are not fixed but plastic and can change in the range $0 \leq w_{12}, w_{21} \leq 1$. If they are not at the lower bound of zero or at the upper bound of one, weights are subject to synaptic plasticity according to the rule

$$
\begin{align*}
& \frac{d w_{21}}{d t}=a \nu_{1} \nu_{2}+b w_{21} \nu_{1}-c w_{12} \tag{1}\\
& \frac{d w_{12}}{d t}=a \nu_{1} \nu_{2}+b w_{12} \nu_{2}-c w_{21} \tag{2}
\end{align*}
$$

(a) Is the above synaptic plasticity rule a Hebbian rule? Give a reason or condition.

YES, it is a Hebbian rule if/because \qquad

NO, it is NOT a Hebbian rule if/because \qquad
number of points: 1
(b) Phase plane analysis:

Study the case
$a=-0.4$ and
$b=c=\nu_{1}=\nu_{2}=1$

(b1) In the above graph, draw the nullclines.
number of points: 2
(b2) In the above graph, draw the direction of flow at $x=0=y$. number of points: 1
(b3) In the above graph, draw the direction of flow on the nullclines. number of points: 2
(b4) In the above graph, add representative arrows indicating QUALITATIVELY the flow in three different regions. number of points: 2
(b5) Draw, for each typical solution a sample trajectory. Interpret your result in
terms of final resulting connectivity pattern and tick correct answers below. number of points: 2

$\mathrm{y}=\mathrm{W}_{21}=1$	$\mathrm{y}=\mathrm{W}_{21}=1$	$\mathrm{y}=\mathbf{W}_{21}=0$	$\mathrm{y}=\mathrm{W}_{21}=0$
		(1) (2)	(1) (2)
$\mathrm{X}=\mathrm{W}_{12}=1$	$\mathrm{X}=\mathrm{W}_{12}=0$	$\mathrm{X}=\mathrm{W}_{12}=1$	$\mathrm{X}=\mathrm{W}_{12}=0$
\square is excluded	\square is excluded	\square is excluded	\square is excluded
may occur. I have drawn a sample trajectory labeled A	may occur. I have drawn a sample trajectory labeled B	may occur. I have drawn a sample trajectory labeled C	may occur. I have drawn a sample trajectory labeled D

(c) Study now the case $a=-0.4$ and $b=c=\nu_{1}=1$, but in contrast to before take $\nu_{2}=3$.

(c1) In the above graph, draw the nullclines and annotate your graph with flow arrows.
number of points: 2
(c2) Draw, for each typical solution a sample trajectory. Interpret your result in terms of final resulting connectivity pattern and tick correct answers below.
number of points: 2

(d) Study now the case $a=-0.4$ and $b=\nu_{1}=\nu_{2}=1$, but in contrast to the first scenario, take $c=0.5$.

(d1) In the above graph, draw the nullclines and annotate your graph with flow arrows.
number of points: 2
(d2) Draw, for each typical solution a sample trajectory. Interpret your result in terms of final resulting connectivity pattern and tick correct answers below.
number of points: 2

(e) Summarize and interpret your results from (b) - (d) by answering the following question:

Assuming the synaptic plasticity in the brain is well described by the above learning rule, is it possible or excluded that stable reciprocal connections develop? Give a reason for your answer.
number of points: 2
\qquad
\qquad

2 Continuity equation (6pts)

In a population of integrate-and-fire neurons with firing threshold $x=\vartheta$ the distribution of membrane potentials $p(x, t)$ for $x<\vartheta$ evolves according to

$$
\begin{equation*}
\tau \frac{d}{d t} p(x, t)=-\frac{d}{d x} J(x, t)+r(t) \delta\left(x-x_{0}\right) \tag{3}
\end{equation*}
$$

(a) What is the meaning of the term $r(t)$, why do we need this term?
number of points: 1
(b) What is the meaning of the parameter x_{0}, why do we need this term?
\qquad
number of points: 1
(c) How do you calculate $r(t)$?
\qquad
number of points: 1
(d) We now specify the model in Eq. (3) and study a nonlinear integrate-and-fire model which is driven by an external input (that does not depend on the potential). For our specific model, the flux term is

$$
J(x, t)=p(x, t)\left\{-x(t)+x_{1}+x_{2} \exp \left[x(t) / x_{3}\right]+x_{4} \sin (\omega t)\right\}
$$

where $x_{1}, x_{2}, x_{3}, x_{4}$ are fixed parameters.
What can you say about each term in particular with respect to the the neuron model
\qquad
\qquad
the noise \qquad
\qquad
\qquad
the input \qquad
\qquad

3 Spike Train Statistics (8 points)

A neuron has received a constant stimulus during the time $0<t<300 \mathrm{~ms}$ and generated a spike train $S(t)=\sum_{f=1}^{10} \delta\left(t-t^{f}\right)$ with 10 spikes at times $t^{1}, t^{2}, \ldots t^{10}$. There were no spikes for $t<0$.

The following graph sketches the situation with two example spike trains.

(a) What is the mean firing rate of the neuron, during the period of stimulation?
number of points: 1
(b) Suppose that the spike train has been generated by a stochastic neuron model with absolute refractory period $\Delta^{\text {abs }}$. Spikes occur with stochastic intensity

$$
\begin{array}{lll}
\rho(t)=0 & \text { for } & t^{f}<t<t^{f}+\Delta^{\mathrm{abs}} \\
\rho(t)=\rho_{0} & \text { for } t \geq t^{f}+\Delta^{\mathrm{abs}} \tag{5}
\end{array}
$$

Write down the likelihood that an observed spike train with spike times $t^{1} \ldots t^{10}$ could have been generated by the model. The right-hand side of your equation should contain the parameters $\Delta^{\text {abs }}$ and ρ_{0}.
\qquad
\qquad
(c) Observed spikes have occurred at times $20,50,80,110, \ldots, 290 \mathrm{~ms}$ (see the first of the two sample spike trains in the graph on the left).

Try to explain the observed sequence of spike by the model with absolute refractoriness. Set $\Delta^{\mathrm{abs}}=10 \mathrm{~ms}$.

What is the most likely value of the parameter ρ_{0} ?
$\rho_{0}=$ \qquad number of points: 2 space for calculations, if necessary
(d) Suppose that, in a second trial, each of the spikes is jittered by $\pm 5 \mathrm{~ms}$ compared to the first trial. (see the second of the two sample spike trains in the graph on the left, e.g. spikes occur at $25,45,85,105 \ldots$ ms.)

Redo the estimation of ρ_{0}. The result is $\rho_{0}=$

Justify your answer in words:
\qquad
number of points: 2

4 Mean-field in a Network of Rate Models (12 points +4 Bonus)

We study a network of excitatory and inhibitory neurons. Each excitatory neuron has a firing rate e_{k}

$$
\begin{equation*}
\tau_{e} \frac{d e_{k}}{d t}=-e_{k}+f(I-s) \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
f(x)=2(x-0.5) \quad \text { for } x>0.5 \text { and else } f(x)=0 \tag{7}
\end{equation*}
$$

Inhibitory neurons have a firing rate s

$$
\begin{equation*}
\tau_{s} \frac{d s}{d t}=-s+g(e) \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
g(x)=x^{2} / 4 \quad \text { for } x>0 \quad \text { and else } g(x)=0 \tag{9}
\end{equation*}
$$

(a) We start with a network of excitatory neurons (no inhibition, hence $s=0$). Assume that we have a large network of $N \gg 1$ excitatory neurons, described by Eq. (6). The input to neuron i is

$$
\begin{equation*}
I_{i}(t)=\sum_{k=1}^{N} \frac{w}{N} e_{k} \tag{10}
\end{equation*}
$$

Here e_{k} is the rate of excitatory neuron k. There is no additional external input.
(a1) Assume that all N excitatory neurons have the same firing rate and write down the resulting dynamics for the population activity $e=(1 / N) \sum_{k=1}^{N} e_{k}$ in a single equation for e.
number of points: 2
(a2) Solve graphically for the stationary state(s) of the activity in the network. Make two different graphs for the choices $w=0.5$ and $w=1$. number of points: 2
(a3) In your graph, circle the steady state(s), if there are any. For each steady state that you find, indicate its stability directly in the graph ($s=$ stable, $u=$ unstable). number of points: 2
(b) Now we add inhibition. Assume that there is a common pool of inhibitory neurons with population activity s given by Eq. (8). Assume a separation of time scales $\tau_{s} \ll \tau_{e}$ and reduce the number of equations from two to one. Give the resulting single equation.
number of points: 2
(c) Write the result in the form

$$
\begin{equation*}
\tau_{e} \frac{d e}{d t}=-e+F_{w}(e)=G_{w}(e) \tag{11}
\end{equation*}
$$

and plot either the function $F_{w}(e)$ or the function $G_{w}(e)$ for two different choices of the parameter w, i.e. $w=0.5$ and $w=2$.
number of points: 3
(c) For each of the two parameter choices, are there stationary states? Are they stable?
number of points: 1
(d) Bonus: (d1) Given your results from (a) - (c) what can you say about the role of inhibition in neural networks.
number of points: 1
(d2) Give the analytical solution for the steady state(s) of the network of coupled excitatory and inhibitory neurons in the case of $w=2$.
number of points: 3

