#### Computational Neuroscience: Neuronal Dynamics of Cognition # Attractor Networks and Generalizations of the Hopfield model Wulfram Gerstner EPFL, Lausanne, Switzerland Reading for week 6: NEURONAL DYNAMICS - Ch. 17.2.5 – 17.4 1. Attractor networks - 2. Stochastic Hopfield model - 3. Energy landscape - 4. Towards biology (1) - low-activity patterns - 5. Towards biology (2) - spiking neurons Cambridge Univ. Press #### 1. Review and next steps - 6.1. Attractor networks - 6.2. Stochastic Hopfield model - 6.3. Energy landscape - 6.4. Towards biology (1) - low-activity patterns - 6.5 Towards biology (2) - spiking neurons #### 1. Review and next steps # Hopfield model special case biology #### 1. Review of last week 5 #### 1. Review of last week: Deterministic Hopfield model Prototype p1 Prototype p<sup>2</sup> $$w_{ij} = \frac{1}{N} \sum_{i} p_i^{\mu} p_j^{\mu}$$ Sum over all prototypes - each prototype has black pixels with probability 0.5 - prototypes are random patterns, chosen once at the beginning #### 1. Review of last week: overlap / correlation Image: Neuronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014), # Correlation: overlap between one pattern and another **Overlap**: similarity between state S(t) and pattern $m^{\mu} = \frac{1}{N} \sum_{i} p_{j}^{\mu} S(t)$ Orthogonal patterns #### 1. Review of last week: Deterministic Hopfield model Prototype Prototype Deterministic dynamics interactions $$w_{ij} = \frac{1}{N} \sum_{\mu} p_i^{\mu} p_j^{\mu}$$ Sum over all prototypes Input potential $$h_i = \sum_{j} w_{ij} S_j$$ Sum over all inputs to neuron i prototypes dynamics $$S_i(t+1) = \operatorname{sgn}[h_i(t)] = \operatorname{sgn}[\sum w_{ij}S_j(t)]$$ Similarity measure: Overlap w. pattern 17: $m^{17}(t+1) = \sum p_i^{17} S_i$ $$m^{17}(t+1) = \sum_{j} p_{j}^{17} S_{j}$$ ## 1. Hopfield model: memory retrieval (with overlaps) $$S_i(t+1) = \operatorname{sgn}[h_i(t)] = \operatorname{sgn}[\sum_i w_{ij} S_j(t)]$$ $$S_i(t+1) = \operatorname{sgn}\left[\sum_{i=1}^{n} p_i^{\mu} m_j^{\mu}(t)\right]$$ $$m_j^{\mu}(t+1) \leftarrow m_j^{\mu}(t)$$ # 1. Hopfield model: memory retrieval (attractor model) #### 1. Hopfield model: memory retrieval (attractor model) Attractor networks: dynamics moves network state to a fixed point #### Hopfield model: for a small number of patterns, states with overlap 1 are fixed points ## Aim for today: generalize! # Quiz 1: overlap and attractor dynamics [] The overlap is maximal if the network state matches one of the patterns. The overlap increases during memory retrieval. The mutual overlap of orthogonal patterns is one. In an attractor memory, the dynamics converges to a stable fixed point. [] In a perfect attractor memory network, the network state moves towards one of the patterns. [] In a Hopfield model with N random patterns stored in a network N neurons, the patterns are attractors. [] In a Hopfield model with 200 random patterns stored in a network 1000 neurons, all fixed points have overlap one. #### Computational Neuroscience: Neuronal Dynamics of Cognition # Attractor Networks and Generalizations of the Hopfield model Wulfram Gerstner EPFL, Lausanne, Switzerland Reading for week 6: NEURONAL DYNAMICS - Ch. 17.2.5 – 17.4 1. Attractor networks 2. Stochastic Hopfield model 3. Energy landscape - 4. Towards biology (1) - low-activity patterns - 5. Towards biology (2) - spiking neurons Cambridge Univ. Press Neurons may be noisy: What does this mean for attractor dynamics? Prototype Random patterns Prototype Interactions (1) $$w_{ij} = \frac{1}{N} \sum_{\mu} p_i^{\mu} p_j^{\mu}$$ Dynamics (2) $$\Pr\{S_i(t+1) = +1 \mid h_i\} = g[h_i] = g\left[\sum_j w_{ij} S_j(t)\right]$$ # 2. Stochastic Hopfield model: firing probability $$\Pr\{S_i(t+1) = +1 \mid h_i\} = g[h_i] = g\left[\sum_j w_{ij} S_j(t)\right] = g\left[\sum_{\mu} p_i^{\mu} m^{\mu}(t)\right]$$ #### Dynamics (2) $$\Pr\{S_{i}(t+1) = +1 \mid h_{i}\} = g[h_{i}] = g\left[\sum_{j} w_{ij} S_{j}(t)\right]$$ $$\Pr\{S_{i}(t+1) = +1 \mid h_{i}\} = g\left[\sum_{\mu} p_{i}^{\mu} m^{\mu}(t)\right]$$ Assume that there is **only** overlap with pattern 17: two groups of neurons: those that should be 'on' and 'off' #### Dynamics (2) $$\Pr\{S_{i}(t+1) = +1 \mid h_{i}\} = g[h_{i}] = g\left[\sum_{j} w_{ij} S_{j}(t)\right]$$ $$\Pr\{S_{i}(t+1) = +1 \mid h_{i}\} = g\left[\sum_{\mu} p_{i}^{\mu} m^{\mu}(t)\right]$$ Assume that there is only overlap with pattern 17: two groups of neurons: those that should be 'on' and 'off' $$\Pr\{S_i(t+1) = +1 \mid h_i = h^+\} = g \left[ m^{17}(t) \right]$$ $$\Pr\{S_i(t+1) = +1 \mid h_i = h^-\} = g \left[ -m^{17}(t) \right]$$ Overlap (definition) $$m^{17}(t+1) = \sum_{j} p_j^{17} S_j$$ Overlap (definition) $$m^{17}(t+1) = \frac{1}{N} \sum_{i=1}^{N} p_i^{17} S_j(t+1)$$ Suppose initial overlap with pattern 17 is 0.4; Find equation for overlap at time (t+1), given overlap at time (t). Assume overlap with other patterns stays zero. Hint: Use result from previous slide and consider 4 groups of neurons - Those that should be ON and are ON - Those that should be ON and are OFF - Those that should be OFF and are ON - Those that should be OFF and are OFF Overlap $$m^{17}(t+1) = \frac{1}{N} \sum_{j=1}^{N} p_j^{17} S_j(t+1)$$ ## 2. Stochastic Hopfield model: memory retrieval #### Overlap: Neurons that should be 'on' Neurons that should be 'off' $$2m^{17}(t+1) = g\left[m^{17}(t)\right] - \left\{1 - g\left[m^{17}(t)\right]\right\} - g\left[-m^{17}(t)\right] + \left\{1 - g\left[-m^{17}(t)\right]\right\}$$ $$m^{17}(t+1) = \tilde{F}\left[m^{17}(t)\right]$$ $$m^{\nu}(t+\Delta t)$$ overlap picture $$m^{\nu}(t_0)$$ $m^{\nu}(t)$ # 2. Stochastic Hopfield model = attractor model ## 2. Stochastic Hopfield model: memory retrieval - Memory retrieval possible with stochastic dynamics - Fixed point at value with large overlap (e.g., 0.95) - Need to check that overlap of other patterns remains small - Random patterns: nearly orthogonal but 'noise' term #### Quiz 2: Stochastic networks and overlap equations - [] The update of the overlap leads always to a fixed point with overlap m=1 - [] The update equation as derived here implicitly assumed orthogonal patterns because otherwise we would have to analyze overlaps with several patterns in parallel - [] The update equation as derived here requires a function $$g(h_i) = 0.5[1 + \tanh(2h)]$$ #### Computational Neuroscience: Neuronal Dynamics of Cognition # Attractor Networks and Generalizations of the Hopfield model Wulfram Gerstner EPFL, Lausanne, Switzerland Reading for week 6: NEURONAL DYNAMICS - Ch. 17.2.5 – 17.4 From Single Neurons to Netwand Models of Cogn 1. Attractor networks 2. Stochastic Hopfield model 3. Energy landscape - 4. Towards biology (1) - low-activity patterns - 5. Towards biology (2) - spiking neurons Cambridge Univ. Press # 3. Hopfield model = attractor model # 3. Symmetric interactions: Energy picture # 3. Symmetric interactions: Energy picture $$E = -\frac{1}{2} \sum_{i,j} w_{ij} S_i S_j$$ - Rewrite in terms of overlaps - Random patterns vs. orthogonal patterns - Random state vs. overlap state # 3. Symmetric interactions: Energy/Lyapunov function Assume symmetric interaction, Assume deterministic asynchronous update $$S_i(t+1) = \operatorname{sgn}[h_i(t)] = \operatorname{sgn}[\sum w_{ij}S_j(t)]$$ $$S_i(t+1) = \operatorname{sgn}[h_i(t)] = \operatorname{sgn}[\sum_i w_{ij} S_j(t)]$$ Claim: the energy $E = -\frac{1}{2} \sum_{i,j}^j w_{ij} S_i S_j$ decreases, if neuron k changes J.J. Hopfield (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, pp. 2554–2558 # 3. Symmetric interactions: Energy/Lyapunov function $$E = -\frac{1}{2} \sum_{i,j} w_{ij} S_i S_j$$ Assume symmetric interaction, $E = -\frac{1}{2}\sum_{i} w_{ij}S_iS_j$ Assume deterministic asynchronous update $$S_i(t+1) = \text{sgn}[h_i(t)] = \text{sgn}[\sum_j w_{ij}S_j(t)]$$ Claim: energy decreases, if neuron k changes #### 3. Energy picture #### energy picture historically important: - capacity calculations J.J. Hopfield (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, pp. 2554–2558 D.J. Amit, H. Gutfreund and H. Sompolinsky (1987) Information storage in neural networks with low levels of activity. Phys. Rev. A 35, pp. 2293–2303. #### energy picture is a side-track: - it needs symmetric interactions #### energy picture is very general: it shows that it should be possible to learn other patterns than mean-zero random patterns #### 3. Energy picture # Hopfield model special case biology (asymmetric interactions) # Quiz 3: Energy picture and Lyapunov function Let $$E = -\frac{1}{2} \sum_{i,j} w_{ij} S_i S_j$$ be the energy of the Hopfield model and $$S_i(t+1) = \operatorname{sgn}[h_i(t)] = \operatorname{sgn}[\sum_j w_{ij}S_j(t)]$$ the dynamics. - [] The energy picture requires random patterns with prob = 0.5 - [] The energy picture requires symmetric weights - [] It follows from the energy picture of the Hopfield model that the - only fixed points are those where the overlap is exactly one - [] In each step, the value of a Lyapunov function decreases or stays constant - [] Under deterministic dynamics the above energy is a Lyapunov function