Neural Networks and Biological Modeling

Professor Wulfram Gerstner Laboratory of Computational Neuroscience

QUESTION SET 9

Exercise 1: Nullclines

Consider the following system:

$$\frac{d}{dt}h_1(t) = -h_1(t) + h^{ext} + (w_{ee} - \alpha)g(h_1(t)) - \alpha g(h_2(t))$$
$$\frac{d}{dt}h_2(t) = -h_2(t) + h^{ext} + (w_{ee} - \alpha)g(h_2(t)) - \alpha g(h_1(t))$$

where $\alpha = 1$, $w_{ee} = 1.5$ and $h^{ext} = 0.8$. The function g(h) is a continuous monotonically increasing nonlinear function (schematically shown in Figure 1):

1.1 Draw the two nullclines $\left(\frac{dh_1}{dt} = 0 \text{ and } \frac{dh_2}{dt} = 0\right)$ in the phase plane $(h_2 \text{ vs } h_1 \text{ plot})$. To help you doing this you should start by filling in numerical values in these tables:

h_1	$g(h_2)$	h_2	h	2	$g(h_1)$	h_1
1			1	1		
0.8			0.	.8		
0.2			0.	.2		
0			()		

1.2 Add arrows on the nullclines.

1.3 Plot qualitatively three trajectories, one starting at (0,0), the second one at (0, 0.1) and the third one at (0.1, 0).

Exercise 2: Stability of the homogenous solution

Assume $h^{ext} = b$

2.1 Consider only the fixed middle fixed point that remain symmetric in the state variables $(h_1 = h_2 = h^*$. Find an expression for $h^*(b)$ for the set of parameters in Ex. 1, under the assumption that the fixed

point is in the region where g(h) = h. Analyze the stability of this fixed point.

2.2 For arbitrary parameters w_{ee} and h and arbitrary sufficiently smooth function g(h); give a formula for the symmetric fixed point.

2.3 Assume again that $w_{ee} = 3/2$ and $\alpha = 3/4$. Calculations will be simplified by introducing a parameter $\beta = \frac{3}{4}g'(h^*)$. Calculate the two eigenvalues for arbitrary beta.

2.4 Consider the case g'(h) = 1 and g'(h) = 0. Show that the fixed point is stable for $g'(h^*) = 0$ and unstable for $g'(h^*) = 1$. At which value of beta does the fixed point change stability?

2.5 Describe in words how the symmetric fixed point gains stability as we decrease b from 0.8. To which of the monkey's experiment does this correspond?