SoC-FPGA Design Guide
DE1-SoC Edition

LAP — IC — EPFL

Version 1.33
Sahand Kashani

René Beuchat

B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

The latest version of this document (complete with all sources) can always be found in [26].

mailto:sahand.kashani@epfl.ch?subject=SoC-FPGA%20Design%20Guide
mailto:rene.beuchat@epfl.ch?subject=SoC-FPGA%20Design%20Guide
http://lap.epfl.ch/
http://www.epfl.ch/

SoC-FPGA Design Guide [DE1-SoC Edition]

1 TABLE OF CONTENTS

A N o B T ={ U o TSR SP 6
B -1 o] [N o B -] o] L= PSPPI 9
B PrEIEQUISITES eeiiiiiieiiiiieiie et e ettt et e ettt e e e e e e s e bttt e e e e e s e s uabbe e e e eeeesaaasbbetaeeeessasansbeaaeeeessaannnbaaaeeeessannsnne 10
4.1 HaIOWATIE ...ttt s e bt e e s bt e st e e e mee e s b e e e be e e sare e e ne e e sare e s reeennreesreean 10
4.2 SOTEWAIE .ttt et b e s bt e s bt sa e e st e bt e bt e e b e e she e e ae e et e e bt e beenbeesheesanesaneeas 10
4.2.1 Software Versions Used in this GUIAEcociiiiiiiiiiiiiieeeeeeee s 10
4.2.2 LICBINSES -ttt ettt e e st e e e e e e e e e e h e e e e e e h e e e e e e n e e e e e e nr e e e e e nre e e e e nreeeeenrees 10

T [0 o e 18 ot o o KR PP PP P PSPPI PP 12
6 TerasSiC DEL-SOC BOAIMc.cecierierieriiiieeieett ettt ettt et sb e st st st s bt e bt e bt e sme e st e ean e e bt e nbeesreesanesaneeas 13
6.1 Yool r=Yu o] F- 3P 13
6.1.1 FPGA DRVICE ...ttt ettt ettt e s st e e s st e e s s me e e s s e e e e s s nee e e s smneeessnneeeeennees 13
6.1.2 Configuration aNd DEDOUEoooeiiiie e e e e e e e e e e tba e e s earaeeean 13
6.1.3 MIBIMOIY DBVICE .. e aeeaeaeeaaaaaesaaneasaeasasaanens 13
6.1.4 1000 0] 0 418 o Lot | w o] o USRS PP 13
6.1.5 100 T] o =Tor o TP PP PP PPRT PP 14
6.1.6 D1 o] =1 PSP 14
6.1.7 YT 1o TSRS 14
6.1.8 RV T L=To XN [T'o T 1 SR 14
6.1.9 ADC et e e e e e s e b et e ee et e e e e b h— e e te e e e e e e b a ettt ee e e e e e nraaeeeeeeeeeannrraeeeas 14
6.1.10 Switches, BUttons and INAICAtOrscoovviiiiiiiiiii 14
T R o Y=Y o 0 PPN 14
B.1.12 POWE ctiiiiitiei ettt ettt et e e s a e e e s b et e e s ba e e e seraeeesnee 14

TR 001 T -1 [T [DT T={ = 1 [SR SPPPPRPRN 15

6.2 LAY OUL e aaaaaaaaaaaaaaeaeaaaaaeaaaaaeaens 15

/2 O ol (o] LI VA @ YT oV 1L YT 17
7.1 Introduction to the Cyclone V Hard Processor SYStEMccccuuiiieeieeiiiiiiereeee e ceciirree e ssvenneee e e 17
7.2 FEAtUIEs Of the HPS ... et sttt st e bt e e st e e e sabe e sabeesbaeesabeesabeens 19
7.3 SYStEM INTEEIrAtiON OVEIVIEW ...ceeiieieiiiiiieeieeeieeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeeeeerereraeeeeeerereraseeresssesearseanesannnnnnnes 20
7.3.1 Y o Y] o T] =Y o PR USPRR 20
7.3.2 SDRAM CoNtroller SUDSYSTEM ...cciueiiieieiiee ettt et e e e et e e et e e e s rba e e e e atee e e eaneeas 20
7.33 0] o] o Jo ol o= a1 o] a =T =1 PSR UR 20

03/10/2018 Page |1

SoC-FPGA Design Guide [DE1-SoC Edition]

7.3.3.1 SYSEEM IMIANAEEN c.ceeiiiiiiiiiiiiiitiiiieietetetete ettt et e eee et et et et ee et ettt e et e e e ee e et et e te s e re s et et e sesese s et e s e raseeeeeeeraaae 20
7.3.3.2 FPGA IMANQAGEL ..ceeiiiiiiiiiiiiieitittttetettttteeertteteteterteeteeteeettttetttttttttetttttttttttttetttetttttttetttetateterereeermmnn 20
7.3.4 T 0 - [olcl =T a o] o1l | PSP 21
2 T 3 R ©1 o [0 B 121 T s = Yol TSP SP 21
7.3.5 (0o @ o1 o TN 1Y 1T 5 0 To] Y2 21
7.3.5.1 ON-ChiP RAM ..coiiiiieeet ettt ettt st st et e b e bt e st s s e e et e n e e b e e sbeesreesaeesaneeas 21
7.3.5.2 BOOEROM ...cciiiiiiiiiiiiiiic ettt st 21

7.4 HPS-FPGA INTEITACES ...ttt ettt sttt et et esb e sheesate st e e beenbeesneeeaes 21
7.5 HPS AQAIESS IMIAP c.uueiiiiiieeeeeieeiireeeeeeeeeeeittreeeeeeeeestbareeeeeeeeesastraaeeeeesesaasssraseeaseesasassrasaeeeeeesssssrresaeeeenans 21
7.5.1 HPS AQAIESS SPACES ..eeiiiuiiiiiiiiiee ettt ettt e et e e e ettt e e e st te e e e st te e e e ssateeeesasteeeesastaeeessteeessanseeeesssens 21
7.5.2 HPS Peripheral Region Address IMap.......ccuuieeeeeiieciciiiieeeee e eeesiitte e e e e s e eesetrre e e s e e s esnsnaeeeeeseesennnnnns 23
7.6 HPS Booting and FPGA CoNfiSUratioNncoiciiiiiiiiiie ettt e ete e e e itee e e e aree e e nrae e e aeeas 25
7.6.1 HPS Boot and FPGA Configuration Orderingcccuveeiiciieeeeiieee e ccieee e crieee e stee e e sire e e s aaee e e 25
7.6.2 Zooming [N ON the HPS BOOT PrOCESS......uuiiiiiiiieeiiiieeesiitee st e e st e e esire e e e srae e s s snae e e s s saeeessaneeas 27
S R =1 [- Lo 1= PO P SRS PTUPRTOPRRUPRRRPO 28

8 Using the Cyclone V — General INformation........coocuiiiieeiiiieie e s 29
8.1 INEFOTUCTION . sttt e s e s ne e san e e s b e e e snneesanee s 29
8.2 [TR o] o PP P PP PSPRPP 29
8.3 HPS & FPGA ...ttt ettt ettt et e sttt e s et e s te e bt e bt e s a e e s ae e s at e en b e e beesbeesheesateenbeebeenbeenaeenaes 29
8.3.1 S TR e[y 1 I2Y o o] o= Y o [o] o U SPRPNS 29
8.3.2 Application Over an Operating System (LINUX) ...cccvveeiiiiiieeeiiiee e e csiree e esiee e esre e e iree e e 30
8.4 LCTo T | LS O O T TP OO U SO POPOTOPPTOPPPTOPRINt 30
8.5 o o =To) {8 L1 { U] o R 30
9 USINg the CYCIONE V — HaldWare......ccueeiiieeee ettt e e e e e s ttre e e e s e e e sabaae e e e e s s e s sanaaaaeeeeessennnsnsenneeas 32
9.1 General QUArtUus Prime SETUP ..oicuiiie ettt ettt e st e e e s e e st e e e e s aba e e s sssaeeesnsaeeesssneeaan 32
9.2 System Design With QSYS — NIOS [l..ceiiuuiiiiiiiiiie ittt e st e e s saa e e e s sabaeeessraeeeas 32
9.3 System Design With QSYS — HPSeeiiiiee e e e e e e e e s e e e e e e e esassraeeeeeeeeennnnnns 35
9.3.1 Instantiating the HPS COMPONENT......ccciciiiiiiiiiee ettt e e e ste e e e are e e e e are e e e eneeas 35
9.3.1.1 FPGA INtErfaces Tab couui oottt ettt sttt et e s b e e sate e sbe e e sabeesabee s 35
9.3.1.2 Peripheral PiNS Tab.....cuuii ittt e e et e e e e eate e e e e ate e e e e aba e e s entaeeseanreas 35

1S G T 0 0 A I =0 YZPUEPPPRRN 35
18 T A A @ o i 1={ VT | To o [RS U R PPPRNE 37

TR 0 T o 1 [Yol I « TR UPPRRPRRRP 38
9.3.1.4 SDRAM Tab.uiiiiiiiiiiecit ettt ettt s st st e b e b ettt s be e be e beesbeesaeesatesnreen 38

03/10/2018 Page |2

SoC-FPGA Design Guide [DE1-SoC Edition]

9.3.2 Interfacing With FPGA Peripheralsoooiiii ittt et e e e e e 41

9.4 Generating the QSYS SYSTEM ..o e e e e s e st e e e e e e s esnantaeeeeeeesennnnnns 41
9.5 Instantiating the QSYS SYSTEMcci e e et e e s e ate e e s e ate e e e e atee e e eabaeeeennreas 42
9.6 HPS DDR3 Pin ASSIZNMENTS o eeeeieeeeeeeeeeeeeeeee et ee e e e e ee e e s e e e e e e e e e e e e e e e e e aeeeeeeeeaeaaesaaasasaeaaananenns 45
9.7 WIING the DEL-SOC ... iiiiieiiiiie ettt ee sttt e st e e st e e s s saa e e s s b e e e e ssbeeeessaseee e e ssaeaeessseaeessssseeessnnsens 46
9.8 Programming the FPGA ...ttt e e e e e e e e e e e e et te e e e e e e e sesassteeeeeeeeeennntneeeneaeeennn 47
9.9 Creating Target SACArd ArTIfaCscccciiii i et e et e e e et e e e eate e e e e ateeeeennaeeean 49
10 Using the Cyclone V —FPGA — Nios Il = Bare-metalccccceeiiiiiiiniiiieiiie e 50
O R o o =To Y= ¥ | o SRR 50
10.2 Nios Il Programming Theory — Accessing Peripherals.........coceivciiie e 50
10.3 NioS I Programming PraCliCe...ccceeeeieieieieieee e e e e e e e e e e e e e e e e e e aeeeeas 51
11 Using the Cylone V —HPS — ARM — GENEIAl.......oiiiiiiiiiiiiiee ettt ettt e s ate e s sara e e s ssnaee s 53
11.1 Partitioning the SUCAI.......ceee i e e e e e et e e e e e e e e enntraeeeeeeeeennnnreenees 53
11.2 Generating a Header File for HPS Peripheralscoouiiiiiiiii ittt 53
11.3 HPS Programming TREOIYueiiiiciiieeiiiieieeeiieeeesitte e s sttt e s ste e e sstseeesssbeeesssbeeesassseessssseesssseeessnnsenenan 54
12 Using the Cyclone V — HPS — ARM — Bare-metal.........cccceeeiiieciiiiiiiee ettt e e e e nnnnne e e e e 56
I R o =1 (o =T 1= PP SR O PO PP TR 56
12.1.1 Preloader GENEIratioN......ccviieiiiieiee ettt sttt et s s bbb ne e 56
12.1.2 Creating Target sdcard Artifactsccceiiiiiiee i s e 57
12.2 AR I DS-5 ettt e sh e s h et s a bt e bt e bt e bt e h e e eh et ea bt e bt e b e e ebe e sheeeateeateebeeabeeeheenaeenaee 57
12,21 SettiNG UP @ NEW C PrOJECE c oo ieie e e e e e e e e e e e s e e e e e s e s e e e e aeaeeeas 58
12.2.2 Writing @ DS-5 DEBUE SCIIPL....uuiiiiiiiie ettt et et e e st e e e s are e e s s atee e e snnaeas 59
12.2.3 Setting Up the Debug Configurationeeeei oot e e e e 60
12.2.4 Bare-metal Programming......ccccuiiiieiiiiiiiiiiieeee e eescirree e e e s st e e e e e e e s s saataeeeeeeesenasntanneeeessennenns 61
12.2.4.1 ACCeSSING FPGA PEriPNEralsoiii ittt et aee e e 62
12.2.4.2 ACCESSING HPS PeripNEralS.......uuviiiiiiiii et e e e e e e e e s aaan e e e e e e e e 62
12.2.4.2.1 Using Altera’s HWLIB - Prer@qUISIteSuueiiiiiieecciiiieeee ettt e e eectrree e e e e e e evnaeeee e e 62
12.2.4.2.2 Global Timer & CloCk Man@gercc..uuiiiiiiei ettt e e rree e e e e e e e enraaeeeeaeeeeas 63
I Ny R B €1 [OO PRSP 63

12.2.4.3 Launching the Bare-metal Code in the DebUEEEr........ccooviveiiiiiiii e 64
12.2.4.4 DS-5 Bare-metal DEDUZEEI TOUNuviiiiee ittt e et e e e e e e e bree e e e e e e e e eaaeraneeeas 65
12.2.4.4.1 “Registers” View [UNAVAILABLE IN SOC EDS 16.0] ...cc.cevuiriirrieenieenieenie e esie e 65
N Ny A N T o J @] Yo T PSPPSR 67

13 Using the Cyclone V — HPS — ARM — LINUX .eeeieuriiiiiiiiieiiiieeeecieeeesiteeessreeesssteeesssseeessnsaeessnsseessssseeean 68

03/10/2018 Page |3

SoC-FPGA Design Guide [DE1-SoC Edition]

0t R =1 (o Y=Y =T PR 68
13.1.1 Preloader GENEratioN.......cocuiiiiieiieeieee ettt st s e s e s ene e s r e s be e e snreesreee e 68
13.1.2 Creating Target sdcard Artifactseeoiciiie i e et 69

N A 2T To 4 [0 Y- 1= SO OP PRSP USSP 69
13.2.1 Getting & COmMPIliNG U-BOOLciiiiiiiiiiiiiie ettt ettt e e st e e e saree e e saree e s sarae e e snneeas 69
13.2.2 SCHPEING U-BOOT ... 71
13.2.3 Creating Target sdcard Artifactscooeiciee i e re e e 72

13.3 LINUX KBINEL ittt ettt e st e et e e s bt e s bt e sab e e sabeeesabeesabeeesnbeesabeeennbeesareenn 72
13.3.1 Getting & ComMPIliNG LINUX coooeeiiiiieee ettt eere e e e s e e e et e e e e e e e s e nnnsaeeeeeessennnenns 72
13.3.2 Creating Target sdcard Artifactsc.coeoiciiee it 73

13.4 Ubuntu Core ROOT FIlESYSTEIMuviiiiiiiiie ettt ettt e st e e e ata e e e e et e e e e esbeeeesssaeeesnnaeanan 74
13.4.1 ODbtainiNG UDUNTU COTE ...uuiiiiiiiiie it etee sttt ste e e st e e st e e s s eabe e e s satee e s ssbeaeesnreaessnraeessnneeas 74
13.4.2 Customizing UBUNLU COTEeeeiiiiiiice ettt e e e e e e e e et e e e e e e e s e nsnaaeaeeeessennnnnns 74

13.4.2.1 System configuration on firSt DOOTuiiiiiiiiie e e 74
13.4.2.2 Post-install configuration SCrPTccviii et bae e e e eaaeeeeees 76
13.4.3 Creating Target sdcard Artifactsccooccciiiiiiie e e e e e e e e e nnnes 77

13.5 Writing Everything to the SACArdcooi i raee s 77

13.6 Scripting the CoOmMPIete ProCEAUIEeii ittt e s e s s e e e e s aba e e e esbaeeesnnaeeean 78

T A TS i = TR =1 AU TR 79

L3 8 AR DS e aaaaaaaaaaaans 89
13.8.1 SettiNG UP @ NEW C PrOJECE coo e ee e e e s e e e e e e e e e s e e e e eeeeas 89
13.8.2 Creating a Remote Debug Connection to the Linux Distribution...........cccovveeeeeiiiiciiiiieeeee e, 91

13.8.2.1 Find the Linux Distribution’s IP Addresscceeiiieiiiieiieeeiieee e 91
13.8.2.2 Create an SSH RemMote CONNECTION ...cueiiii ittt e e e 93
13.8.2.3 Setting Up the Debug Configurationccocuiieiiiiee e e e 94
13.8.3 LiNUX PrOgrammMiNg .ccceeeeiieiiii et e 95
13.8.3.1 Using Altera’s HWLIB - Prer@qUISITESciicieeeeieiieeecciiie et s ettt e e estae e e estaee e eevaee e sennaeeeenes 97
13.8.3.2 Accessing Hardware Peripherals from UsSer SPacecccccevueriirieeneeneeneenieeeee e 97
13.8.3.2.1 Opening the Physical Memory File DeSCriptorccccciiiiecviiiieeeee et ee e 97
13.8.3.2.2 Accessing HPS Peripheralsc..cooiiiiiiiiieieiie ettt 98
13.8.3.2.3 Accessing FPGA Peripherals......cccuuiiiiiiiii ettt ettt e e e 99
13.8.3.2.4 Cleaning Up Before Application EXitcccccvieeiiiiieiiiiieec et e e evre e e 100
13.8.3.3 Launching the Linux code in the DebUZEEr........cocvviiiiiiiiiii e 100
13.8.3.4 FAY o o I o o 1Yo | [T 101

03/10/2018 Page |4

SoC-FPGA Design Guide [DE1-SoC Edition]

13.8.3.5 DS-5 Linux Debugger RESTIICHIONS ...vuviiieeiiciieeeee ettt et eeeerrre e e e e e e e e aaraaee s
14 L] 51 LSO TSUPPPPPPPPPIOt
15 2] (=] =T o [0TSR

03/10/2018 Page |5

SoC-FPGA Design Guide [DE1-SoC Edition]

2 LIST OF FIGURES

Figure 6-1. Terasic DE1-SOC BOArd [1]uuiiieciiieiiiiieeeeiiieeeecitee e e site e e et e e e s sata e e e esabaee e esaateeessnsteeessnsaseeeanssaeesenssnes 13
Figure 6-2. Block Diagram of the DEL1-SOC BOArd [1]c.uueeeiiiiieiiiiieeeciiee e esitee s eitee e st e e s svre e s e svae e s e snaee e eensaeas 15
T U N R T 2 - T gl 1 USSR UURROt 15
T O SR o o T Y PR URRR 16
Figure 7-1. Altera SoC FPGA Device Block Diagram [2, PP. 1-1].ccccieieiiieeeeciee ettt et e evane e e 17
Figure 7-2. HPS BIOCk Diagram [2, PP. 1-3] coociiieiiiiieeeiiiieeeeitee ettt e e stte e st e e s eabae e e e saat e e e ssasteeessnstaeaesnsaaesssnnens 19
Figure 7-3. HPS Address Space Relations [2, PP. 1-14] ...ttt srieee et e e e s svre e e s vae e e e sbaee e e nneeas 22
Figure 7-4. Simplified HPS BOOT FIOW [2, PP. A=3] euriiiiiiiie ettt e e vte e et e e e aae e e s saaae e e e nnane e e enneeas 25
Figure 7-5. Independent FPGA Configuration and HPS Booting [2, Pp. A-2]....eeiicciiieeiiiieeecieee e e 26
Figure 7-6. FPGA Configuration before HPS Booting (HPS boots from FPGA) [2, pp. A-2]..ceveviievciieeieeeciee e, 26
Figure 7-7. HPS Boots and Performs FPGA Configuration [2, PP. A-3] ..o e e eeereeee e e e e eenens 27
Figure 7-8. HPS BOOT FIOWS [2, PP. A-3] ceriiiiiiiiieieiiiee e eiitee e ettt e e e rtte e e et e e s et e e e eeatteeessasseeesensseeessnsseeeennstneesannens 27
= U I B S o [Tt fl] [o [T) o UL] f DR SR 31
Figure 9-1. Exporting the pll_0.0UtCIK2 SIgNaAlooveii i e e e e e e e e e e e ennnes 33
Figure 9-2. Basic Nios Il System with SDRAM and JTAG UARTcccciiiiieieeieciciiiteee e e sevivnne e e e s e e ssevsnneeee e s esnnnnes 34
Figure 9-3. Adding LEDS 10 the SYSTEM ...eiiiiiiiie ettt e e et e e s bte e e e sabta e e e snsaaeeeenneeas 34
Figure 9-4. HPS COMPONENT PAramEters ..ccciiieuiiiiiiieiei ettt ettt e e s sttt et e e e s s s sibaaaeeeesssssassbaaeeeesssnnnnnnne 35

Figure 9-5. HPS_KEY_N & HPS_LED on DE1-SoC Schematic. Note that the schematic uses “HPS_KEY” instead of
“HPS_KEY_N”" as the name of the signal. This is a mistake, as the button is active-low, so the “_N" in the name

T 1R 1oL o=Te I o) ool =T Y 2P 36
Figure 9-6. HPS_KEY_N & HPS_LED on Qsys Peripheral Pins Tabccccviiiiiiiiieiccieeecee e 36
Figure 9-7. USING PiN G2L fOI SPl....uuiiiiiiiiieeiciiee sttt ttee sttt e st e e st e e s sabae e e s s aeeessnbteeesssbteeesssseaeeesnseaeessssens 36
Figure 9-8. Ethernet MAC CONfIGUIAtIONccuiiii ettt e et e e e et e e e e et e e e s abte e e searteeeeensaaeeeensrnas 37
Figure 9-9. SD/MMC CONTIGUIATION .. .veiiiuiiiiiieccieecciee ettt e et e e te e e te e e tae e s be e e tbeesabeeebaeesabeeeasseesaseesnbasesssessnseeas 37
Figure 9-10. UART CONFIGUIAtIONviiiiiiiiieiciiee ettt e sttt e st e e e et e e e e ae e e esabteeeenabaeeeesnsaeeeessseaaessnsens 37
Figure 9-11. Exported Peripheral PiNS ...t e e e e e e e st eee e e e e e s e e snbaeaeeeaeeeesanstaaeeeeeseennnsnns 38
Figure 9-12. Quad SPI Flash, USB, SPI, and 12C peripheral pin configurationscccevevveveieeeeeereseseeieeeneeneas 38
Figure 9-13. Adding the "Standalone" HPS t0 the SyStemMciiiiiii i e 40
Figure 9-14. Adding Buttons and 7-segment Displays to the Lightweight HPS-to-FPGA Bridgeccccceeeennnene 41
Figure 9-15. GENErate QSYS SYSTOIM ..uuuuiiiiiiii s anaaanannnnnn 42
Figure 9-16. Qsys Component INSTANTIatioNnuuuuuiiii s 43
Figure 9-17. FiNal TOP-18VEI ENTItY....cciiiiiiieieiiie ettt e et e e e e e e s abte e e e snrtaeeesnsaeeeseasenas 45

03/10/2018 Page |6

SoC-FPGA Design Guide [DE1-SoC Edition]

Figure 9-18. Correct HPS DDR3 Pin Assignment TCL Script Selection.......cccoccveeiiciieeiiiieee e 46
FIGUIE 9-19. DEL-SOC WilINE ..uuuuuuiiiiiiiiiiii s ssnnsnnnnnnnnnnnnn 47
Figure 9-20. QUAItUS Prime PrOSrammMer.. e eeiiiuiiiiiieiiiieuiiaatiuaaaaaaaaaaaaaeaaaaaaaeaaaaaaaaaaaaaaaaaaaaasasasasasasannsnsnsaannnnns 47
= Ul R B B o CF N Y= =Tt o o PSR 48
FIgUre 9-22. JTAG SCAN ChaiN ...cciiiiiiiieiiiie st estee sttt e sttt e et e e e st e e s st e e s s s b eeeessnbeeeesassteeesssseeaeesnsseaesnnsses 48
Figure 9-23. Programming the FPGAooo ittt e e e e e e e et te e e e e e e e e sanbeaeeeeaeeesannstaeaeeeessennsnes 48
Figure 10-1. Incorrect Nios [l Peripheral ACCESS IN Cuviieeiiiieiciiiee ettt eetee e e te e e e eae e e e saae e e e e baee e e enneeas 50
Figure 10-2. Correct Nios Il Peripheral ACCESS iN C ...uiiiuiiiiiiiiiie ettt e st e s e e s sbae e e s sbae e e e sbaeeeesnseeas 51
T 0T T o T o T o 52
Figure 10-4. Nios Il Target ConNECtion DialOgcc.vveeiiiiiiiiciiee ettt et e e s re e e e s e e e e e rae e e e ennreas 52
Figure 11-1. Partitioning the SACAIdeiii i e e e e et e e st e e e e snbt e e e e snsteeeeenseeas 53
= U T I o o I Yo Yol Y £y =T o T o SRS 54
FIUIE 12-1. NE@W BSP DiIalOg ..ueeeiieiiiiciiiiiiie e e ettt e e e e s e ettt e e e e s e et te e e e e e e e ssnastaeeeeeaeeesannsssnnaeeaeeesnsssanneeeessannnsne 56
Figure 12-2. Preloader SETEINGS DialOg......cciuciiie i eciiee ettt eree e et e et e e e st e e e s e abre e e eenrteeeesnsaneeeensenas 57
Figure 12-3. NEW C ProjeCt DI@lOg ...ciiiicuiiiiiiiiiie ettt ttee sttt s e e s tee e s s e e e st e e e s ssbte e e ssnbteaessnsaeaeennseaeesnnssens 58
FIUIre 12-4. debUE SETUP.OS. . ciiiii it e e e e s e e e e e e e e s st aeeeeeeeeesannstaaneeeeeeesansstanneesessannnsne 60
Figure 12-5. Debug Configuraton “Connection” Taboooiiiiiiiciic e 60
Figure 12-6. Debug Configuration "Files" Tab.......cciiiiiciiieicciiee et e e e e ae e e e srree e e 61
Figure 12-7. Debug Configuration "Debugger Tab ... e e 61
Figure 12-8. hps_baremetal.c main() fFUNCHIONoiiiiiie e et e et e e 62
Figure 12-9. Accessing FPGA BUttons from the HPSooo ittt et 62
Figure 12-10. Programming the HPS Global TIMercccuuiiiiiiiiieecee ettt s e e s 63
Figure 12-11. Programming the HPS GPIO Peripheral ...ttt e e e e e e e 64
Figure 12-12. Switching to the DS-5 DebUg PeIrsPECHIVE.uuiiiii ittt e e e e srrree e e e e e e snanes 65
Figure 12-13. DEbUZ CONTIOI VIBW ...coiiiiiiie ettt ettt e ettt e e et e e e et e e e st e e s e sabb e e e eeabteeesansseeeesnsaneesansens 65
Figure 12-14. DS-5 DebUZEEr CONLIOIS.....iiiiiiiiie ittt eccitee st ee et e st e s srre e e et e e e sbe e e e ssabbeeeesssaeeeesnseaeessnsens 65
Figure 12-15. DS-5 DebUgEer REZISLEIS VIBW......uuiiiieiiiiccciiiieee sttt e e e e e ssttee e e e e e e e e snraae e e e e e eeesansbaaeeesassennnnnns 66
Figure 12-16. DS-5 APP CONSOIE VIBWuiiiiiiiiieeciiee e citeeeettee ettt e et e e s et e e s et e e e e st e e e esabteeessnssaeeesnsaaeesansens 67
FIUIE 13-1. NEW BSP DialOg ..uueiiiiiiiiieiiiiieieiieeesitee sttt e sttt e e sttt e e st e e e st e e e sabeeeessnbeeeesasteeessnstaeeesnseneessnsees 68
Figure 13-2. Preloader Settings DialOg.....uuu ettt e e e e e e ettre e e e e e e e e s nbaaa e e e e e eessanstasaeasaesennsnns 69
FIGUIE 13-3. U-BOOT SCIIPT .. uuueuiiiiitiiiiiiiii s ssansannnnnnnnnnnn 72
Figure 13-4. Rootfs system configuration script to be used on first boot ("config_system.sh")........cccceeennn..ee. 76
[T ={0 g B BT S Yo 18 RN L] of A (o Lo or=| N {1 [=TS SR 76

03/10/2018 Page |7

SoC-FPGA Design Guide [DE1-SoC Edition]

Figure 13-6. Rootfs post-install configuration script to be used AFTER the first boot (“config_post_install.sh”).

.. 77
Figure 13-7. Target SACArd dir@CTONYcuuiii ettt e e e et e e e e e e bt e e e s sabteeeesssaeeeesnseaeeeenseens 77
Figure 13-8. Incorrect DE1-SoC Boot Messages (from U-BOOt)cocecuiiieeiiiiieieiiiee ettt e 80
Figure 13-9. DE1-SoC Boot Messages (firSt DOOT)ccccuuiiiieciiiiicee et 85
Figure 13-10. DE1-SoC Boot Messages (SECON DOOL)eiiiciiiiiiiiiieiciiee ettt erree e e aee e e 89
Figure 13-11. NeW C Project DIialOg ...ccccuuiiiiiiiie ittt ettt ettt s et e e s ee e e st e e e sssbaeeeesnnaeaeennseeaesnnseens 90
Figure 13-12. hps_linux.c with an empty main() fFUNCLION.ooiiiiiii e e 91
Figure 13-13. ARM DS-5 Serial TEIrMINGl....ccccuviiiieiiie ettt e e ere e e e e e e e e ebre e e s saaa e e e eensaeeeeenneeas 91
Figure 13-14. ARM DS-5 Serial Terminal SELINGSeeiiiiiiiiiiiiie ettt e e e et e e e aae e s e s raee e e sneeas 92
Figure 13-15. ARM DS-5 Serial Terminal LINUX Promptcoocuiiiiiiiieeiiiiee it ssree st e s e svee e e svaee s e 92
Figure 13-16. Obtaining the DE1-SoC's IP Address through ARM DS-5’s Serial Terminal......cccccoeeecviiieeeeiiiicnnns 93
Figure 13-17. New SSH ONly CONNECHION ..cciiuiiiiiiiiiieeceee e ctee et s e s e et e e e et e e e s bteeessnstaesesnsaaeeennsenas 93
Figure 13-18. New SSH Connection In "Remote Systems"” VIEW.......couvciiiiiiiiiiiiciiiieeeriee st see e 94
Figure 13-19. Debug Configuraton “Connection” Tabcc.uviieiiii i e e e 94
Figure 13-20. Debug Configuration "Files" Tab........eeiiiiii i aee e e 95
Figure 13-21. Debug Configuration "Debugger' Tab ...t 95
Figure 13-22. hps_linux.c Main() FUNCLION.oooiiiiiiiie e et e e tre s te e e sta e e s e e e eteeesateeenree s 96
Figure 13-23. Prototype of the mmap() FUNCLION.oooiiiii e 97
Figure 13-24. open_physical_memory_device() fUNCLION.ciiiiiii i e 97
Figure 13-25. mmap_hps_peripherals() fUNCLION.ccoo et e 98
Figure 13-26. setup_hps_gPio() FUNCHION. ...c...eiii et e st e e et e e e et e e e e e ntree e e ennreas 98
Figure 13-27. handle_hps_1ed() FUNCHION.uiii it e e e re e e s e aae e e e naee e e nneeas 99
Figure 13-28. mmap_fpga_peripherals() fuNCHioN.cuvii i e 99
Figure 13-29. setup_fpga_leds() FUNCLION.ccii ittt et e e s be e e eareeeaes 100
Figure 13-30. handle_fpga_1eds() FUNCLION.coociiiii e et earee e s e are e e e anaeas 100
Figure 13-31. munmap_peripherals() family of funNCtions.cccvii i 100
Figure 13-32. close_physical_memory_device() fFUNCLION.c.ccociiiiiieiiecee e e 100
Figure 13-33. Switching to the DS-5 Debug PerspeCtiVe.......ueeiei ittt e e e e svrree e e e e 101
Figure 13-34. DebU CONIIOI VIEBWueiiiiieeii ettt etr e e e e e e e ettt e e e e e e s snbateeeeeeeeesnnnsannneeeeenans 101
Figure 13-35. DS-5 DEDUZEEI CONTIOIS....ciiiiiiieeecciiie ettt ettt e et e e te e e e e ete e e s eate e e e eataeeeeataeesensraeesennees 101
Figure 13-36. DS-5 APP CONSOIE VIBW ...uuuiiiiiieiiiiiiiieeee e ettt e e e e e e eette e e e e e e e e s attaeeeeeeeesnstsaaseeaeesesnnssssaneeaaanans 102

03/10/2018

Page | 8

SoC-FPGA Design Guide [DE1-SoC Edition]

3 TABLE OF TABLES

Table 7-1. Possible HPS and FPGA Power ConfigUurationsS.........eiiicuieeeeciiee e eeiree e ssivee e iree e e sae e e e entee e e 18
Table 7-2. HPS Address SPAces [2, PP. 1-13] ittt e e e re e e tee e e s sbr e e e s bre e e s snsaeeeesasaaeeesaneeas 22
Table 7-3. Common Address Space Regions [2, PP. 1-15] .ttt ereee e ssre e e e e e e e s srae e e s 22
Table 7-4. HPS Peripheral Region Address Map [2, PP. 1-16] .eueereeieiicciieeeee ettt e e e e e e ane e e e e e 24
Table 11-1. Predefined Data Sizes in SOCAINooiiiiiiie e 54

03/10/2018 Page |9

SoC-FPGA Design Guide [DE1-SoC Edition]

4 PREREQUISITES

4.1 HARDWARE
We use the Terasic DE1-SoC board in this guide, but the guide can easily be adapted to be used with any other
Cyclone V SoC device.

4.2 SOFTWARE

This guide assumes users are running a version of the UBUNTU operating system on their host machines.
Furthermore, it is assumed you have ROOT PERMISSIONS on the machine and have installed the following
programs:

e Quartus Prime

e Nios Il Software Build Tools (Nios Il SBT)
e ModelSim-Altera

e SoC Embedded Design Suite (SoC EDS)

Additionally, we require that you install the following packages from the Ubuntu package manager:

o git
e minicom

Finally, we insist that ALL command-line instructions provided in this guide MUST be executed in an ALTERA
EMBEDDED COMMAND SHELL. The executable for the Altera Embedded Command Shell can be found at
“<altera_install_directory>/<version>/embedded/embedded_command_shell.sh”

4.2.1 Software Versions Used in this Guide

e All HARDWARE examples in this guide were made with Quartus Prime, SoC EDS and Nios Il SBT version
16.0.

o All SOFTWARE examples in this guide were made with Quartus Prime, SoC EDS and Nios Il SBT version
16.0.

e Some FIGURES in this guide were made with Quartus Prime, SoC EDS and Nios Il SBT version 14.0.

e The HOST OPERATING SYSTEM used is UBUNTU 16.04, but all instructions in the guide have also been
successfully tested on all versions of Ubuntu from 14.04 to 16.04.

4.2.2 Licenses
e Chapter 12: “Using the Cyclone V — HPS — ARM — Bare-metal” shows how to perform bare-metal
debugging for demonstration purposes in order to see what the systems described in this tutorial can
do. However, | highly recommend using linux on the HPS instead or bare-metal debugging.

Indeed, BARE-METAL debugging in ARM DS-5 REQUIRES a PAID LICENSE (not the free community
license). If you do not have a paid license, then you should use linux on the HPS instead of bare-metal
debugging as debugging a LINUX application in ARM DS-5 does NOT REQUIRE a PAID LICENSE, and is
FULLY SUPPORTED with the FREE COMMUNITY LICENSE.

Additionally, using linux on such a system is much easier and supperior to bare-metal programming.

e Using a Nios Il processor as described in this tutorial REQUIRES a PAID LICENSE in order to convert the
FPGA programming file that Quartus Prime generates (*.sof) into a RAW Binary File (*. rbf) to be
used to program the FPGA automatically at boot time.

If you do not have a paid license for the Nios Il processor, then you should avoid using it and just use
the HPS instead. No license is required for using the HPS.

03/10/2018 Page |10

SoC-FPGA Design Guide [DE1-SoC Edition]

03/10/2018 Page |11

SoC-FPGA Design Guide [DE1-SoC Edition]

5 INTRODUCTION

The development of embedded systems based on chips containing one or more microprocessors and hardcore
peripherals, as well as an FPGA part is becoming more and more important. This technology gives the designer
a lot of freedom and powerful abilities. Classical design flows with microcontrollers are emphasized with the
full power of FPGAs.

Mixed designs are becoming a reality. One can now design specific accelerators to greatly improve algorithms,
or create specific programmable interfaces with the external world.

Two main HDL (Hardware Design Language) languages are available for the design of the FPGA part: VHDL and
Verilog. There also exist other tools that perform automatic translations from C to HDL. New emerging
technologies like OpenCL allow compatibility between high-level software design, and low-level hardware
implementations such as:

e Compilation for single or multicore processors

e Compilation for GPUs (Graphical Processing Unit)

e Translation and compilation for FPGAs. The latest models use a PCle interface or some other way of
parameters passing between the main processor and the FPGA

We will introduce and use the Terasic DE1-SoC board, as well as the ARM DS-5 IDE.

03/10/2018 Page |12

http://de1-soc.terasic.com/

SoC-FPGA Design Guide [DE1-SoC Edition]

6 TERASIC DE1-S0oC BOARD

Figure 6-1. Terasic DE1-SoC Board [1]

The DE1-SoC board has many features that allow users to implement a wide range of designed circuits. We will
discuss some noteworthy features in this guide.

6.1 SPECIFICATIONS

6.1.1
[]
[]

FPGA Device

Cyclone V SoC 5CSEMA5F31C6 Device

Dual-core ARM CORTEX-A9 (HPS)

85K Programmable Logic Elements

4’450 Kbits embedded memory

6 Fractional PLLs

2 Hard Memory Controllers (only seems to be used for the HPS DDR3 SDRAM, not the FPGA SDRAM)

Configuration and Debug
Serial Configuration device — EPCS128 on FPGA
On-Board USB BLASTER Il (Normal type B USB connector)

Memory Device

64 MB (32Mx16) SDRAM on FPGA

1 GB (2x256Mx16) DDR3 SDRAM on HPS
MICRO SD Card Socket on HPS

Communication

Two Port USB 2.0 Host (ULPI interface with USB type A connector)
USB to UART (micro USB type B connector)

10/100/1000 Ethernet

PS/2 mouse/keyboard

IR Emitter/Receiver

03/10/2018 Page |13

SoC-FPGA Design Guide [DE1-SoC Edition]

6.1.5 Connectors
e Two 40-pin Expansion Headers
e One 10-pin ADC Input Header
e One LTC connector (One Serial Peripheral Interface (SPI) Master, one 12C and one GPIO interface)

6.1.6 Display
e 24-bit VGA DAC

6.1.7 Audio
e 24-bit CODEC, line-in, line-out, and microphone-in jacks

6.1.8 Video Input
e TV Decoder (NTSC/PAL/SECAM) and TV-in connector

6.1.9 ADC
e Sample rate: 500 KSPS
e Channel number: 8
e Resolution: 12 bits
e Analoginputrange:0~ 2.5V or0~5V as selected via the RANGE bit in the control register

6.1.10 Switches, Buttons and Indicators

5 User Keys (FPGA x4; HPS x1)

10 User switches (FPGA x10)

11 User LEDs (FPGA x10; HPS x1)

2 HPS Reset Buttons (HPS_RST_n and HPS_WARM_RST_n)
e Six 7-segment displays

6.1.11 Sensors
e G-Sensor on HPS

6.1.12 Power
e 12V DCinput

03/10/2018 Page |14

SoC-FPGA Design Guide [DE1-SoC Edition]

6.1.13 Block Diagram

‘Ill-__igﬁﬁﬁﬂiﬁﬁiﬁ

25MHz Clock Input
(Clock Generator x1)

Normal Type-B
X2
f i 4 v + * v
o ,
Micro
. SD Card
SDRAMx1664MB |
R« | 4%"‘}"» TSE U] —
40 pin GPIO —
gegccoosucsccoccooon x36
40 pin GPIO
Cyclone®™V Ll
Video DAC | 4 oC”’ i3 @_ b
5CSEMASF31C6N 5 usellﬁrosl y
ormal Type-A| = il
DDR3
N7 I SDRAM x32 1 GB
: e FPGA
Line In HPS 12C 12C .
ol — e
From HPS _Tswitch Control \
IR RX |-~ USB Mini-8
1
Clock(Clock Generator) | ERCEEN
e FPGA HPS 27 LTC Header
coooo v =
x4 |x10 [x42 |x10 x6 x1 x1 Tx1 Tx1
Wﬂ‘ ' L] Ll e
Ll Ll L] Ll
| HPS = HPS HPS WARM
hphh'ek' ?‘ User LED RsT Usesr RST
ol TR0
22424802044 dddddddadd
mmmm LED x10
EEERRRBRRR ;
Slide Switch x10 L 20K 20K 29K 2K 2R
0
(N AR o A I A)
7-Segment Display x6
Figure 6-2. Block Diagram of the DE1-SoC Board [1]
6.2 LAYOUT

o
o
°
L
"~
e
e
)
e
.
e
e
e
e
P
®
o
o
e
o

Ll

2?2:2 (’ q L) ” 0.

cooon

38001
53300

STEED)

Figure 6-3. Back [1]

03/10/2018

Page |15

SoC-FPGA Design Guide [DE1-SoC Edition]

B Frca

M =

I systen VGA Out
Mic Line Line VGA HPS Gigabit HPS
In In Out Video-In 24-bit DAC Ethernet ‘ st

JTAG Header

Audio Codec

Video Decoder
PS2

2x20 GPIO x2

USB-Blaster || ——=
Power DC Jack 7
o Altera 28-nm
BE— Cyclone V FPGA
| with ARM Cortex-A9

Power ON/OFF —)
|

64MB SDRAM
ADC
ADC Header

7-Segment Display
LED x10 i ' o A o e — /S Use
ﬂﬂﬂnﬂﬂﬂnr lglels ™% -

| vl]] | o]] |]| bt)

Switch x10 Button x4

Figure 6-4. Front [1]

e Green for peripherals directly connected to the FPGA
e Orange for peripherals directly connected to the HPS
e Blue for board control

03/10/2018 Page |16

SoC-FPGA Design Guide [DE1-SoC Edition]

7 CYCLONE V OVERVIEW

This section describes some features of the Cyclone V family of devices. We do not list all features, but only
the ones most important to us. All information below, along with the most complete documentation regarding
this family can be found in the Cyclone V Device Handbook [2].

7.1 INTRODUCTION TO THE CYCLONE V HARD PROCESSOR SYSTEM
The Cyclone V device is a single-die system on a chip (SoC) that consists of two distinct parts — a hard
processor system (HPS) portion and an FPGA portion.

Altera SoC FPGA Device
HPS Portion FPGA Portion
XIXI XX XX XXX XX XX XXX X X X X X X X X X X
Flash SDRAM Controller
Controllers Subsystem Control| User HSSI
Block l/0 Transceivers
Cortex-A9 MPU Subsystem
HPS-FPGA
Interfaces FPGA Fabric
On-Chip Support (LUTs, RAMSs, Multipliers & Routing)
Memories Peripherals
Interface Hard Hard Memory
PLL) Deb PLL
S Peripherals ebug s PCle Controllers
DX XTI XTI XTI XX XTI DX DX XTI X X DX X DX X IXT X

Figure 7-1. Altera SoC FPGA Device Block Diagram [2, pp. 1-1]

The HPS contains a microprocessor unit (MPU) subsystem with single or dual ARM Cortex-A9 MPCore
processors, flash memory controllers, SDRAM L3 Interconnect, on-chip memories, support peripherals,
interface peripherals, debug capabilities, and phase-locked loops (PLLs). The dual-processor HPS supports
symmetric (SMP) and asymmetric (AMP) multiprocessing.

The DE1-SoC has a DUAL-processor HPS.

The FPGA portion of the device contains the FPGA fabric, a control block (CB), phase-locked loops (PLLs), and
depending on the device variant, high-speed serial interface (HSSI) transceivers, hard PCl Express (PCle)
controllers, and hard memory controllers.

The DE1-SoC does not contain any HSSI transceivers, or hard PCle controllers.
The HPS and FPGA portions of the device are distinctly different. The HPS can boot from

e the FPGA fabric,
e external flash, or
e JTAG

In contrast, the FPGA must be configured either through

e the HPS, or
e an externally supported device such as the Quartus Prime programmer.

03/10/2018 Page |17

SoC-FPGA Design Guide [DE1-SoC Edition]

The MPU subsystem can boot from

e flash devices connected to the HPS pins, or
e from memory available on the FPGA portion of the device (when the FPGA portion is previously
configured by an external source).

The HPS and FPGA portions of the device each have their own pins. Pins are not freely shared between the
HPS and the FPGA fabric. The FPGA I/0 PINS are configured by an FPGA CONFIGURATION IMAGE through the
HPS or any external source supported by the device. The HPS I/0 PINS are configured by SOFTWARE executing
in the HPS. Software executing on the HPS accesses control registers in the Cyclone V system manager to
assign HPS 1/0 pins to the available HPS modules.

The SOFTWARE that configures the HPS I/O PINS is called the PRELOADER.

The HPS and FPGA portions of the device have separate external power supplies and independently power on.
You can power on the HPS without powering on the FPGA portion of the device. However, to power on the
FPGA portion, the HPS must already be on or powered on at the same time as the FPGA portion. Table 7-1
summarizes the possible configurations.

HPS Power FPGA Power

On On
On Off
Off Off

Table 7-1. Possible HPS and FPGA Power Configurations

03/10/2018 Page |18

SoC-FPGA Design Guide [DE1-SoC Edition]

7.2 FEATURES OF THE HPS

FPGA Portion FPGAto HPS HPS to FPGA Lightweight HPS to FPGA
Control 1-6
Block Masters Slaves Slaves Masters
1t 32-, 64- & 128-Bit AXI A 32-, 64- & 128-Bit AXI k 32-Bit AXI
'y '
o FPGA FPGA-to-HPS HPS-to-FPGA Lightweight
o Manager Bridge Bridge HPS-to-FPGA Bridge
Iy Iy Iy
32-Bit 64-Bit AXI 64-Bit AXI 32-Bit AXI
L4, 32-Bit Bus
L3 Interconnect y MPU Subsystem
(NIC-301)
ARM Cortex-A9
MPCore
o o |28t - cPU0 | cput
648it »|ACP D > AcP| SCU
32-Bit Mapper
ETR = <
. A
L3 Main y_ ¥
" Switch L2
32-Bit
- SDIMMC > < 64-Bit Cache
L3 Master
Peripheral 32-Bit _
EMAC | 32-Bit Switch : L S™
) > 32-Bit
s2Bit | BootROM
C| USB | 328it | s Y
> cg)e -~ sl ! On-Chip RAM
32-Bit _ SDRAM <
> Controller o
NAND 32:Bit > 32-Bit * 64-Bit oA e Subsystem
Flash 4 e
3
32-Bit 4
32-Bit L3 Slave Peripheral Switch Quad
- 32-Bit -~
32-Bit > SPI
Flash
'y
v _ L4, 32-Bit Bus y _
4 4 Y 4 Y 4 4 \4 Y Y Y
CAN Timer 12c Watchdog| | (yaRT GPIO SPI Clock Reset Scan System
2 (4) @) T'(’;)e’ (2 3) @) Manager | |Manager | |Manager | |Manager

Figure 7-2. HPS Block Diagram [2, pp. 1-3]

The following list contains the main modules of the HPS:

e Masters

O

O O O O O O

MPU subsystem featuring dual ARM Cortex-A9 MPCore processors

General-purpose Direct Memory Access (DMA) controller

Two Ethernet media access controllers (EMACs)
Two USB 2.0 On-The-Go (OTG) controllers
NAND flash controller
Secure Digital (SD) / MultiMediaCard (MMC) controller
Two serial peripheral interface (SPI) master controllers
ARM CoreSight debug components

e Slaves

O O O

Quad SPI flash controller
Two SPI slave controllers
Four inter-integrated circuit (1°C) controllers
64 KB on-chip RAM

03/10/2018

Page |19

SoC-FPGA Design Guide [DE1-SoC Edition]

64 KB on-chip boot ROM

Two UARTs

Four timers

Two watchdog timers

Three general-purpose I/0O (GPIO) interfaces
Two controller area network (CAN) controllers
System manager

Clock manager

Reset manager

Scan manager

FPGA manager

0O O 0 O o 0O o 0O o O O

7.3 SYSTEM INTEGRATION OVERVIEW
In this part, we briefly go through some features provided by the most important HPS components.

7.3.1 MPU Subsystem
Here are a few important features of the MPU subsystem:

e Interrupt controller
e One general-purpose timer and one watchdog timer per processor
e One Memory management unit (MMU) per processor

The HPS masters the L3 interconnect and the SDRAM controller subsystem.

7.3.2 SDRAM Controller Subsystem
The SDRAM controller subsystem is MASTERED by HPS MASTERS and FPGA FABRIC MASTERS. It supports
DDR2, DDR3, and LPDDR2 devices. It is composed of 2 parts:

e SDRAM controller
e DDR PHY (interfaces the single port memory controller to the HPS 1/0)

The DE1-SoC contains DDR3 SDRAM
7.3.3 Support Peripherals

7.3.3.1 System Manager
This is one of the most essential HPS components. It offers a few important features:

e PIN MULTIPLEXING (term used for the SOFTWARE configuration of the HPS I/0 PINS by the
PRELOADER)

e Freeze controller that places I/O elements into a safe state for configuration

e Low-level control of peripheral features not accessible through the control and status registers (CSRs)

The low-level control of some peripheral features that are not accessible through the CSRs is NOT externally
documented. You will see this type of code when you generate your custom preloader, but must NOT use the
constructs in your own code.

7.3.3.2 FPGA Manager
The FPGA manager offers the following features:

e Manages the configuration of the FPGA portion of the device
e Monitors configuration-related signals in the FPGA
e Provides 32 general-purpose inputs and 32 general-purpose outputs to the FPGA fabric

03/10/2018 Page |20

SoC-FPGA Design Guide [DE1-SoC Edition]

7.3.4

Interface Peripherals

7.3.4.1 GPIO Interfaces
The HPS provides three GPIO interfaces and offer the following features:

Supports digital de-bounce

Configurable interrupt mode

Supports up to 71 1/0 pins and 14 input-only pins, based on device variant
Supports up to 67 I/0O pins and 14 input-only pins

The DE1-SoC has 67 1/0 pins and 14 input-only pins

7.3.5 On-Chip Memory
The following on-chip memories are DIFFERENT from any on-chip memories located in the FPGA fabric.

7.3.5.1 On-Chip RAM
The on-chip RAM offers the following features:

64 KB size
High performance for all burst lengths

7.3.5.2 Boot ROM
The boot ROM offers the following features:

64 KB size
Contains the code required to support HPS boot from cold or warm reset
Used EXCLUSIVELY for booting the HPS

The code in the boot ROM CANNOT be changed.

7.4 HPS-FPGA INTERFACES

The HPS-FPGA interfaces provide a variety of communication channels between the HPS and the FPGA fabric.
The HPS-FPGA interfaces include:

FPGA-to-HPS bridge — a high performance bus with a configurable data width of 32, 64, or 128 bits. It
allows the FPGA fabric to master transactions to slaves in the HPS. This interface allows the FPGA
fabric to have full visibility into the HPS address space.

HPS-to-FPGA bridge — a high performance bus with a configurable data width of 32, 64, or 128 bits. It
allows the HPS to master transactions to slaves in the FPGA fabric. | will sometimes call this the
“heavyweight” HPS-to-FPGA bridge to distinguish its “lightweight” counterpart (see below).
Lightweight HPS-to-FPGA bridge — a bus with a 32-bit fixed data width. It allows the HPS to master
transactions to slaves in the FPGA fabric.

FPGA manager interface — signals that communicate with the FPGA fabric for boot and configuration.
Interrupts — allows soft IPs to supply interrupts directly to the MPU interrupt controller.

HPS debug interface — an interface that allows the HPS debug control domain to extend into the FPGA.

7.5 HPS ADDRESS MAP

7.5.1 HPS Address Spaces
The HPS address map specifies the address of slaves, such as memory and peripherals, as viewed by the HPS
masters. The HPS has 3 address spaces:

03/10/2018 Page |21

SoC-FPGA Design Guide [DE1-SoC Edition]

Name Description Size \
MPU MPU subsystem 4 GB
L3 L3 interconnect 4 GB

SDRAM | SDRAM controller subsystem | 4 GB

Table 7-2. HPS Address Spaces [2, pp. 1-13]

The following figure shows the relationships between the different HPS address spaces. The figure is NOT to
scale.

4GB
Peripheral Region Lightweight | Peripheral Region
1T ——FPGA
FPGA Slaves FPGA
Slaves Slaves
Region Region
d J f S - 3GB
A
| SbrRam 2GB
Region
SDRAM
Window
SDRAM
Window [oeesNepeel el e 1GB
\/
RAM / SDRAM > 0GB
L3 MPU SDRAM

Figure 7-3. HPS Address Space Relations [2, pp. 1-14]

The window regions provide access to other address spaces. The thin black arrows indicate which address
space is accessed by a window region (arrows point to accessed address space).

The SDRAM window in the MPU can grow and shrink at the top and bottom (short blue vertical arrows) at the
expense of the FPGA slaves and boot regions. The ACP window can be mapped to any 1 GB region in the MPU
address space (blue vertical bidirectional arrow), on gigabyte-aligned boundaries.

The following table shows the base address and size of each region that is common to the L3 and MPU address
spaces.

Region Name Description Base Address Size ‘

FPGA slaves FPGA slaves connected to the heavyweight HPS-to- | 0xCO000000 960 MB
FPGA bridge

HPS peripherals Slaves directly connected to the HPS (corresponds | OxFCO00000 64 MB
to all orange colored elements on Figure 6-4 and
Figure 6-3)

Lightweight FPGA slaves | FPGA slaves connected to the lightweight HPS-to- 0xFF200000 2 MB
FPGA bridge

Table 7-3. Common Address Space Regions [2, pp. 1-15]

03/10/2018 Page |22

SoC-FPGA Design Guide [DE1-SoC Edition]

7.5.2 HPS Peripheral Region Address Map
The following table lists the slave identifier, slave title, base address, and size of each slave in the HPS
peripheral region. The Slave Identifier column lists the names used in the HPS register map file provided by

Altera (more on this later).

Slave Identifier Slave Title Base Address Size
STM STM 0xFC000000 48 MB
DAP DAP 0xFFO00000 2 MB
LWFPGASLAVES FPGA slaves accessed with lightweight HPS-to-FPGA 0xFF200000 2 MB

bridge

LWHPS2FPGAREGS | Lightweight HPS-to-FPGA bridge GPV O0xFF400000 1 MB
HPS2FPGAREGS HPS-to-FPGA bridge GPV OxFF500000 1 MB
FPGA2HPSREGS FPGA-to-HPS bridge GPV 0xFF600000 1 MB
EMACO EMACO OxFF700000 8 KB
EMAC1 EMAC1 O0xFF702000 8 KB
SDMMC SD/MMC OxFF704000 4 KB
QSPIREGS Quad SPI flash controller registers O0xFF705000 4 KB
FPGAMGRREGS FPGA manager registers OxFF706000 4 KB
ACPIDMAP ACP ID mapper registers OxFF707000 4 KB
GPIOO GPIOO OxFF708000 4 KB
GPIO1 GPIO1 O0xFF709000 4 KB
GPIO2 GPI02 OxFF70A000 4 KB
L3REGS L3 interconnect GPV OxFF800000 1MB
NANDDATA NAND controller data O0xFF900000 1 MB
QSPIDATA Quad SPI flash data OxFFA00000 1 MB
USBO USBO OTG controller registers OxFFBOO0O0OO 256 KB
USB1 USB1 OTG controller registers OxFFB40000 256 KB
NANDREGS NAND controller registers OxFFB80000 64 KB
FPGAMGRDATA FPGA manager configuration data O0xFFB90000 4 KB
CANO CANO controller registers OxFFC00000 4 KB
CAN1 CAN1 controller registers OxFFC01000 4 KB
UARTO UARTO OxFFC02000 4 KB
UART1 UART1 OxFFC03000 4 KB
12C0 12C0 OxFFC04000 4 KB
12C1 12C1 OxFFC05000 4 KB
12C2 12C2 OxFFC06000 4 KB
12C3 12C3 OxFFC07000 4 KB
SPTIMERO SP TimerO OxFFC08000 4 KB
SPTIMER1 SP Timerl OxFFC09000 4 KB
SDRREGS SDRAM controller subsystem registers OxFFC20000 128 KB
OSCI1TIMERO OSC1 Timer0O OxFFDO0000 4 KB
OSC1TIMER1 OSC1 Timerl OxFFD01000 4 KB
LAWDO Watchdog0 OxFFD02000 4 KB
L4AWD1 Watchdogl OxFFD03000 4 KB
CLKMGR Clock manager O0xFFD04000 4 KB
RSTMGR Reset manager OxFFD05000 4 KB
SYSMGR System manager OxFFDO08000 16 KB
DMANONSECURE DMA nonsecure registers OxFFEOO000 4 KB
DMASECURE DMA secure registers OxFFEO01000 4 KB
SPISO SPI slave0 OxFFE02000 4 KB
SPIS1 SPI slavel OxFFEO3000 4 KB
SPIMO SPI masterO OxFFFO0000 4 KB
SPIM1 SPI masterl OxFFF01000 4 KB

03/10/2018

Page |23

SoC-FPGA Design Guide [DE1-SoC Edition]

SCANMGR Scan manager registers OxFFF02000 4 KB
ROM Boot ROM OxFFFDOO00 64 KB
MPUSCU MPU SCU registers OxFFFEC000 8 KB
MPUL2 MPU L2 cache controller registers OxFFFEFO00 4 KB
OCRAM On-chip RAM OxFFFFO000 64 KB

Table 7-4. HPS Peripheral Region Address Map [2, pp. 1-16]

The programming model for accessing the HPS peripherals in Table 7-4 is the same as for peripherals created
on the FPGA fabric. That is, every peripheral has a base address at which a certain number of registers can be
found. You can then read and write to a certain set of these registers in order to modify the peripheral’s
behavior.

When using a HPS peripheral in Table 7-4, you do not need to hard-code any base address or peripheral
register map in your programs, as Altera provides a header file for each one.

Three directories contain all HPS-related HEADER FILES:

1. “<altera_install _directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/inclu
de))

Contains HIGH-LEVEL header files that typically contain a few FUNCTIONS which facilitate control over
the HPS components. These functions are all part of Altera’s HWLIB, which was created to make
programming the HPS easier. This directory contains code that is common to the Cyclone V, Arria V,
and Arria 10 devices.

2. ‘“<altera_install directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/inclu
de/soc_cv_av”

Same as above, but more specifically for the Cyclone V and Arria V FPGA families.

3. “<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/inclu
de/soc_cv_av/socal”

Contains LOW-LEVEL header files that provide a peripheral’s BIT-LEVEL REGISTER DETAILS. For
example, any bits in a peripheral’s register that correspond to undefined behavior will be specified in
these header files.

To illustrate the differences among the high and low-level header files, we can compare the ones related to the
FPGA manager peripheral:

1. “../hwlib/include/soc_cv_av/alt_fpga_manager.h”

ALT_STATUS_CODE alt_fpga_reset_assert(void);
ALT_STATUS_CODE alt_fpga_configure(const void* cfg buf, size_t cfg_buf_len);

2. “./hwlib/include/soc_cv_av/socal/alt_fpgamgr.h”

/* The width in bits of the ALT_FPGAMGR_CTL_EN register field. */
#define ALT_FPGAMGR_CTL_EN_WIDTH 1

/* The mask used to set the ALT_FPGAMGR_CTL_EN register field value. */
#tdefine ALT_FPGAMGR_CTL_EN_SET_MSK 0Xx00000001

/* The mask used to clear the ALT_FPGAMGR_CTL_EN register field value. */
#define ALT_FPGAMGR_CTL_EN_CLR_MSK oxfffffffe

An important header file is “../hwlib/include/soc_cv_av/socal/hps.h”. It contains the HPS component’s
full REGISTER MAP, as provided in Table 7-4.

Note however, that there exists NO HEADER FILE for the “heavyweight” HPS-to-FPGA bridge, as it is not
located in the “HPS peripherals” region in Figure 7-3. Indeed, the “heavyweight” HPS-to-FPGA bridge is not
considered a HPS peripheral, whereas the “lightweight” HPS-to-FPGA bridge is. Therefore, in order to use the
“heavyweight” HPS-to-FPGA bridge, you will have to define a macro in your code, as follows:

| #define ALT_HWFPGASLVS_OFST 0xC0000000

03/10/2018 Page |24

SoC-FPGA Design Guide [DE1-SoC Edition]

Note that HWLIB can only be directly used in a BARE-METAL APPLICATION, as it directly references physical
addresses. The library can unfortunately NOT be used directly in a LINUX DEVICE DRIVER, because it uses
standard header files that are not available in the kernel. Needless to say that a userspace linux program
cannot use the library either, as the linux kernel would terminate a user process that tries to access any of

these physical addresses directly.

7.6 HPS BoOTING AND FPGA CONFIGURATION
Before being able to use the Cyclone V SoC, one needs to understand how the HPS boots and how the FPGA is
configured. We’'ll first take a look at the ordering between the HPS and FPGA.

7.6.1 HPS Boot and FPGA Configuration Ordering

The HPS BOOT starts when the processor is released from reset (for example, on power up) and executes code
in the internal boot ROM at the reset exception address. The boot process ends when the code in the boot
ROM jumps to the next stage of the boot software. This next stage of the boot software is referred to as the
preloader. Figure 7-4 illustrates this initial incomplete HPS boot flow.

Reset —® BootROM —®| Preloader

Figure 7-4. Simplified HPS Boot Flow [2, pp. A-3]
The processor can boot from the following sources:

e NAND flash memory through the NAND flash controller

e SD/MMC flash memory through the SD/MMC flash controller

e SPland QSPI flash memory through the QSPI flash controller using Slave Select 0
e FPGA fabric on-chip memory

The choice of the boot source is done by modifying the BOOTSEL and CLKSEL values BEFORE THE DEVICE IS
POWERED UP. Therefore, the Cyclone V device normally uses a PHYSICAL DIP SWITCH to configure the
BOOTSEL and CLKSEL.

The DE1-SoC can ONLY BOOT from SD/MMC flash memory, as its BOOTSEL and CLKSEL values are hard-wired
on the board. Although its HPS contains all necessary controllers, the board doesn’t have a physical DIP switch
to modify the BOOTSEL and CLKSEL values. The actual location of the DIP switch is present underneath the
board, as can be seen in Figure 6-3, but a switch isn’t soldered.

CONFIGURATION OF THE FPGA portion of the device starts when the FPGA portion is released from reset state
(for example, on power up). The control block (CB) in the FPGA portion of the device is responsible for
obtaining an FPGA configuration image and configuring the FPGA. The FPGA configuration ends when the
configuration image has been fully loaded and the FPGA enters user mode. The FPGA configuration image is
provided by users and is typically stored in non-volatile flash-based memory. The FPGA CB can obtain a
configuration image from the HPS through the FPGA manager, or from another external source, such as the
Quartus Prime Programmer.

The following three figures illustrate the possible HPS boot and FPGA configuration schemes. Note that
Cyclone V devices can also be fully configured through a JTAG connection.

03/10/2018 Page |25

SoC-FPGA Design Guide [DE1-SoC Edition]

—p| PCle
Altera SoC Device
FPGA Portion HPS Portion
Quad SPI
Flash Controller| ™
Configuration]) MPU
Sources 5| Active Seriall SD/MMC
~ | Active Serial x4 Flash Controller <
FPGA
> Passive Fabric NAND =
Serial Flash Controller|
- Passive Boot On-Chip
" Parallel ROM RAM

Figure 7-5. Independent FPGA Configuration and HPS Booting [2, pp. A-2]

Boot
Sources

Figure 7-5 shows the scheme where the FPGA configuration and the HPS boot occur independently. The FPGA
configuration obtains its image from a non-HPS source (Quartus Prime Programmer), while the HPS boot

obtains its configuration image from a non-FPGA fabric source.

e

PCle

Boot &
Configuration

Altera SoC Device

FPGA Portion

>

Sources

Active Serial/
Active Serial x4

Passive
Serial

Figure 7-6. FPGA Configuration before HPS Booting (HPS boots from FPGA) [2, pp. A-2]

Passive
Parallel

FPGA
Fabric

HPS Portion

MPU

f

HPS-to-FPGA
Bridge

Boot
ROM

Figure 7-6 shows the scheme where the FPGA is first configured through the Quartus Prime Programmer, then
the HPS boots from the FPGA fabric. The HPS boot waits for the FPGA fabric to be powered on and in user
mode before executing. The HPS boot ROM code executes the preloader from the FPGA fabric over the HPS-
to-FPGA bridge. The preloader can be obtained from the FPGA on-chip memory, or by accessing an external

interface (such as a larger external SDRAM).

03/10/2018

Page |26

SoC-FPGA Design Guide [DE1-SoC Edition]

Altera SoC Device

FPGA Portion HPS Portion
Quad SPI
Flash Controller <
MPU
SD/MMC < Boot
Flash Controller Sources
FPGA
X || FPGA
Fabric N M
anager NAND

Flash Controller

EMAC g Configuration Source

Figure 7-7. HPS Boots and Performs FPGA Configuration [2, pp. A-3]

Figure 7-7 shows the scheme under which the HPS first boots from one of its non-FPGA fabric boot sources,
then software running on the HPS configures the FPGA fabric through the FPGA manager. The software on the
HPS obtains the FPGA configuration image from any of its flash memory devices or communication interfaces,
such as the SD/MMC memory, or the Ethernet port. The software is provided by users and the boot ROM is
not involved in configuring the FPGA fabric.

7.6.2 Zooming In On the HPS Boot Process

User Software

Operating

Reset —® BootROM |—»| | Preloader Boot Loader —P
System

—» Application

Baremetal
Application

Figure 7-8. HPS Boot Flows [2, pp. A-3]

Booting software on the HPS is a multi-stage process. Each stage is responsible for loading the next stage. The
first software stage is the boot ROM. The boot ROM code locates and executes the second software stage,
called the preloader. The preloader locates, and IF PRESENT, executes the next software stage. The preloader
and subsequent software stages are collectively referred to as user software.

The reset, boot ROM, and preloader stages are always present in the HPS boot flow. What comes after the
preloader then depends on the type of application you want to run. The HPS can execute 2 types of
applications:

e Bare-metal applications (no operating system)
e Applications on top of an operating system (linux)

Figure 7-8 shows the HPS’ available boot flows. The Reset and Boot ROM stages are the only fixed parts of the
boot process. Everything in the user software stages can be customized.

Although the DE1-SoC has a DUAL-processor HPS (CPUO and CPU1), the boot flow only executes on CPUO and
CPU1 is under reset. If you want to use both processors of the DE1-SoC, then USER SOFTWARE executing on
CPUO is responsible for releasing CPU1 from reset.

03/10/2018 Page |27

SoC-FPGA Design Guide [DE1-SoC Edition]

7.6.2.1 Preloader

The preloader is one of the most important boot stages. It is actually what one would call the boot “source”, as
all stages before it are unmodifiable. The preloader can be stored on external flash-based memory, or in the
FPGA fabric.

The preloader typically performs the following actions:

Initialize the SDRAM interface

Configure the HPS 1/0 through the scan manager

Configure pin multiplexing through the system manager

Configure HPS clocks through the clock manager

Initialize the flash controller (NAND, SD/MMC, QSPI) that contains the next stage boot software
Load the next boot software into the SDRAM and pass control to it

The preloader does NOT release CPU1 from reset. The subsequent stages of the boot process are responsible
for it if they want to use the extra processor.

03/10/2018 Page |28

SoC-FPGA Design Guide [DE1-SoC Edition]

8 USING THE CYCLONE V — GENERAL INFORMATION

8.1 INTRODUCTION

The HPS component is a SOFT component, but it does NOT mean that the HPS is a softcore processor. In fact,
the HPS exclusively contains HARD LOGIC. The reason it is considered a softcore component originates from
the fact that it enables other soft components to interface with the HPS hard logic. As such, the HPS
component has a small footprint in the FPGA fabric, as its only purpose is to connect the soft and hard logic
together.

Therefore, it is possible to use the Cyclone V SoC in 3 different configurations:

e FPGA-only
e HPS-only
e HPS & FPGA

We will look at the FPGA-only and HPS & FPGA configurations below. We will not cover the HPS-only
configuration as it is identical to the HPS & FPGA one where you simply don’t load any design on the FPGA
fabric. The configurations using the HPS are more difficult to set up than the FPGA-only one.

8.2 FPGA-ONLY

Exclusively using the FPGA part of the Cyclone V is easy, as the design process is identical to any other Altera
FPGA. You can build a complete design in Quartus Prime & Qsys, simulate it in ModelSim-Altera, then program
the FPGA through the Quartus Prime Programmer. If you instantiated a Nios Il processor in Qsys, you can use
the Nios Il SBT IDE to develop software for the processor.

The DE1-SoC has a lot of pins, which makes it tedious to start an FPGA design. It is recommended to use the
ENTITY in [3] for your TOP-LEVEL VHDL FILE, as it contains all the board’s FPGA and HPS pins.

After having defined a top-level module, it is necessary to map your design’s pins to the ones available on the
DE1-SoC. The TCL SCRIPT in [4] can be executed in Quartus Prime to specify the board’s device ID and all its
PIN ASSIGNMENTS. In order to execute the TCL script, place it in your quartus working directory, then run it
through the “Tools > Tcl Scripts..” menuitem in Quartus Prime.

8.3 HPS & FPGA

8.3.1 Bare-metal Application

On one hand, bare-metal software enjoys the advantage of having no OS overhead. This has many
consequences, the most visible of which are that code executes at native speed as no context switching is ever
performed, and additionally, that code can directly address the HPS peripherals using their PHYSICAL memory-
mapped addresses, as no virtual memory system is being used. This is very useful when trying to use the HPS
as a high-speed microcontroller. Such a programming environment is very similar to the one used by other
microcontrollers, like the TI MSP430.

On the other hand, bare-metal code has one great disadvantage, as the programmer must continue to
configure the Cyclone V to use all its resources. For example, we saw in 7.6.2.1 that the preloader does not
release CPU1 from reset, and that it is up to the user software to perform this, which is the bare-metal
application itself in this case. Furthermore, supposing CPU1 is available for use, it is still difficult to run multi-
threaded code, as an OS generally handles program scheduling and CPU affinity for the programmer. The
programmer must now manually assign code fragments to each CPU.

03/10/2018 Page |29

SoC-FPGA Design Guide [DE1-SoC Edition]

8.3.2 Application Over an Operating System (Linux)

Running code over a linux operating system has several advantages. First of all, the kernel releases CPU1 from
reset upon boot, so all processors are available. Furthermore, the kernel initializes and makes most, if not all
HPS peripherals available for use by the programmer. This is possible since the linux kernel has access to a
huge amount of device drivers. Multi-threaded code is also much easier to write, as the programmer has
access to the familiar OS facilities for threading. Finally, the linux kernel is not restricted to running compiled C
programs. Indeed, you can always run code written in another programming language providing you first
install the runtime environment required (which must be available for ARM processors).

However, running an “EMBEDDED” application on top of an operating system also has disadvantages. Due to
the virtual memory system put in place by the OS, a program cannot directly access the HPS peripherals
through their physical memory-mapped addresses. Instead, one first needs to map the physical addresses of
interest into the running program’s virtual address space. Only then will it be possible to access a peripheral’s
registers. Ideally, the programmer should write a device driver for each specific component that is designed in
order to have a clean interface between user code and device accesses.

At the end of the day, bare-metal applications and applications running code on top of linux can do the same
things. Generally speaking, programming on top of linux is superior and much easier compared to bare-metal
code, as its advantages greatly outweigh its drawbacks.

8.4 GOALS

Let’s start by defining what we want to achieve in this tutorial. We want to create a system in which both the
HPS and FPGA can do some computation simultaneously. More specifically, we want the following
capabilities:

1. ANIOS Il processor on the FPGA must be able to access the LEDs connected to the FPGA PORTION of
the device and will be responsible for creating a strobing light effect on the lower 5 LEDs.

2. The Nios Il processor will use the DE1-SoC’s SDRAM instead of any form of on-chip memory.

3. The HPS must be able to use the LED and button that are directly connected to the HPS PORTION of
the device. Pressing the button should toggle the LED.

4. The HPS must be able to access the LEDs connected to the FPGA PORTION of the device and will be
responsible for creating a strobing light effect on the upper 5 LEDs.

5. The HPS must be able to use the ethernet port on the board.

6. The HPS must be able to use the microSD card port on the board to which we will write anything we
want.

8.5 PROJECT STRUCTURE

The development process creates a lot more files compared to an FPGA-only design. We will use the folder
structure shown in Figure 8-1 to organize our project. In this demo, we will use “DE1_SoC_demo” as the
project name.

e The “hw” directory contains all hardware-related files.

e The “sw” directory contains all software-related files.

e The “sdcard” directory contains all final targets needed to create a valid sdcard from which the DE1-
SoC can boot.

03/10/2018 Page |30

SoC-FPGA Design Guide [DE1-SoC Edition]

project
name

‘modelsim‘ ‘ quartus ‘ ‘ hdl ‘ ‘ a2 ‘ ‘ fat32

‘application

‘application

preloader

u-boot H linux ‘

AN

source

‘ rootfs ‘

Figure 8-1. Project Folder Structure
Many steps have to be performed in order to configure the Cyclone V before you can use the HPS.

e The HARDWARE design is IDENTICAL whether you want to write bare-metal applications, or linux HPS
applications.
e The SOFTWARE design is DIFFERENT for bare-metal and linux HPS applications.

The complete design for this tutorial can be found in DE1_SoC_demo. zip [5].

03/10/2018 Page |31

SoC-FPGA Design Guide [DE1-SoC Edition]

9 USING THE CYCLONE V - HARDWARE

The details below give step-by-step instructions to create a full system from scratch.

9.1 GENERAL QUARTUS PRIME SETUP

1. Create a new Quartus Prime project. You only need to specify the project name and destination, as all
other settings will be set at a later stage by a TCL script. For this demo, we will call our project
“DE1_SoC_demo” and will store it in “DE1_SoC_demo/hw/quartus®.

2. Download DE1_SoC_top_level.vhd [3] and save it in “DE1_SoC_demo/hw/hd1”. We will use this file
as the project’s top-level VHDL file, as it contains a complete list of pin names available on the DE1-
SoC for use in your designs. Add the file to the Quartus Prime project by using “Project >
Add/Remove Files in Project..” and set it as your design’s top-level entity.

3. Download pin_assignment DE1_SoC.tcl [4] and save itin “DE1_SoC_demo/hw/quartus”. This
script assigns pin locations and 1/0O standards to all pins names in “DE1_SoC_top_level.vhd”.
Execute the TCL script by using “Tools > Tcl Scripts..” in Quartus Prime.

At this stage, all general Quartus Prime settings have been performed, and we can start creating our
design. We want to use the HPS, as well as a Nios Il processor in our design, so we will use the Qsys tool to
create the system.

4. Launch the Qsys tool and create a new system. Save it under the name “soc_system.qgsys”.

9.2 SYSTEM DESIGN WITH QSYS - N1os I1
In this section, we assemble all system components needed to allow the Nios Il processor to create a strobing
light effect on the lower 5 LEDs.

We want to use a Nios Il processor with an SDRAM. To use an SDRAM, we need 2 things:

e An SDRAM controller.

e APLLto generate a clock for the softcore SDRAM controller and a phase-shifted clock for the off-chip
SDRAM component. The reference clocks and timings needed for the SDRAM can be found on its
datasheet [6].

5. Addan “Altera PLL” to the system.
o Reference Clock Frequency: 50 MHz
e Operation Mode: normal
e Uncheck “Enable locked output port”

We need to generate 3 clocks:

e 50 MHz clock for the Nios Il processor and all its peripherals.
e 100 MHz clock for the SDRAM controller.
e 100 MHz, -3758 ps phase-shifted clock for the off-chip SDRAM component.

In Qsys’ “System Contents” tab:

e Export “pll_@.outclk2” under the name “pll_@_sdram”, as shown in Figure 9-1. This clock
will be used for the off-chip SDRAM component.

03/10/2018 Page |32

SoC-FPGA Design Guide [DE1-SoC Edition]

E pll 0 Altera PLL
refclk Clock Input
reset Reset Input
outclkd Clock Output
outclkl Clock Output
outclkz Clock Output pll_ 0 sdram

Figure 9-1. Exporting the pll_0.outclk2 Signal

6. Add a softcore SDRAM controller to the system. Use the following settings (taken from the SDRAM'’s
datasheet):
e Memory Profile
= Data Width
e Bits: 16
= Architecture
e Chipselect: 1

e Banks: 4
= Address Width
e Row:13

e Column: 10

= CAS latency cycles: 3
= |nitialization refresh cycles: 2
= |ssue one refresh command every: 7.8125 us
= Delay after powerup, before initialization: 100.0 us
= Duration of refresh command (t_rfc): 70.0 ns
= Duration of precharge command (t_rp): 15.0 ns
= ACTIVE to READ or WRITE delay (t_rcd): 15.0 ns
= Accesstime (t_ac): 5.4 ns
= Write recovery time (t_wr, no auto precharge): 14.0 ns
In Qsys’ “System Contents” tab:
e Rename “new_sdram_controller_0” to “sdram_controller_0”.
e Export “sdram_controller_0.wire” under the name “sdram_controller_0_wire”.
7. Add a Nios Il processor to the system. You can choose any variant. In this demo, we use the “non-
classic” Nios Il processor, with configuration “Nios II/f”.
8. Add a System ID Peripheral to the system. In Qsys’ “System Contents” tab:
e Rename the component to “sysid”
9. Add aJTAG UART to the system. This serial console will be used to be able to see the output
generated by the printf() function when programming the Nios Il processor.
10. Connect the system as shown in Figure 9-2 below:

03/10/2018 Page |33

SoC-FPGA Design Guide [DE1-SoC Edition]

Figure 9-2. Basic Nios Il System with SDRAM and JTAG UART

11. Edit the Nios Il processor and set “sdram_controller ©.s1” as its Reset and Exception vectors.
12. Add a PIO component to the system for the LEDs. The DE1-SoC has 10 LEDs, but we will only use the 5
lower ones with the Nios Il processor, so we will use a 5-bit PIO component.

e Width: 5 bits
e Direction: Output
e OQutput Port Reset Val

ue: 0x00

In Qsys’ “System Contents®” tab:

Rename the component to “nios_leds”
Export “nios_leds.external_connection”

13. Connect the system as shown in Figure 9-3 below:

Connections MName Description Export Clock Base End IRQ
= dk 0 Clock Source
g clk_in Clock Input clk exported
e clk_in_reset Reset Input reset
clke Clock Output clk_o
O e I clk_reset Reset Output
= pll_o altera PLL
refclk Clock Input clk_0
reset Reset Input
—_ outclko Clock Output pll_0_outclko
— outclkl Clock Output pll_0_outclkl
H outclk2 Clock Output pll_0_sdram pll_0_outclk2
E sdram_controller_o SDRAM Controller
clk Clock Input pll_0_outclkl
reset Reset Input [clk]
51 Avalon Memaory Mapped Slave [clk] 0x0400_0000 |0x07ff_ffff
1= wire Conduit sdram_controller_0_wire
B nios2 gen2 0 Mios |l Processor
clk Clock Input pll_0_outclkl
reset Reset Input [clk]
data_master Mvalon Memory Mapped Master [clk]
< instruction_master Avalon Memory Mapped Master [clk]
irg Interrupt Receiver [clk] IRQ O IRQ 31E—
— debug_reset_request Reset Output [clk]
debug_mem_slave Avalon Memory Mapped Slave [clk] 0x0800_0800 |0x0800_Offf
custom_instruction_master [Custom Instruction Master
= sysid System ID Peripheral
clk Clock Input pll_0_outclko
reset Reset Input [clk]
control_slave Avalon Memaory Mapped Slave [clk] 0x0800_1018 |0x0800_101f
B jtag_uart 0 TAG UART
clk Clock Input pll_0_outclko
reset Reset Input [clk]
avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x0800_1010 |0x0800_1017
— irg Interrupt Sender [clk] 0]

Figure 9-3. Adding LEDs to the System

Connections MName Description Export Clock Base End IRQ
8 ck_0 Clock Source
o clk_in Clock Input clk exported
CH clk_in_reset Reset Input reset
clk Clock Output clk 0
S T S E— clk_reset Reset Output
= pll_o Altera PLL
refclk Clock Input clk_o
reset Feset Input
S B e E— outclkO Clock Output pll_0_outclko
i E— outclkl Clock Output pll_0_outclkl
H outclkz Clock Output pll_o_sdram pll_0_outclkz
E sdram_controller 0 SDRAM Controller
clk Clock Input pll_0_outclkl
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk] 0x0400_0000 (0x07ff_ffff
= wire Conduit sdram_controller_0_wire
B nios2_gen2 0 Nios Il Processor
clk Clock Input pll_0_outclkl
reset Reset Input [clk]
data_master avalon Memory Mapped Master [clk]
— instruction_master Avalon Memory Mapped Master [clk]
irg Interrupt Receiver [clk] IRQ O IRQ 31—
— debug_reset_request Reset Output [clk]
debug_mem_slave avalon Memory Mapped Slave [clk] 0x0800_0800 (0x0800 Offf
custom_instruction_master |Custom Instruction Master
B sysid system ID Peripheral
clk Clock Input pll_0_outclko
reset Reset Input [clk]
control_slave Avalon Memory Mapped Slave [clk] 0x0800_1018 (0xG200_101f
B jtag_uart_o TAG UART
clk Clock Input pll_0o_outclko
reset Reset Input [clk]
avalon_jtag_slave Avalon Memory Mapped Slave [clk] Bx0800_1010 |0x0200_1017
irg Interrupt Sender [clk] 10
E nios_leds PIO (Parallel 1/0)
clk Clock Input pll_0_outclko
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk] 0x0800_1000 (0x0800_100f
= external_connection Conduit nios_leds_external_connection

03/10/2018

Page |34

SoC-FPGA Design Guide [DE1-SoC Edition]

9.3 SYSTEM DESIGN WITH Qsys - HPS
In this section, we assemble all system components needed to allow the HPS to access a button and LED
connected directly to itself, as well as the 5 upper LEDs connected to the FPGA portion of the device.

Note: When using Qsys to manipulate any signal or menu item related to the HPS, the GUI will seem as though
it is not responding, but this is not the case. The GUI is just checking all parameters in the background, which
makes the interface hang momentarily. It is working correctly behind the scenes.

9.3.1 Instantiating the HPS Component
14. To use the HPS, add an “Arria V/Cyclone V Hard Processor System” to the system.
15. Open the HPS’ parameters and have a look around. There are 4 tabs that control various aspects of
the HPS’ behaviour, as shown on Figure 9-4.

Arria V/Cyclone V Hard Processor System
altera_hps

FPGA Interfaces | Peripheral Pins | HPS Clocks | SDRAM |

[~ General

Figure 9-4. HPS Component Parameters

9.3.1.1 FPGA Interfaces Tab
This tab configures everything related to the interfaces between the HPS and the FPGA. You can configure
which bridges to use, interrupts, ...

16. We want to use the HPS to access FPGA peripherals, so we need to enable one of the following buses:
e HPS-to-FPGA AXI bridge
e Lightweight HPS-to-FPGA AXI bridge
Since we are not going to be using any high performance FPGA peripherals in this demo, we’ll choose
to enable the Lightweight HPS-to-FPGA AXI bridge.
e Set the FPGA-to-HPS interface width to “Unused”.
e Set the HPS-to-FPGA interface width to “Unused”.
By default, Qsys checks “Enable MPU standby and event signals®”, but we are not going to use
this feature, so
e Uncheck “Enable MPU standby and event signals”.
Qsys also adds an FPGA-to-HPS SDRAM port by default, which we are not going to use either, so
e Remove the port listed under “FPGA-to-HPS SDRAM Interface”.

9.3.1.2 Peripheral Pins Tab
This tab configures the physical pins that are available on the device. Most device pins have various sources,
and are multiplexed. The pins can be configured to be sourced by the FPGA, or by various HPS peripherals.

9.3.1.2.1 Theory

We want to use the HPS to access the button and LED that are directly connected to it. These HPS peripherals
correspond to pins “HPS_KEY_N” and “HPS_LED” on the device’s top-level entity. We need to know how
these 2 pins are connected to the HPS to access them. To find out this information, we have to look at the
board’s schematics. You can find the schematics in [7].

03/10/2018 Page |35

SoC-FPGA Design Guide [DE1-SoC Edition]

The right side of Figure 9-5 shows the area of interest on the DE1-SoC’s schematics. We see that “HPS_KEY_N”
and “HPS_LED” are respectively connected to pins G21 and A24.

TRACE_D5/SPIS1_MOSVCAN1_TX/HPS_GPIO54 |-ea—20~—ES KEL &
TRACE_D4/SPIS1_CLK/CAN1_RX/HPS_GPIO53

r 3 - o

Figure 9-5. HPS_KEY_N & HPS_LED on DE1-SoC Schematic. Note that the schematic uses “HPS_KEY” instead of “HPS_KEY_N” as the
name of the signal. This is a mistake, as the button is active-low, so the “_N” in the name is warranted for clarity.

Figure 9-5 allows us to explain what Qsys’ Peripheral Pins tab does. The Qsys GUI doesn’t make any reference
to pins G21 and A24, as they depend on the device being used, and cannot be generalized to other Cyclone V
devices. However, the GUI does have references to what is displayed on the left side of Figure 9-5. We will
examine the details of pin G21, to which “HPS_KEY_N” is connected. The schematic shows that pin G21 is
connected to 4 sources:

e TRACE_D5
e SPIS1_MOSI
e CANI_TX

e HPS_GPIO54

This can be seen in Qsys, as shown in Figure 9-6.

TRACE_D4 [caN1 R (Setmy [sPis1.cLKk (Setm) | TRACE.D4 (Setd) [G e LOIARIE |
TRACE_DS AN T ¢Sty |#PI51.MOS1 ¢S et | TRACE.DS (Setd) IE GRS & LOANIDES |

Figure 9-6. HPS_KEY_N & HPS_LED on Qsys Peripheral Pins Tab

Depending on how you configure the Peripheral Pins tab, you can configure pin G21 to use any of the sources
above. For example, if you want to use this pin as an SPI slave control signal, you would use the configuration
shown in Figure 9-7.

[* SPI Controllers

SPIMO pin: Unused .|
SPIMO mode: :NJ',.:., -] .
SPIM1 pin: Unused -
SPIM1 mode: :N,I'F'. - .
SPIS0 pin: Unused -]
SPIS0 mode: :N L .

SPIS1 pin: HPS 10 Set 0

SPIS1 mode: SPI -

Figure 9-7. Using Pin G21 for SPI

03/10/2018 Page |36

SoC-FPGA Design Guide [DE1-SoC Edition]

However, if you don’t want to use any of the peripherals available at the top of the Peripheral Pins tab, then
you can always use one of the 2 buttons on the right side of Figure 9-6:

e GPIOXY: Configures the pin to be connected to the HPS’ GPIO peripheral.

e LOANIOXY: Configures the pin to be connected to the FPGA fabric. This pin can be exported from
Qsys to be used by the FPGA.

9.3.1.2.2 Configuration
17. We want the HPS to directly control the “HPS_KEY_N” and “HPS_LED” pins. To do this, we will connect
pins G21 and A24 to the HPS’ GPIO peripheral.
e Click on the “GPI053” button. This corresponds to pin A24, which is connected to “HPS_LED”.
e Click on the “GPI054” button. This corresponds to pin G21, which is connected to
“HPS_KEY_N”.
18. We want to connect to our DE1-SoC with an SSH connection later in the tutorial, so we need to enable
the Ethernet MAC interface.
e Configure “EMAC1 pin” to “HPS I/0 Set ©” and the “EMAC 1 mode” to “RGMII”, as shown
in Figure 9-8.
e Click on the “GPI035” button. This corresponds to pin C19, which is connected to
“HPS_ENET_INT_N”.

[~ Ethernet Media Access Controller

EMACO pin: U] :

EMACO mode: [T

EMACT pin: HPS I/0 Set 0 :
EMACL mode: RGMII :

Figure 9-8. Ethernet MAC configuration

19. Our system will boot from the microSD card slot, so we need to enable the SD/MMC controller.

e Configure “SDIO pin” to “HPS I/0 Set ©” and “SDIO mode” to “4-bit Data”, as shown in
Figure 9-9.

[* SD/MMC Controller

SDIO pin: HPS /0 Set O | =

SDIO mode: |4.bit Data

|v|

Figure 9-9. SD/MMC configuration

20. When initially configuring our system, we will need to connect a keyboard to our system. We will do
this through a serial UART connection, so we need to enable the UART controller.
e Configure “UART® pin” to “HPS I/0 Set ©” and “UARTO mode” to “No Flow Control”, as
shown in Figure 9-10.

[* UART controllers

UARTO pin; HPS I/0 Set 0 |
UARTO mode: @E
UARTL pin: unused [+
UARTL mode: =

Figure 9-10. UART configuration

At this stage, you should have the same configuration shown in Figure 9-11.

03/10/2018 Page |37

SoC-FPGA Design Guide [DE1-SoC Edition]

Q5PLCLK (Setl) (5et0) [SaEE LoAniozs

QspLCLK

QsPi_ss1 GPIO35 LoAiozs

SDMMC_CMD GPioze LoANIO3S

SDMME_PWREN Grioa7 LoAI037

SDMMC_DO GPioas Loaniozs

SDMMC_ D1 GPioss LoANiozs

SDMME D4 GPIo40 LoANIos0

SDMME DS GPIGEL LoANIOH1

GRioiz LoAios2

SoHME DS

SDMMC DT GPIDd3 LoANI0s3

SDMMC_Fa_cLin Grio4A LoAios4

SDMMC_CCLK_OUT RIS LoANIOss

sbMMC D2 Grioae LoAI0ss

SDMMC_D3 GPID47 LoANI04T

TRAGE_CLK GPIoss LoANIo:s

TRACE DO [UARTO.RX (5eto] 5PISO.CLK (Seto) GPRIO4S LoANIo4S

GPIGS0 LoANIOS0

TRACE_D1 5PIS0.MOS! (Seto)

TRACE D2 5PIS0MISO (Seto) Grios1 Loanios1

TRACE D3 5FIS0.550 (et0) GPIoSZ LoAniosz

TRACE D4 SPISLCLK (Seto) GPIOS53 Loanioss

TRACE_D5 SFISLMOS! (Seto) GPIO5d LoANIO34

TRACE D& SPIS1550 (5et0) GPioss LoAnioss

Figure 9-11. Exported peripheral pins

21. Although not needed to satisfy the design goals defined in 8.4, we enable all the remaining HPS
peripherals so future designs can use any of them if needed. Adding these peripherals does not
increase FPGA resource usage as they are all hard peripherals connected directly to the HPS.

e Configure the Quad SPI Flash controller, USB controllers, SPI controllers, and the 12C
controllers as shown in Figure 9-12.

e Click on the “GPI009” button. This corresponds to pin B15, which is connected to
“HPS_CONV_USB_N”.

e Click on the “GPI040” button. This corresponds to pin H17, which is connected to
“HPS_LTC_GPIO”.

e Click on the “GPI048” button. This corresponds to pin B26, which is connected to
“HPS_I2C_CONTROL™.

e C(lick on the “GPI061” button. This corresponds to pin B22, which is connected to
“HPS_GSENSOR_INT”.

[~ USB Controllers

USEO pin: Unused —
USBO PHY interface mode: |pya
[~ Quad SPI Flash Controller _
QSPI pin: HPS /0 Set 0 |w USBL pin: HPS 1/0 Set 0 |

Q5P mode: EE USBL PHY interface mode: |spR with PHY clock output mode |v|
[~ SPI Controllers [*12C Controllers

SPIMO pin: s - 12€0 pin: HPS I/0 Set O |»

SPIMO mode: = |2C0 mode: 12C

SPIM1 pin: [P 10 set 0+ 12C1 pin: [HPS 1/0 Set 0|+ |

SPIM1 mode: Single Slave Select |v| 12€1 mode: 12C

SPISO pin: @ 12C2 pin: @

SPISO mode: /A 12C2 mode: NI

SPISL pin: @ 12C3 pin: unused [+]

SPIS1 mode: MIA 12€3 mode: A | v

Figure 9-12. Quad SPI Flash, USB, SPI, and I°C peripheral pin configurations

22. In Qsys’ “System Contents” tab:
e Export “hps_0.hps_io” under the name “hps_0_io”. This is a conduit that contains all the
pins configured in the Peripheral Pins tab. We will connect these to our top-level entity later.

9.3.1.3 HPS Clocks Tab
This tab configures the clocking system of the HPS. We will generally use the default settings here, so no need
to change anything.

9.3.1.4 SDRAM Tab
This tab configures the memory subsystem of the HPS.

03/10/2018 Page |38

SoC-FPGA Design Guide [DE1-SoC Edition]

23. We need to configure all clocks and timings related to the memory used on our system. The DE1-SoC
uses DDR3 memory, so we need to consult its datasheet to find all the settings. The datasheet is
available at [8] . Based on the memory’s datasheet, we can fill in the following memory settings (you
will soon see that it is quite tedious to enter these values):

e SDRAM Protocol: DDR3
e PHY Settings:
= Clocks:
e Memory clock frequency: 400.0 MHz
o PLL reference clock frequency: 25.0 MHz
= Advanced PHY Settings:
e Supply Voltage: 1.5V DDR3
e Memory Parameters:
= Memory vendor: Other
= Memory device speed grade: 800.0 MHz
= Total interface width: 32
= Number of chip select/depth expansion: 1
= Number of clocks: 1
= Row address width: 15
= Column address width: 10
= Bank-address width: 3
= Enable DM pins
= DQS# Enable
= Memory Initialization Options:
e Mirror Addressing: 1 per chip select: 0
e Mode Register 0:
o Burst Length: Burst chop 4 or 8 (on the fly)
o Read Burst Type: Sequential
o DLL precharge power down: DLL off
o Memory CAS latency setting: 11
e Mode Register 1:
o Output drive strength setting: RZQ/7
o ODT Rtt nominal value: RZQ/4
e Mode Register 2:
o Auto selfrefresh method: Manual
o Selfrefresh temperature: Normal
o Memory write CAS latency setting: 8
o Dynamic ODT (Rtt_WR) value: RZQ/4
e Memory Timing:
= tIS (base): 180 ps
= tIH (base): 140 ps
= tDS (base): 30 ps
= tDH (base): 65 ps
= tDQSQ: 125 ps
= tQH:0.38 cycles
= tDQSCK: 255 ps
= tDQSS: 0.25 cycles
= tQSH: 0.4 cycles
= tDSH: 0.2 cycles
= tDSS: 0.2 cycles
= tINIT: 500 us

03/10/2018 Page |39

SoC-FPGA Design Guide [DE1-SoC Edition]

tMRD: 4 cycles
tRAS: 35.0 ns
tRCD: 13.75 ns
tRP: 13.75 ns
tREFI: 7.8 us
tRFC: 260.0 ns
tWR: 15.0 ns
tWTR: 4 cycles
tFAW: 30.0 ns
tRRD: 7.5 ns
tRTP: 7.5 ns

e Board Settings:
Setup and Hold Derating:
e Use Altera's default settings
Channel Signal Integrity:
e Use Altera's default settings

Board Skews:

e Maximum CK delay to DIMM/device: 0.03 ns
e Maximum DQS delay to DIMM/device: 0.02 ns
e Minimum delay difference between CK and DQS: 0.06 ns
e Maximum delay difference between CK and DQS: 0.12 ns
e Maximum skew within DQS group: 0.01 ns
e Maximum skew between DQS groups: 0.06 ns

e Average delay difference between DQ and DQS: 0.05 ns

e Maximum skew within address and command bus: 0.02 ns

e Average delay difference between address and command and CK: 0.01 ns
24. In Qsys’ “System Contents” tab:

e Export “hps_0.memory” under the name “hps_0_ddr”.
25. Connect the system as shown in Figure 9-13 below:

Figure 9-13. Adding the "Standalone" HPS to the System

Connections Name Description Export Clock Base End IRQ
B dk 0 Clock Source
(=g cli_in Clock Input clk exported
=g clk_in_reset Reset Input reset
clk Clock Output clk_0
clk_reset Reset Output
2 pll_o Altera PLL
refclk Clock Input clk_0
reset Reset Input
N B B B B outclko Clock Dutput pll_0_outclko
N I B — outelkl Clock Output pll_0_outclkl
H outclk2 Clock Output pll_0_sdram pll_0_outclk2
B sdram_controller_0 SDRAM Controller
clk Clock Input pll_0_outclkl
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [elk] 0x0400_0000 |Ox07ff_ffff
= wire Conduit sdram_controller_0_wire
=) nios2_gen2_0 Mios Il Processor
clk Clock Input pll_0_outclkl
reset Reset Input [clk]
data_master Avalon Memory Mapped Master [clk]
—T T instruction_master Avalon Memory Mapped Master [elk]
irg Interrupt Receiver [elk] IRQ O IRQ 31
— 1 1< debug_reset_request Reset Output [clk]
debug_mem_slave Avalon Memory Mapped Slave [clk] 0x0800_0800 |0x0800_offf
custom_instruction_master |Custom Instruction Master
B sysid System ID Peripheral
clk Clock Input pll_o_outclko
reset Reset Input [elk]
control_slave Avalon Memory Mapped Slave [elk] 0x0800_1018 |0x0800_101f
O jtag uart 0 TAG UART
clk Clock Input pll_o_outclko
reset Reset Input [clk]
avalon_jtag_slave Avalon Memory Mapped Slave [elk] 0x0800_1010 |0x0800_1017
irg Interrupt Sender [clk]
B nios_leds P10 (Parallel 1/0)
clk Clock Input pll_0_outclk0
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [elk] 0x0800_1000 |0x0800_lo0f
o external_connection Conduit nios_leds_external_connection
B hps_0 Arria W/Cyclone W Hard Proce...
™ memaory Conduit hps_0_ddr
= hps_io Conduit hps_o_io
h2f_reset Reset Output
h2f_lw_axi_clock Clock Input pll_0_outclk0
h2f_lw_axi_master AXl Master [h2f_tw_axi_clo..,

03/10/2018

Page |40

SoC-FPGA Design Guide [DE1-SoC Edition]

The HPS is now ready and can be used in our system, however, the HPS can only be used “standalone” and
cannot access any FPGA peripherals. We will handle this issue in the next section.

9.3.2 Interfacing with FPGA Peripherals
The next step is to connect the HPS to FPGA peripherals through one of its interface bridges. The setup we
have uses the Lightweight HPS-to-FPGA bridge to communicate with the FPGA.

26. Add a PIO component to the system for the LEDs. The DE1-SoC has 10 LEDs, but we will only use the 5
upper ones with the HPS, so we will use a 5-bit PIO component.
e Width: 5 bits
e Direction: Output
e Output Port Reset Value: 0x00
In Qsys’ “System Contents” tab:
e Rename the component to “hps_fpga_leds”
e Export “hps_fpga_leds.external_connection”
27. Connect the system as shown in Figure 9-14 below. Notice that we use “hps_0.h2f reset” as the
reset signal for the components connected to the HPS. This is a design choice so we can separately
reset FPGA-only peripherals, and FPGA peripherals connected to the HPS.

Connections Narme Description Export Clock Base End IRQ
H clk_0 Clock Source
o clk_in Clock Input clk exported
o clk_in_reset Reset Input reset
clk Clock Output clk_0
cli_reset Reset Output
& pll_0 Altera PLL
refclk Clock Input clk_0
reset Reset Input
—_ outelkd Clock Output pll_0_outclko
—_— outelkl Clock Output pll_0_outclkl
A=l outclk2 Clock Output pll_0_sdram pll_0_outclkz
B sdram_controller_0 SDRAM Controller
clie Clock Input pll_0 outclkl
reset Reset Input [elk]
sl Avalon Memory Mapped Slave [clk] 0x0400_0000 |Ox07ff_ffff
A= wire Conduit sdram_controller_o_wire
B nios2_gen2_0 Mios Il Processor
clk Clock Input pll_0_outclkl
reset Reset Input [clk]
data_master Avalon Memory Mapped Master [clk]
—_ instruction_master avalon Memory Mapped Master [clk]
irg Interrupt Receiver [elk] IRQ O IRQ 31—
— debug_reset_request Reset Output [clk]
debug_mem_slave Avalon Memory Mapped Slave [clk] 0x0800_0800 |0x0800_0fff
custom_instruction_master |Custom Instruction Master
B sysid System ID Peripheral
clk Clock Input pll_0_outclko
reset Reset Input [clk]
control_slave Avalon Memory Mapped Slave [clk] 0x0800_1018 |Ox0800_101F
B jtag_uart_0 TAG UART
clk Clock Input pll_0_outclko
reset Reset Input [elk]
avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x0800_1010 |0x0800 1017
irg Interrupt Sender [clk] >—|§|
B nios_leds PIO (Parallel /O)
clie Clock Input pll_0_outclko
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk] 0x0800_1000 |0x0800_100F
< external_connection Conduit nios_leds_external_connection
B hps 0 Arria W/Cyclone V Hard Proce...
o memary Conduit hps_o_ddr
o hps_io Conduit hps_0_io
— haf reset Reset Output
haf_lw_axi_clock Clock Input pll_0_outclko
— h2f_lw_axi_master AXI Master [R2f_lw_axi_clo...
B hps_fpga_leds PIO (Parallel I/O)
clk Clock Input pll_0_outclko
reset Reset Input [clk]
——— sl Avalon Memory Mapped Slave [clk] 0x0000_00080 |0x0000_o0of
O external_connection Conduit hps_fpga_leds_external_connection

Figure 9-14. Adding Buttons and 7-segment Displays to the Lightweight HPS-to-FPGA Bridge

28. In the main Qsys window, select “System > Assign Base Addresses” to getrid of any error
messages regarding memory space overlaps among the different components in the system.

At this stage, we finally have a system that satisfies all goals defined in 8.4. Our design work with Qsys is now
done.

9.4 GENERATING THE QSYS SYSTEM
29. Click on the “Generate HDL” button.

03/10/2018 Page |41

SoC-FPGA Design Guide [DE1-SoC Edition]

30. Select “VHDL” for “Create HDL design files for synthesis?”.

({9 3 »
31. Uncheck the “Create block symbol file (.bsf)” checkbox.
Generation
[synthesis |
Synthesis files are used to compile the system in a Quartus Prime project.
Create HDL design files for synthesis:
[] Create timing and resource estimates for third-party EDA synthesis tools,
[[] create block symbol file (.bsf)
~ Simulation
The simulation model contains generated HDL files for the simulator, and may include simulation-only features.
Simulation scripts for this component will be generated in a vendor-specific sub-directory in the specified output directory.
Follow the guidance in the generated simulation scripts about how to structure your design's simulation scripts and how to
use the jp-setup-simulation and jp-make-simscript command-line utilities to compile all of the files needed for simulating all of
the IP in your design.
Create simulation model: =
|~ output Directory |
Path: [ocuments/Development/github/Soc_FPGA_Design_Guide/DEL_SoC/DEL_SoC_demo/hw/q E
Figure 9-15. Generate Qsys System
1 €c, »
32. Click on the “Generate” button to generate the system.
1 H H 1 ({3 »
33. Save the design and exit Qsys. When asked if you want to generate the design, select “No”, as we

have already done it in the previous step.

9.5 INSTANTIATING THE QSYS SYSTEM
You now have a complete Qsys system. The system will be available as an instantiable component in your
design files. However, in order for Quartus Prime to see the Qsys system, you will have to add the
system’s files to your Quartus Prime project.

34. Add “DE1_SoC_demo/hw/quartus/soc_system/synthesis/soc_system.qip” to the Quartus Prime
project by using “Project > Add/Remove Files in Project..”.

35. To use the Qsys system in your design, you have to declare its component, and then instantiate it.
Qsys already provides you with a component declaration. You can find it among the numerous files
that were generated. The one we are looking for is
“DE1_SoC_demo/hw/quartus/soc_system/soc_system.cmp”.

36. Copy the component declaration code in “DE1_SoC_demo/hw/hd1/DE1_SoC_top_ level.vhd”. Be
sure to instantiate the component and assign all the correct pins of the DE1-SoC board. For our demo
project, we would use the instantiation shown in Figure 9-16.

soc_system_inst : component soc_system

port map(
clk_clk => CLOCK_5@,
hps_©_ddr_mem_a => HPS_DDR3_ADDR,
hps_©_ddr_mem_ba => HPS_DDR3_BA,
hps_©_ddr_mem_ck => HPS_DDR3_CK_P,
hps_©_ddr_mem_ck_n => HPS_DDR3_CK_N,
hps_0_ddr_mem_cke => HPS_DDR3_CKE,
hps_©_ddr_mem_cs_n => HPS_DDR3_CS_N,
hps_0@_ddr_mem_ras_n => HPS_DDR3_RAS_N,
hps_0@_ddr_mem_cas_n => HPS_DDR3_CAS_N,
hps_0_ddr_mem_we_n => HPS_DDR3_WE_N,
hps_0_ddr_mem_reset_n => HPS_DDR3_RESET_N,
hps_0_ddr_mem_dq => HPS_DDR3_DQ,
hps_0_ddr_mem_dqs => HPS_DDR3_DQS_P,
hps_0_ddr_mem_dqs_n => HPS_DDR3_DQS_N,
hps_0_ddr_mem_odt => HPS_DDR3_ODT,
hps_0_ddr_mem_dm => HPS_DDR3_DM,
hps_0@_ddr_oct_rzqgin => HPS_DDR3_RZQ,
hps_@_io_hps_io_emacl_inst_TX_CLK => HPS_ENET_GTX_CLK,
hps_@_io_hps_io_emacl_inst_TX_CTL => HPS_ENET_TX_EN,
hps_@_io_hps_io_emacl_inst_TXD@ => HPS_ENET_TX_DATA(@),
hps_@_io_hps_io_emacl_inst_TXD1 => HPS_ENET_TX_DATA(1),
hps_0_io_hps_io_emacl_inst_TXD2 => HPS_ENET_TX_DATA(2),

03/10/2018 Page |42

SoC-FPGA Design Guide [DE1-SoC Edition]

hps_0_io_hps_io_emacl_inst_TXD3
hps_0_io_hps_io_emacl_inst_RX_CLK
hps_0_io_hps_io_emacl_inst_RX_CTL
hps_©@_io_hps_io_emacl_inst_RXD®
hps_©@_io_hps_io_emacl_inst_RXD1
hps_©@_io_hps_io_emacl_inst_RXD2
hps_©@_io_hps_io_emacl_inst_RXD3
hps_@_io_hps_io_emacl_inst_MDIO
hps_0_io_hps_io_emacl_inst_MDC
hps_0_io_hps_io_qspi_inst_CLK
hps_0_io_hps_io_qspi_inst_SSO
hps_0_io_hps_io_qspi_inst_I00
hps_0_io_hps_io_qspi_inst_I01
hps_0_io_hps_io_qspi_inst_I02
hps_0_io_hps_io_qspi_inst_I03
hps_0_io_hps_io_sdio_inst_CLK
hps_0_io_hps_io_sdio_inst_CMD
hps_0_io_hps_io_sdio_inst_D@
hps_0_io_hps_io_sdio_inst_D1
hps_0_io_hps_io_sdio_inst_D2
hps_0_io_hps_io_sdio_inst_D3
hps_0_io_hps_io_usbl_inst_CLK
hps_0_io_hps_io_usbl_inst_STP
hps_0_io_hps_io_usbl_inst_DIR
hps_0_io_hps_io_usbl_inst_NXT
hps_©@_io_hps_io_usbl_inst_D@
hps_0_io_hps_io_usbl_inst_D1
hps_0_io_hps_io_usbl_inst_D2
hps_0_io_hps_io_usbl_inst_D3
hps_0_io_hps_io_usbl_inst_D4
hps_0_io_hps_io_usbl_inst_D5
hps_0_io_hps_io_usbl_inst_D6
hps_0_io_hps_io_usbl_inst_D7
hps_0_io_hps_io_spiml_inst_CLK
hps_0_io_hps_io_spiml_inst_MOSI
hps_0_io_hps_io_spiml_inst_MISO
hps_0_io_hps_io_spiml_inst_SSe
hps_©_io_hps_io_uart®_inst_RX
hps_©_io_hps_io_uart@_inst_TX
hps_©_io_hps_io_i2c@_inst_SDA
hps_©_io_hps_io_i2c@_inst_SCL
hps_©_io_hps_io_i2cl1_inst_SDA
hps_0_io_hps_io_i2cl_inst_SCL
hps_0_io_hps_io_gpio_inst_GPIO@9
hps_0_io_hps_io_gpio_inst_GPIO35
hps_0_io_hps_io_gpio_inst_GPIO40
hps_0_io_hps_io_gpio_inst_GPIO48
hps_0_io_hps_io_gpio_inst_GPIO53
hps_0_io_hps_io_gpio_inst_GPIO54
hps_0_io_hps_io_gpio_inst_GPIO61
pll_@_sdram_clk

reset_reset_n
sdram_controller_0_wire_addr
sdram_controller_0_wire_ba
sdram_controller_0_wire_cas_n
sdram_controller_0_wire_cke
sdram_controller_0_wire_cs_n
sdram_controller_0_wire_dq
sdram_controller_0_wire_dgm(1)
sdram_controller_0_wire_dqgm(@)
sdram_controller_0_wire_ras_n
sdram_controller_0_wire_we_n
nios_leds_external_connection_export

)H

=>

hps_fpga_leds_external_connection_export =>

HPS_ENET_TX_DATA(3),
HPS_ENET_RX_CLK,
HPS_ENET_RX_DV,
HPS_ENET_RX_DATA(®),
HPS_ENET_RX_DATA(1),
HPS_ENET_RX_DATA(2),
HPS_ENET_RX_DATA(3),
HPS_ENET_MDIO,
HPS_ENET_MDC,
HPS_FLASH_DCLK,
HPS_FLASH_NCSO,
HPS_FLASH_DATA(@),
HPS_FLASH_DATA(1),
HPS_FLASH_DATA(2),
HPS_FLASH_DATA(3),
HPS_SD_CLK,
HPS_SD_CMD,
HPS_SD_DATA(®),
HPS_SD_DATA(1),
HPS_SD_DATA(2),
HPS_SD_DATA(3),
HPS_USB_CLKOUT,
HPS_USB_STP,
HPS_USB_DIR,
HPS_USB_NXT,
HPS_USB_DATA(®),
HPS_USB_DATA(1),
HPS_USB_DATA(2),
HPS_USB_DATA(3),
HPS_USB_DATA(4),
HPS_USB_DATA(5),
HPS_USB_DATA(6),
HPS_USB_DATA(7),
HPS_SPIM CLK,
HPS_SPIM MOSI,
HPS_SPIM MISO,
HPS_SPIM_SS,
HPS_UART_RX,
HPS_UART_TX,
HPS_I2C1_SDAT,
HPS_I2C1_SCLK,
HPS_I2C2_SDAT,
HPS_I2C2_SCLK,
HPS_CONV_USB_N,
HPS_ENET_INT_N,
HPS_LTC_GPIO,
HPS_I2C_CONTROL,
HPS_LED,
HPS_KEY_N,
HPS_GSENSOR_INT,
DRAM_CLK,
KEY_N(0),
DRAM_ADDR,
DRAM_BA,
DRAM_CAS_N,
DRAM_CKE,
DRAM_CS_N,
DRAM_DQ,
DRAM_UDQM,
DRAM_LDQM,
DRAM_RAS_N,
DRAM_WE_N,

LEDR(4 downto ©),
LEDR(9 downto 5)

Figure 9-16. Qsys Component Instantiation

37. After finishing the design, REMOVE/COMMENT OUT all unused pins from the top-level VHDL file. Your

top-level entity should look like the one shown in Figure 9-17.

entity DE1_SoC_top_level is
port(
-- ADC
-- ADC_CS_n : out std_logic;
-- ADC_DIN : out std_logic;
-- ADC_DOUT : in std_logic;
03/10/2018 Page |43

SoC-FPGA Design Guide [DE1-SoC Edition]

ADC_SCLK

-- Audio
AUD_ADCDAT
AUD_ADCLRCK
AUD_BCLK
AUD_DACDAT
AUD_DACLRCK
AUD_XCK

-- cLock
CLOCK_50 :
CLOCK2_50
CLOCK3_50
CLOCKA_50

-- SDRAM
DRAM_ADDR
DRAM_BA

DRAM_CAS_N :

DRAM_CKE
DRAM_CLK
DRAM_CS_N
DRAM_DQ
DRAM_LDQM

DRAM_RAS_N :

DRAM_UDQM
DRAM_WE_N

. out

: in

: inout
: inout
. out

: inout
¢ out

in std_logic;
¢ in
¢ in
¢ in

¢ out
¢ out
out
¢ out
¢ out
¢ out
¢ inout
¢ out
out
. out
. out

std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;

std_logic_vector(12 downto 9);
std_logic_vector(1l downto 0);
std_logic;
std_logic;
std_logic;
std_logic;
std_logic_vector (15 downto 9);
std_logic;
std_logic;
std_logic;
std_logic;

-- I2C for Audio and Video-In

FPGA_I2C_SC

FPGA_TI2C_SDAT

-- SEG7
HEX®_N
HEX1_N
HEX2_N
HEX3_N
HEX4_N
HEX5_N

-- IR
IRDA_RXD
IRDA_TXD

-- KEY_N

LK

. out
: inout

. out
¢ out
. out
. out
. out
¢ out

¢ in
¢ out

std_logic;
std_logic;

std_logic_vector(6 downto 0);
std_logic_vector(6 downto 0);
std_logic_vector(6 downto 0);
std_logic_vector(6 downto 0);
std_logic_vector(6 downto 0);
std_logic_vector(6 downto 0);

std_logic;
std_logic;

KEY_N : in std_logic_vector(3 downto 0);

-- LED
LEDR : out

-- PS2
PS2_CLK
PS2_CLK2
PS2_DAT
PS2_DAT2

-- SW

std_logic_vector(9 downto 0);

: inout
: inout
: inout
: inout

std_logic;
std_logic;
std_logic;
std_logic;

SW : in std_logic_vector(9 downto 0);

-- Video-1In
TD_CLK27
TD_DATA
TD_HS
TD_RESET_N
TD_VS

-~ VGA
VGA_B
VGA_BLANK_N
VGA_CLK
VGA G
VGA_HS
VGA R
VGA_SYNC_N
VGA_VS

-- GPIO_©

: inout
. out
. out
. out
. out

: out
: out
: out
: out
: out
: out
: out
¢ out

std_logic;
std_logic_vector(7 downto 0);
std_logic;
std_logic;
std_logic;

std_logic_vector(7 downto 0);
std_logic;
std_logic;
std_logic_vector(7 downto 0);
std_logic;
std_logic_vector(7 downto 0);
std_logic;
std_logic;

03/10/2018

Page |44

SoC-FPGA Design Guide [DE1-SoC Edition]

-- GPIO 0o : inout
-- GPIO_1

-- GPIO_ 1 : inout
-- HPS
HPS_CONV_USB_N : inout
HPS_DDR3_ADDR : out
HPS_DDR3_BA . out
HPS_DDR3_CAS_N . out
HPS_DDR3_CK_N . out
HPS_DDR3_CK_P . out
HPS_DDR3_CKE . out
HPS_DDR3_CS_N . out
HPS_DDR3_DM . out
HPS_DDR3_DQ ¢ inout
HPS_DDR3_DQS_N ¢ inout
HPS_DDR3_DQS_P : inout
HPS_DDR3_ODT : out
HPS_DDR3_RAS_N : out
HPS_DDR3_RESET_N : out
HPS_DDR3_RZQ : in
HPS_DDR3_WE_N : out
HPS_ENET_GTX_CLK : out
HPS_ENET_INT_N : inout
HPS_ENET_MDC : out
HPS_ENET_MDIO : inout
HPS_ENET_RX_CLK : in
HPS_ENET_RX_DATA : in
HPS_ENET_RX_DV : in
HPS_ENET_TX_DATA : out
HPS_ENET_TX_EN : out
HPS_FLASH_DATA : inout
HPS_FLASH_DCLK : out
HPS_FLASH_NCSO : out
HPS_GSENSOR_INT : inout
HPS_I2C_CONTROL : inout
HPS_I2C1_SCLK ¢ inout
HPS_I2C1_SDAT : inout
HPS_I2C2_SCLK ¢ inout
HPS_I2C2_SDAT ¢ inout
HPS_KEY_N ¢ inout
HPS_LED ¢ inout
HPS_LTC_GPIO ¢ inout
HPS_SD_CLK : out
HPS_SD_CMD ¢ inout
HPS_SD_DATA ¢ inout
HPS_SPIM CLK : out
HPS_SPIM_MISO : in
HPS_SPIM_MOSI : out
HPS_SPIM_SS ¢ inout
HPS_UART_RX : in
HPS_UART_TX : out
HPS_USB_CLKOUT : in
HPS_USB_DATA : inout
HPS_USB_DIR : in
HPS_USB_NXT : in
HPS_USB_STP : out

)

end entity DE1_SoC_top_level;

std_logic_vector(35 downto 9);

std_logic_vector(35 downto 9);

std_logic;
std_logic_vector(14 downto 9);
std_logic_vector(2 downto 0);
std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(3 downto 0);
std_logic_vector(31 downto 9);
std_logic_vector(3 downto 0);
std_logic_vector(3 downto 0);
std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(3 downto 0);
std_logic;

std_logic_vector(3 downto 0);
std_logic;

std_logic_vector(3 downto 0);
std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(3 downto 0);
std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic;

std_logic_vector(7 downto 0);
std_logic;

std_logic;

std_logic

Figure 9-17. Final Top-level Entity

9.6 HPS DDR3 PIN ASSIGNMENTS
In a normal FPGA design flow, you would be able to compile your design at this stage. However, this isn’t
possible at the moment in our design. The reason is that some of the compilation settings required HPS’
DDR3 pin assignments have not been performed yet.

The HPS’ DDR3 SDRAM is an external memory with requires specific input/output termination resistance
and and drive strengths. Fortunately, Qsys can derive all these parameters from the various settings we
provided in the HPS’ memory configuration tab and it generates a custom TCL script for the HPS DDR3 pin

assignments.

03/10/2018

Page |45

SoC-FPGA Design Guide [DE1-SoC Edition]

38. Start the “Analysis and Synthesis” flow to perform a preliminary analysis of the system.
39. Goto “Tools > Tcl Scripts..” in Quartus Prime.

IF AT THIS POINT YOU DO NOT SEE THE SAME THING AS ON Figure 9-18, THEN CLOSE AND
RELAUNCH QUARTUS PRIME AGAIN. SOME VERSIONS OF QUARTUS PRIME SUFFER FROM A BUG,
WHERE THE PROGRAM DOESN’T CORRECTLY DETECT TCL FILES GENERATED BY QSYS. YOU SHOULD
SEE THE SAME THING AS ON Figure 9-18.

Tel Scripts

Libraries:

=] Project Edit

E db
=] sld5Tbaccdf
alt_sld_fab_wrapper_hw.tcl
pin_assignment_DE1_SoC.tcl
=] soc_system
=] synthesis
=] submodules

hps_sdram_p0_parameters.tcl

hps_sdram_p0_pin_assignments.tcl
hps_sdram_p0_pin_map.tcl
hps_sdram_p0_report_timing.tcl
hps_sdram_p0_report_timing_core.tcl
hps_sdram_p0_timing.tcl

Preview:

#(C) 2001-2015 Altera Corporation. All rights reserved.
#Your use of Altera Corporation’s design tools, logic functions and other

software and tools, and its AMPP partner logic functions, and any output

files any of the foregoing (including device programming or simulation

#files), and any associated documentation or information are expressly subject

to the terms and conditions of the Altera Program License Subscription

Agreement, Altera MegaCore Function License Agreement, or other applicable @

L1 P P D [P 1 S T thmb e pamm im Fme b

[rn | [cise | [rew |

Figure 9-18. Correct HPS DDR3 Pin Assignment TCL Script Selection

40. Execute “hps_sdram_p®_pin_assignments.tcl”.
41. You can now start the full compilation of your design with the “Start Compilation” flow.

At this point, we have finished the hardware design process and can proceed to programming the FPGA.

9.7 WIRING THE DE1-SoC
Connect the DE1-SoC as shown in Figure 9-19. We connect the

e Power cable

e USB-Blaster cable
e Ethernet cable

e UART cable

03/10/2018 Page |46

SoC-FPGA Design Guide [DE1-SoC Edition]

Figure 9-19. DE1-SoC Wiring

Note that the microSD card is NOT plugged in at this point.

9.8 PROGRAMMING THE FPGA
42. Open the Quartus Prime Programmer.

W

Programmer - /home/sahand/Documents/Development/github/So€_FP...oC_demc quartus/DE1_SoC_demo - DE1_SoC_demo - [Chain2.cdf] ~ A

File Edit View Processing Tools Window Help “7 @
&, Hardware Setup... | [DE-SoC [2-2] Mode: [JTAG [+] Progress :]

[_] Enable real-time ISP to allow background programming when available

Usercode | Program/

Configure

Verify | Blank-

Check

‘ File Device | Checksum Examine

Security | Erase | ISP
Bit

I Start CLAMP

il Stop
M Auto Detect
Delete

M Add File...

Change File.

- Save File

® Add Device..

"I Down

=]
]

Figure 9-20. Quartus Prime Programmer

43. Choose the “Auto Detect” button on the left of Figure 9-20, then choose “5CSEMA5”, as shown in
Figure 9-21.

03/10/2018 Page |47

SoC-FPGA Design Guide [DE1-SoC Edition]

Found devices with shared JTAG ID for device 2. Please select your device.

) BCSEBAS
® S5CSEMAS
O 5CSTFDSD5
(O 5CSXFC5C6
O 5CSXFC5D6

Figure 9-21. FPGA Selection

You should now see 2 devices on the JTAG scan chain, as shown in Figure 9-22.

SOCVHPS SCSEMAS

TDO

F

Figure 9-22. JTAG Scan Chain

44, Right-click on the “5CSEMA5” device shown in Figure 9-22 and choose “Edit > Change File”.Then,
select “DE1_SoC_demo/hw/quartus/output_files/DE1_SoC_demo.sof” through the file browser.

45. Enable the “Program/Configure” checkbox for device “5CSEMA5F31”, then press the “Start”
button, as shown in Figure 9-23.

Yo Programmer - /home/sahand/Documents/Development/github/SoC

File Edit View Processing Tools Window Help

o, Hardware Setup... | |2 Mode: [JTAG ‘v] Progress: 100% (Sucs‘ll-

[_] Enable real-time ISP to allow background programming when available

o File Device Checksum | Usercode Program/ | Verify | Blank- | Examine | Security | Erase | ISP
Configure Check Bit CLAMP
<none> SOCVHPS 00000000 <none> O O [l [l [l [l O
P output_files/DE1_So... 5CSEMASF31 01447381 01447381] O O O O O O
5 Change File..
Add Device... ATTER PALTERA

o | A o

E— —
SOCVHPS 5CSEMASF31

. TDO

+

Figure 9-23. Programming the FPGA

We are now done with the Quartus Prime program, and will no longer need it for the rest of this tutorial.

03/10/2018 Page |48

SoC-FPGA Design Guide [DE1-SoC Edition]

9.9 CREATING TARGET SDCARD ARTIFACTS
Later in this tutorial, we will sometimes want to avoid having to manually program the FPGA through the
Quartus Prime programmer, and would instead like the HPS to take care of this programmatically.

Quartus Prime generates an SRAM Object File (.sof) as its default FPGA target image. However, the HPS can
only program the FPGA by using a Raw Binary File (.rbf). Therefore, we must convert our . sof file to a . rbf
to later satisfy this requirement.

46. Execute the following command to convert the . sof file to a . rbf file.
$ quartus_cpf -c \
DE1_SoC_demo/hw/quartus/output_files/DE1_SoC_demo.sof \
DE1_SoC_demo/sdcard/fat32/socfpga.rbf

03/10/2018 Page |49

SoC-FPGA Design Guide [DE1-SoC Edition]

10USING THE CYCLONE V - FPGA - Ni10S II - BARE-METAL

10.1PROJECT SETUP
1. Launch the Nijos Il SBT IDE by executing the following command.
$ eclipse-nios2

2. Choose “File > New > Nios II Application and BSP from Template”.

a. Allthe information needed to program a Nios Il processor is contained within the
“.sopcinfo” file created by Qsys. For the “SOPC Information File name” use
“DE1_SoC_demo/hw/quartus/soc_system.sopcinfo”.

b. Use “DE1_SoC_demo_nios” as the project name.

c. Disable the “Use default location” checkbox

d. Use “DE1_SoC_demo/sw/nios/application/DE1_SoC_demo_nios” as the project location.

e. Choose the “Blank Project” template.

f. Click on the “Finish” button to create the project.

3. Right-click on the “DE1_SoC_demo_nios” project folder and select “New > Source file”. Use the
default C source template, and set “nios.c” as the file name.

4. Right-click on the “DE1_SoC_demo_nios_bsp” project, and select “Build Project”. Once the build is
completed, a number of files will be generated, the most useful of which is the “system.h” file. This
file contains all the details related to the Nios Il processor’s various peripherals, as defined in Qsys in
9.2.

10.2N10s I PROGRAMMING THEORY — ACCESSING PERIPHERALS

The Nios Il processor can be programmed in C similarly to any other microcontroller. However, care must be
taken when accessing any of the processor’s peripherals. Depending on which version of the Nios Il you
instantiated in Qsys, you may not be able to correctly read data at a peripheral’s address space using pointers.
The issue arises when your Nios Il processor has a data cache.

Our current system is composed of a Nios processor connected to a PIO set in output mode, which is in turn
connected to a series of LEDs. Suppose now that instead of a PIO in output mode, we use a PIO in input mode
connected to a series of switches. We use the code in Figure 10-1 to read data from the switches.

#include <stdbool.h>
#include <inttypes.h>
#include "system.h"

int main() {
uint32_t *p_switches = SWITCHES_O_BASE;
while (true) {
uint32_t switches_value = *p_switches;
printf("switches_value = %" PRIXx32 "\n", switches_value);

}

return 0;

Figure 10-1. Incorrect Nios Il Peripheral Access in C

When this code is run, the initial value of the “switches_value” variable, as obtained from the first iteration
of the while loop, will be the correct representation of the switches’ state. However, at each iteration of the
while loop, the “switches_value” variable will NEVER change again, even if the switches are flipped
between each iteration. The issue is that each successive access is being served by the data cache, which
doesn’t see that the switches have been modified.

The solution to this issue is to use special instructions that bypass the data cache when reading or writing to
peripherals. These instructions are part of the 10 family of load and store instructions and bypass all caches.

03/10/2018 Page |50

SoC-FPGA Design Guide [DE1-SoC Edition]

The available instructions are listed below, and an example of how to correctly access Nios Il peripherals is
shown in Figure 10-2.

e Reading

= TORD_8DIRECT(BASE, OFFSET)
= TORD_16DIRECT(BASE, OFFSET)
= TIORD_32DIRECT(BASE, OFFSET)

e Writing

= TIOWR_8DIRECT(BASE, OFFSET, DATA)
= TOWR_16DIRECT(BASE, OFFSET, DATA)
= TOWR_32DIRECT(BASE, OFFSET, DATA)

#include <stdbool.h>
#include <inttypes.h>
#include "system.h"
#include “io.h”

int main() {
while (true) {
uint32_t switches_value = IORD_32DIRECT(SWITCHES_@ BASE, ©);
printf("switches_value = %" PRIx32 "\n", switches_value); }
return 0;

Figure 10-2. Correct Nios Il Peripheral Access in C

10.3Ni1os I PROGRAMMING PRACTICE
5. Write the code provided in Figure 10-3 in “nios.c”. The code instructs the Nios Il processor to create
a strobing light effect on its 5 peripheral LEDs.

#include <stdio.h>

#include <stdbool.h>

#include <stdint.h>

#include <unistd.h>

#include "io.h"

#include "altera_avalon_pio_regs.h"
#include "system.h"

#define SLEEP_DELAY_US (100 * 1000)

void setup_leds() {
// Switch on first LED only
IOWR_ALTERA_AVALON_PIO_DATA(NIOS_LEDS_BASE, 0x1);
}

void handle_leds() {
uint32_t leds_mask = IORD_ALTERA_AVALON_PIO_DATA(NIOS_LEDS_BASE);

if (leds_mask != (@x01 << (NIOS_LEDS_DATA WIDTH - 1))) {
// rotate leds
leds_mask <<= 1;
} else {
// reset leds
leds_mask = 0x1;

}

TOWR_ALTERA_AVALON_PIO_DATA(NIOS_LEDS_BASE, leds_mask);

int main() {
printf("DE1-SoC nios demo\n");

setup_leds();

while (true) {
handle_leds();
usleep(SLEEP_DELAY_US);
¥

return 0;

03/10/2018 Page |51

SoC-FPGA Design Guide [DE1-SoC Edition]

|}

Figure 10-3. nios.c

6. Right-click on the “DE1_SoC_demo_nios” project, and select “Build Project”.

7. The code is now ready to be run on the FPGA. Right-click on the “DE1_SoC_demo_nios” project, and
select “Run As > Nios II Hardware”. You should be able to see a strobing light effect on the 5
lower FPGA LEDs.

8. Insome cases, it is possible that the program will not immediately run on the Nios Il processor, and
you will be prompted with a “Target Connection” dialog, as shown in Figure 10-4. If your Nios Il
CPU doesn’t appear in the list of available processors, then

a. Click onthe “Refresh Connections” button on the right of Figure 10-4.
b. Click on the “Run” button to finish.

Name: DEl_SoC demo_nios Nios II Hardware configuration

Project (Jll Target Gannection s %+ Debugger| B Common| % Source

Connections
Processors:

Cable | Device | Device ID | Instance 1D | Name |Architecture | Refresh Connections |
DE-SoC on localhost [1-1.2] [SCSE(BAS... [1 lo Inios2 gs... [Nios2:3

| Resolve Names |

| Systemn ID Propertie. .. |

Byte Stream Dewvices:
Cable | Device | Device D | Instance ID | MName | Wersion
DE-SoC on localhost [1-1.2] [SCSE(BAS... 1 @ [itaguart 0 [1

[] Disable 'Mios Il Console' view

Quartus Project File name:|< Using default .sopcinfo & .jdi files extracted from ELF =
System ID checks

[]1gnore mismatched system 1D

[]1gnore mismatched system timestamp

Download

Download ELF to selected target system

Start processor
[| Reset the selected target system

Figure 10-4. Nios Il Target Connection Dialog

We now have a programmed Nios Il processor on the FPGA. Of course, the design we had specified didn’t
require the power of a Nios Il processor, and could have easily been done in pure VHDL. Nevertheless, the
idea was to show that one can have a secondary programmable processor functioning on the FPGA parallely
to the HPS. We are now done with the Nios I/ SBT IDE, and will no longer need it for the rest of this tutorial.

03/10/2018 Page |52

SoC-FPGA Design Guide [DE1-SoC Edition]

11USING THE CYLONE V - HPS - ARM - GENERAL

11.1PARTITIONING THE SDCARD
The DE1-SoC needs to boot off of a microSD card, so we need to partition it appropriately before we can write
toit.

1. Plug your sdcard into your computer.
2. Find out the device’s identifier. When writing this tutorial, the sdcard was recognized as entry
“/dev/sdb” on my computer.

Please be careful and choose the correct /dev/sdX or /dev/mmcblkX entry for your sdcard. Failure to do so will
ensure that the following commands will WIPE THE WRONG PARTITION OFF OF YOUR MACHINE, which will
be a most unfortunate outcome!

3. Wipe the partition table of the sdcard by executing the following command.
$ sudo dd if=/dev/zero of=/dev/sdb bs=512 count=1

4. Manually partition the device by using the “fdisk” command. “fdisk” is an interactive program, so
you have to interactively provide the configuration of your device. You can do this by using the
following sequence of commands whenever “fdisk” prompts you for what to do.

The fdisk commands shown below were executed on version 2.27.1 of the fdisk utility. Other versions
of fdisk have different interfaces, and you will have to adapt the commands accordingly.

$ sudo fdisk /dev/sdx
use the following commands
n p 3 <default> 4095 t a2 (2048 is default first sector)
n p 1 <default> +32M t 1 b (4096 is default first sector)
n p 2 <default> +512M t 2 83 (69632 is default first sector)
#w

Figure 11-1. Partitioning the sdcard

5. Create the required filesystems on the device. We need a FAT32 partition for various boot-time files
(FPGA raw binary file, linux kernel zimage file, U-Boot configuration script ...), and an EXT3 partition
for the linux root filesystem.

$ sudo mkfs.vfat /dev/sdb1l
$ sudo mkfs.ext3 -F /dev/sdb2

11.2 GENERATING A HEADER FILE FOR HPS PERIPHERALS
We need the HPS to be able to programmatically access peripherals that are part of the FPGA fabric. In order
to do this, we must generate a header file.

1. Execute the following command.
$ sopc-create-header-files \
DE1_SoC_demo/hw/quartus/soc_system.sopcinfo \
--single DE1_SoC_demo/sw/hps/application/hps_soc_system.h \
--module hps_©

Figure 11-2 shows a short extract of the generated “hps_soc_system.h” header file. At the top of the file, it
says that macros for devices connected to master port “h2f _1lw_axi_master” of module “hps_0”’ have been
generated.

/*
* This file contains macros for module 'hps_©' and devices
* connected to the following master:

03/10/2018 Page |53

SoC-FPGA Design Guide [DE1-SoC Edition]

* h2f_lw_axi_master

*

* Do not include this header file and another header file created for a

* different module or master group at the same time.

* Doing so may result in duplicate macro names.

* Instead, use the system header file which has macros with unique names.
*/

/*
* Macros for device 'hps_fpga_leds', class 'altera_avalon_pio’
* The macros are prefixed with 'HPS_FPGA_LEDS_'.
* The prefix is the slave descriptor.
*/
#define HPS_FPGA_LEDS_COMPONENT_TYPE altera_avalon_pio
#define HPS_FPGA_LEDS_COMPONENT_NAME hps_fpga_leds
#define HPS_FPGA_LEDS_BASE 0x@
#define HPS_FPGA_LEDS_SPAN 16
#define HPS_FPGA_LEDS_END Oxf
#define HPS_FPGA_LEDS_BIT_CLEARING_EDGE_REGISTER @
#define HPS_FPGA_LEDS_BIT_MODIFYING_OUTPUT_REGISTER ©
#define HPS_FPGA_LEDS_CAPTURE ©
#define HPS_FPGA_LEDS_DATA_WIDTH 5
#define HPS_FPGA_LEDS_DO_TEST_BENCH_WIRING ©
#define HPS_FPGA_LEDS_DRIVEN_SIM VALUE @
#define HPS_FPGA_LEDS_EDGE_TYPE NONE
#define HPS_FPGA_LEDS_FREQ 50000000
#define HPS_FPGA_LEDS_HAS_IN ©
#define HPS_FPGA_LEDS_HAS_OUT 1
#define HPS_FPGA_LEDS_HAS_TRI ©
#define HPS_FPGA_LEDS_IRQ_TYPE NONE
#define HPS_FPGA_LEDS_RESET_VALUE ©

Figure 11-2. hps_soc_system.h

11.3HPS PROGRAMMING THEORY
The HPS works just like any other “microcontroller”.

e If you want to access a peripheral, you have to read/write at its address.
e If a peripheral is connected to a bus, its address is obtained by adding its offset in the bus to the bus’
address.

Altera provides useful utility functions in

“<altera_install directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/include/soc
_cv_av/socal/socal.h”, a few of which are listed below. Most functions exist for multiple sizes. These sizes
are summarized in Table 11-1. Note that “socal” means “SoC Abstraction Layer”.

e alt write byte(dest_addr, byte data)

e alt read byte(src_addr)

e alt setbits_byte(dest_addr, byte data)

e alt clrbits_byte(dest_addr, byte data)

e alt xorbits_byte(dest_addr, byte data)

e alt replbits_byte(dest_addr, msk, byte data)

Name Size (bits)

byte 8
hword 16
word 32
dword 64

Table 11-1. Predefined Data Sizes in socal.h

Up until this point, the hardware and software design process has been IDENTICAL for both BARE-METAL and
LINUX HPS applications. This is where the design process DIVERGES between bare-metal and linux HPS

03/10/2018 Page |54

SoC-FPGA Design Guide [DE1-SoC Edition]

applications. If you want to write a bare-metal application for the HPS, then read section 12. If instead you
want to write a linux application for the HPS, then read section 13.

Note: In addition to the example used in this tutorial, you can find many more in
“<altera_install_directory>/<version>/embedded/examples/software/”

03/10/2018 Page |55

SoC-FPGA Design Guide [DE1-SoC Edition]

12USING THE CYCLONE V - HPS - ARM - BARE-METAL

12.1 PRELOADER
In Figure 7-8, we saw that a bare-metal application can only be launched after the preloader has setup the

HPS. So, the first thing that needs to be done for bare-metal applications is to generate and compile a
preloader for the HPS.

12.1.1 Preloader Generation

1. Execute the following command to launch the preloader generator.
$ bsp-editor

2. Choose “File > New BSP..”.

a. The preloader will need to know which of the HPS' peripherals were enabled so it can
appropriately initialize them in the boot process. Under “Preloader settings directory”,
select the “DE1_SoC_demo/hw/quartus/hps_isw_handoff/soc_system_hps_0” directory.
This directory contains settings relative to the HPS’ HARD peripherals, as configured in the
“Arria V/Cyclone V Hard Processor System” component in Qsys.

b. Disable the “Use default locations” checkbox and under the “BSP target directory”,
select the “DE1_SoC_demo/sw/hps/preloader” directory. You should have something similar
to Figure 12-1.

New BSF

Hardware

Preloader settings directory: |:-CJ‘DEl_SoC_demnfhwfql.|ar‘tuthps_isw_hand-:f'ffsoc_systen'u_hps_0| I:I

Software

Cperating system: |U—Eloot SPL Preloader (Cycla. .. |v| Version: |default :

[] Use default locations

BSP target directory: |nt5fDeveI-:pment.“githul:-,’DEl-SoC,’DEl_SoC_demofswfl'ups,’preloader| I:I

BSP Settings File name: |1ent,‘githle,‘DE1-SOC,‘DEl_SOC_dem0,‘5w,‘hpsfpreloaderfsettings.bsp| I:I

Enable Settings File relative paths

[]Enable Additional Tcl script

| OK || Cancel

Figure 12-1. New BSP Dialog

c. Pressthe “OK” button. You should then arrive on a page with many settings, as shown on
Figure 12-2. Take some time to read through them to see what the preloader has the ability to
do.

03/10/2018 Page |56

SoC-FPGA Design Guide [DE1-SoC Edition]

File Help
l/ Main |
SOPC Information ...
CPU name
Operating system: Preloader Version:
BSP target directory: ./
[Eettings :| spl.reset_assert <
¢ Common g []L4wD1
¢ spl i
PRELOADER_TGZ E =R T
CROSS_COMPILE []SPTIMERO
¢ booetoor et 0 L] SPTIMERL B
BOOT_FROM_SDMMC B L rioo
BOOT_FROM_NAND [lariol
BOOT_FROM_RAM [| GPIOZ
QSPI_NEXT_BOOT_IMAGE] oma
SDMMC_MEXT_BOOT_IMAGE
MNAND_MEXT_BOOT_IMAGE H I/ SOR
FAT SUPPORT §§ spl.warm_reset_handshake
FAT BOOT_PARTITION FPGA
FAT_LOAD_PAYLOAD_NAME ETR
¢ Aﬁv:;]ced = EEr i
l/ Information rProblems r Processing |
@ Searching for BSP components with category: driver_element
@ searching for BSP components with category: software_package_element
@ Added operating system component "spl:1.0"

Figure 12-2. Preloader Settings Dialog

3. On the main settings page of Figure 12-2, we will only need to modify 2 parameters for our design.

a. Under “spl.boot”, disable the “WATCHDOG_ENABLE” checkbox. This is necessary to prevent
the system from being automatically reset after a certain time has elapsed. Note that we only
disable this option since we intend on writing a bare-metal program and want to simplify the
code. Any operating system would periodically write to the watchdog timer to avoid it from
resetting the system, and this is a good thing

b. Under “spl.boot”, enabled the “FAT_SUPPORT” checkbox. This option configures the
preloader to load the image of the next boot stage from the FAT32 partition of the sdcard
(instead of from a binary partition located immediately after the preloader on the sdcard).
The image of the next boot stage is named “u-boot.img” by default, but can be modified by
editing “spl.boot.FAT_LOAD PAYLOAD NAME”. We will leave the default name for this
tutorial.

c. Pressthe “Generate” button to finish. You can then exit the bsp-editor.

4. Execute the following command to build the preloader.
$ cd DE1_SoC_demo/sw/hps/preloader
$ make

IF YOU EVER DECIDE TO MOVE THE “DE1_SoC_demo” PROJECT DIRECTORY DEFINED IN FIGURE 8-1, YOU
WILL HAVE TO REGENERATE THE PRELOADER. UNFORTUNATELY, THE SCRIPT PROVIDED BY ALTERA WHICH
GENERATES THE PRELOADER HARD-CODES MULTIPLE ABSOLUTE PATHS DIRECTLY IN THE RESULTING FILES,

RENDERING THEM USELESS ONCE MOVED.

12.1.2 Creating Target sdcard Artifacts
5. Copy the preloader binary to the sdcard target directory. Execute the following command.
$ cp \
DE1_SoC_demo/sw/hps/preloader/preloader-mkpimage.bin \
DE1_SoC_demo/sdcard/a2/preloader-mkpimage.bin

12.2ARM DS-5
6. Launch the ARM DS-5 IDE by executing the following command.
$ eclipse

03/10/2018 Page |57

SoC-FPGA Design Guide [DE1-SoC Edition]

12.2.1 Setting Up a New C Project
7. Create a new C project by going to “File > New > Project > C/C++ > C Project”.

a.
b.
C.

Use “DE1_SoC_demo_hps_baremetal” as the project name.

Disable the “Use default location” checkbox.

Set “DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_baremetal” as the target
location for the project.

We want to create a single output executable for our project, so choose “Executable >
Empty Project” as the project type.

Choose “Altera Baremetal GCC” asthe Toolchain.

You should have something similar to Figure 12-3. Then, press the “Finish” button to create
the project.

C Praoject

C Project

Project name: DEL_SoC demo_hps_baremetal
Use default locatien
Location: fhome/sahand/Documents/Development /github/DEl-SoC/DEL_SoC_demo/sw/hps, EBrowse. ..

Choose file system: |default =

Project type: Toolchains:
¥ = Executable ARM Compiler 5 (D5-5 built-in)
® Empty Project ARM Compiler 6 (D5-5 built-in)
® Hello World ANSI C Project
b = Shared Library GCC 4.x [arm-linux-gnueabihf] (DS-5 built-in)
P (= Static Library GCC for ARM Bare-metal
> = Makefile project Linux GCC

& show project types and toclchains only if they are supported on the platform

@j = Back Next = | Finish | Cancel

Figure 12-3. New C Project Dialog

8. When programming the HPS, we will need access to a few standard header and linker files provided
by Altera. We need to add these files to the ARM DS-5 project.

a.
b.

Right-click on the “DE1_SoC_demo_hps_baremetal” project, and go to “Properties®”.

We are going to use Altera’s HWLIB to develop our bare-metal application, so we need to
define a macro that is needed by the library to know which board is being targetted.

Under “C/C++ Build > Settings > GCC C Compiler > Symbols”, add “soc_cv_av” to
the “Defined symbols (-D)” list.

Under “C/C++ Build > Settings > GCC C Compiler > Includes”, add
“<altera_install directory>/<version>/embedded/ip/altera/hps/altera_hps/hwli
b/include” to the “Include paths (-I)” list.

Under “C/C++ Build > Settings > GCC C Compiler > Includes?”, add
“<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwli
b/include/soc_cv_av” to the “Include paths (-I)” list.

Since we are not going to be running any operating system, we will need to use a linker script
in order to correctly layout our bare-metal program in memory. Altera provides linker scripts
for the HPS’ on-chip memory, as well as for it’'s DDR3 memory. We want our code to be
loaded in the HPS’ DDR3 memory and will not use any on-chip memory in our design, so we

03/10/2018

Page |58

SoC-FPGA Design Guide [DE1-SoC Edition]

will use the DDR3 linker script.
Under “C/C++ Build > Settings > GCC C Linker > Image”, setthe linker scriptto
“<altera_install directory>/<version>/embedded/host_tools/mentor/gnu/arm/bar
emetal/arm-altera-eabi/lib/cycloneV-dk-ram-HOSTED.1d”. The “hosted” script
allows the bare-metal application to use some of the host’s functionality. In this case, we use
the “hosted” script to be able to see the output of the printf() function on the host’s
console.

f. Click on the “Apply” button, then on the “Ok” button to close the project properties dialog.

12.2.2 Writing a DS-5 Debug Script

In Figure 7-8, we saw that a bare-metal application cannot run immediately upon boot, and that the HPS must
first go through the preloader. The preloader executes, and, before terminating, it jumps to the next stage of
the user software. In the case of a bare-metal application, the preloader jumps to the start of the bare-metal

code.

Jumping directly to the bare-metal code is useful for production environments, but it would be great if we
could use a debugger when testing our bare-metal code. To do this, we will use a DS-5 DEBUG SCRIPT to
instruct the DS-5 debugger exactly how to load our application in the HPS’ memory. This debugger script will
load and execute the preloader, then jump to our bare-metal code.

9.

10.

Create a new file for our DS-5 debug script and save it under
“DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_baremetal/debug_setup.ds”.
Populate the file with the code shown in Figure 12-4. This script tells the debugger to load the
prealoder, then to load our bare-metal application. This is performed by placing a breakpoint at the
very last function executed by the preloader prior to handing control of the cpu to the next boot
stage. This function is “spl_boot_device()”, which is responsible for choosing the next boot
medium on the DE1-SoC and jumping to it’s address. For bare-metal applications, we don’t want the
boot process to continue on towards another device. Instead, we want to load our bare-metal code
and jump to it’s address. This is exactly what the debug script in Figure 12-4 does.

Reset and stop the system.
stop

wait 5s

reset system

wait 5s

Delete all breakpoints.
delete breakpoints

Disable semihosting
set semihosting enabled false

Load the preloader.
loadfile "$sdir/../../preloader/uboot-socfpga/spl/u-boot-spl" ©xo

Enable semihosting to allow printing even if you don't have a uart module
available.
set semihosting enabled true

Set a breakpoint at the "spl_boot_device()" function. This function is the
last step of the preloader. It looks for a boot device (qgspi flash, sdcard,
fpga), and jumps to that address. For our bare-metal programs, we don't want
to use any boot device, but want to run our own program, so we want the
processor to stop here. Then, we will modify its execution to make it run our
program.

break spl_boot_device

o HoHH O HH

Set the PC register to the entry point address previously recorded by the
"load" or "loadfile" command and start running the target.
run

Instruct the debugger to wait until either the application completes or a
breakpoint is hit. In our case, it will hit the breakpoint.
wait

03/10/2018 Page |59

SoC-FPGA Design Guide [DE1-SoC Edition]

Load our bare-metal program.
loadfile "$sdir/Debug/DE1_SoC_demo_hps_baremetal.axf"

Set a breakpoint at our program's "main()" function.
tbreak main

Start running the target.
run

wait at main().
Wait

Figure 12-4. debug_setup.ds

For a comprehensive list of commands supported by the DS-5 debugger, please refer to [9].

12.2.3 Setting Up the Debug Configuration
11. Right-click on the “DE1_SoC_demo_hps_baremetal” project, and go to “Debug As > Debug
Configurations..”.
12. Choose to create a new debugger configuration by right-clicking on “DS-5 Debugger?” on the left and
selecting “New”. Use “DE1_SoC_demo_hps_baremetal” as the name of the new debug configuration.
13. Under the “Connection” tab:
a. Use “Altera > Cyclone V SoC (Dual Core) > Bare Metal Debug > Debug Cortex-
A9_0©” as the target platform.
b. Setthe “Target Connection” to “USB-Blaster”.
Use the “Browse” button to select the DE1-SoC that is connected to your machine.
d. You should have something similar to Figure 12-5.

Name: DEl_SoC demo_hps_baremetal
i B Files | B [)= i
< Connection Files| % Debugger 05 Awareness | ©= Arguments | B§ Environment

Select target

Select the manufacturer, board, project type and debug operation to use. Currently selected:
Altera / Cyclone V SoC (Dual Core) /Bare Metal Debug / Debug Cortex-A9_0

¥ Altera -
» ArriaV SoC
¥ CycloneV SoC (Dual Core)
¥ Bare Metal Debug

Debug Cortex-A9_0

Debug Cortex-A9_1

Debug Cortex-A9x2 SMP
Target Connection | USB-Blaster 2
DTSL Options Edit... Configure USB-Blaster trace or other target options. Using "default” configuratior
DS-5 Debugger will connect to an Altera USB-Blaster to debug a bare metal application.
Connections

Bare Metal Debug | Connection DE-SoC on localhost [1-1.1]:DE-SoC 1-1.1 Browse...

Apply Revert

Figure 12-5. Debug Configuraton “Connection” Tab

14. Under the “Files” tab:

a. Leavethe “Application on host to download” empty. We do this since we are using a
debug script to instruct the debugger how to load our application.

b. [UNAVAILABLE IN SoC EDS 16.0] In 9.3.2, we configured our HPS to use some FPGA
peripherals. We can instruct the debugger about this so it can show more detailed
information when debugging. To do this, set the combobox to “Add peripheral
description files from directory” and set it to the

03/10/2018 Page |60

SoC-FPGA Design Guide [DE1-SoC Edition]

“DE1_SoC_demo/hw/quartus/soc_system/synthesis” directory, as shown in Figure 12-6.
This directory contains a file called “soc_system_hps_@ hps.svd” which has information on
all of the HPS’ peripherals which are in the FPGA fabric.

Mame: DE1l_SoC_demo_hps_baremetal
<= Connection . i@ Files | % Debugger| & OS Awareness | ®: Arguments | B§ Environment
Target Configuration

Application on host to download:

File System...| | Waorkspace...

Files

Add peripheral description files from directory 2

—| /home/sahand/Documents/Development/github/DE1-SoC/DEL_SoC_demo/hw/quartus/soc_system/synthesis
IFile System... | Workspace...

Figure 12-6. Debug Configuration "Files" Tab

15. Under the “Debugger” tab:

a. Since we are going to use a debug script to launch the application, we don’t need to specify
any function to be loaded by the debugger. So, choose “Connect only” under “Run
control”.

b. Enable the “Run DEBUG initialization debugger script (.ds / .py)” checkbox. Set
the debug script to the one we defined for the project in 12.2.2. You should have something
similar to Figure 12-7.

16. Click on the “Apply” button, then on the “Close” button to save the debug configuration.

MName: DEl_SoC demo_hps_baremetal

<= Connection | @ Files | %5 Debugger s, % OS Awareness| ®+: Arguments | B8 Environment
Run control
® connect only Debug from entry point Debug from symbaol

Run target initialization debugger script (ds / .py)

B Run debug initialization debugaer script {.ds /.py)
${workspace_loc,/DE1_SoC_demo_hps_baremetal/debug_setup.ds} File System...| | Workspace...

Execute debugger commands

Figure 12-7. Debug Configuration "Debugger" Tab

12.2.4 Bare-metal Programming
We can now start writing bare-metal code for the HPS.

17. Right-click on the “DE1_SoC_demo_hps_baremetal” project, and go to “New > Source File”. Use
“hps_baremetal.c” as the file name, and click on the “Finish” button to create the new source file.

18. Right-click on the “DE1_SoC_demo_hps_baremetal” project, and go to “New > Header File”. Use
“hps_baremetal.h” as the file name, and click on the “Finish” button to create the new header file.

The code for this part of the application is quite large to be inserted in this document. Therefore, we will just
go over a few practical aspects of the code which are worth paying attention to. The full source can be found
in DE1_SoC_demo. zip [5].

We are not going to implement any interrupts for the various buttons on the board at this time. Therefore, in
order to satisfy the HPS-related goals specified in 8.4, we will need to use an infinite loop and do some polling.

03/10/2018 Page |61

SoC-FPGA Design Guide [DE1-SoC Edition]

This can be seen in our application’s “main()* function, which is shown in Figure 12-8.

#include "hwlib.h"

int main() {
printf("DE1-SoC bare-metal demo\n");

setup_hps_timer();
setup_hps_gpio();
setup_fpga_leds();

while (true) {
handle_hps_led();
handle_fpga_leds();
delay_us(ALT_MICROSECS_IN A _SEC / 18);

}

return 0;

Figure 12-8. hps_baremetal.c main() function

12.2.4.1 Accessing FPGA Peripherals

Accessing the FPGA peripherals connected to the HPS’ lightweight HPS-to-FPGA bridge is quite simple, as no
libraries are needed. One can simply use the low-level functions listed in 11.3 to address the peripherals at an
offset from the lightweight HPS-to-FPGA bridge’s base address.

Figure 12-9 shows an example where the HPS accesses the LEDs on the FPGA.

#include "socal/hps.h"
#include "socal/socal.h"

// fpga LEDs can be found at an offset from the base of the lightweight HPS-to-FPGA bridge
void *fpga_leds = ALT_LWFPGASLVS_ADDR + HPS_FPGA_LEDS_BASE;

void setup_fpga_leds() {
// Switch on first LED only
alt_write_word(fpga_leds, 0x1);
}

void handle_fpga_leds() {
uint32_t leds_mask = alt_read_word(fpga_leds);

if (leds_mask != (@x@1 << (HPS_FPGA_LEDS_DATA WIDTH - 1))) {
// rotate leds
leds_mask <<= 1;
} else {
// reset leds
leds_mask = ox1;

}

alt_write_word(fpga_leds, leds_mask);

Figure 12-9. Accessing FPGA Buttons from the HPS

12.2.4.2 Accessing HPS Peripherals
It is possible to do everything with the low-level functions listed in 11.3. However, a better way would be to
use Altera’s HWLIB, as discussed In 7.5.2. You can easily use HWLIB to access all the HPS’ HARD peripherals.

Note that some things may not be available in HWLIB, and you will then have to resort to using the low-level
functions. One example of this scenario which we have already seen is when accessing any FPGA peripherals
through the lightweight or heavyweight HPS-to-FPGA bus (as there is no standard header file for any FPGA
peripherals).

Since we already demonstrated how to use low-level functions to access peripherals in 12.2.4.1, we will
instead use Altera’s HWLIB to access the HPS’ hard peripherals.

12.2.4.2.1 Using Altera’s HWLIB - Prerequisites
In order to be able to use HWLIB to configure a peripheral, 2 steps need to be performed:

03/10/2018 Page |62

SoC-FPGA Design Guide [DE1-SoC Edition]

e You need to INCLUDE the HPS peripheral’s HWLIB HEADER FILE to your code.

e You must COPY the HPS peripheral’s HWLIB SOURCE FILE in your DS-5 project directory. The HWLIB
source files can be found in directory
“<altera_install directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/src”,
and must be copied to “DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_baremetal”.

12.2.4.2.2 Global Timer & Clock Manager

If you look closely at the code in Figure 12-8, you’ll see that we used a “delay_us()” function to slow the
counter down. It turns out that among all the code available for the HPS, Altera does not provide any
“sleep()” function (unlike for the Nios Il processor). Therefore, we will have to write the “delay _us()”
function ourselves.

The easiest way to create a delay in the HPS is to use one of it’s timers. There are numerous timers on Cyclone
V SoCs:

e One such timer is the GLOBAL TIMER. This timer is actually shared by both HPS cores, as well as by the
FPGA.

e In addition to the unique global timer, each HPS core also has 7 other timers which it can use
exclusively, if needed.

For simplicity, we will use the global timer to implement the “delay_us()” function.

As described in 12.2.4.2.1, we need to add the required HWLIB sources to our project, and their headers to
our code. To program the global timer, we will need information regarding the clock frequency, as well as any
timer-specific functions. We can access this information by using the following source and header files:

e alt_clock_manager.c
e alt_clock _manager.h
e alt_globaltmr.c
e alt_globaltmr.h

Figure 12-10 shows how we implement the “delay_us()?” function using the global timer.

#include "alt_clock_manager.h"
#include "alt_globaltmr.h"

void setup_hps_timer() {
assert(ALT_E_SUCCESS == alt_globaltmr_init());
}

/* The HPS doesn't have a sleep() function like the Nios II, so we can make one
* by using the global timer. */
void delay_us(uint32_t us) {
uint64_t start_time = alt_globaltmr_get64();
uint32_t timer_prescaler = alt_globaltmr_prescaler_get() + 1;
uint64_t end_time;
alt_freq_t timer_clock;

assert(ALT_E_SUCCESS == alt_clk_freq_get(ALT_CLK_MPU_PERIPH, &timer_clock));
end_time = start_time + us * ((timer_clock / timer_prescaler) / ALT_MICROSECS_IN_A_SEC);

// polling wait
while(alt_globaltmr_get64() < end_time);

Figure 12-10. Programming the HPS Global Timer

12.2.4.2.3 GPIO
Figure 12-11 shows how we implement the “handle_hps_led()” function. This function uses the HPS_KEY_N
button to toggle HPS_LED.

Once again, we need to add the HWLIB source file for the GPIO peripheral to our DS-5 project directory. The
files we will use are listed below:

03/10/2018 Page |63

SoC-FPGA Design Guide [DE1-SoC Edition]

e alt_generalpurpose_io.c
e alt_generalpurpose_io.h

As stated in 12.2.4.2 previously, HWLIB is quite a broad library, but it sometimes lacks certain “obvious”
things. In such cases, you have to fall back on using lower-level functions to implement whatever you are
missing.

In our case, we see that HWLIB has functions that allow us to write to the GPIO peripheral’s “data” register,
but it doesn’t have any function to read the it back. We get around this issue by directly reading the register
with “alt_read word(ALT_GPIO1_SWPORTA_DR_ADDR)”.

Note that we also need to include the “socal/alt_gpio.h” header file to have access to the lower-level
ALT_GPIO1_SWPORTA_DR_ADDR macro.

#include "alt_generalpurpose_io.h"
#include "socal/alt_gpio.h"

// | Signal Name | HPS GPIO | Register/bit | Function

Y/ [y (S, PR [—

// | HPS_LED | GPIO53 | GPIO1[24] | /0 |

Y/ [, P —— [———————— ——

#define HPS_LED_IDX (ALT_GPIO_1BIT_53) // GPIO53

#define HPS_LED_PORT (alt_gpio_bit_to_pid(HPS_LED_IDX)) // ALT_GPIO_PORTB
#define HPS_LED_PORT_BIT (alt_gpio_bit_to_port_pin(HPS_LED_IDX)) // 24 (from GPIO1[24])
#define HPS_LED_MASK (1 << HPS_LED_PORT_BIT)

Y P P — — |= ==

// | Signal Name | HPS GPIO | Register/bit | Function

Y/ [P, (S, P—————

// | HPS_KEY_N | GPIOS4 | GPIO1[25] | 1/0 |

Y/ [P —— (———————— ——

#define HPS_KEY_N_IDX (ALT_GPIO_1BIT_54) // GPIO54

#define HPS_KEY_N_PORT (alt_gpio_bit_to_pid(HPS_KEY_N_IDX)) // ALT_GPIO_PORTB
#define HPS_KEY_N_PORT_BIT (alt_gpio_bit_to_port_pin(HPS_KEY_N_IDX)) // 25 (from GPIO1[25])
#define HPS_KEY_N_MASK (1 << HPS_KEY_N_PORT_BIT)

void setup_hps_gpio() {
uint32_t hps_gpio_config len = 2;
ALT_GPIO_CONFIG_RECORD_t hps_gpio_config[] = {
{HPS_LED_IDX , ALT_GPIO_PIN_OUTPUT, ©, @, ALT_GPIO_PIN_DEBOUNCE, ALT_GPIO_PIN_DATAZERO},
{HPS_KEY_N_IDX, ALT_GPIO_PIN_INPUT , ©, O, ALT_GPIO_PIN_DEBOUNCE, ALT_GPIO_PIN_DATAZERO}
¥

assert(ALT_E_SUCCESS == alt_gpio_init());
assert(ALT_E_SUCCESS == alt_gpio_group_config(hps_gpio_config, hps_gpio_config_len));
}

void handle_hps_led() {
uint32_t hps_gpio_input = alt_gpio_port_data_read(HPS_KEY_N_PORT, HPS_KEY_N_MASK);

// HPS_KEY_N is active-low
bool toggle_hps_led = (~hps_gpio_input & HPS_KEY_N_MASK);

if (toggle_hps_led) {
uint32_t hps_led_value = alt_read_word(ALT_GPIO1_SWPORTA_DR_ADDR);
hps_led_value >>= HPS_LED_PORT_BIT;
hps_led_value = !hps_led_value;
hps_led_value <<= HPS_LED_PORT_BIT;
assert(ALT_E_SUCCESS == alt_gpio_port_data_write(HPS_LED_PORT, HPS_LED_MASK, hps_led_value));

Figure 12-11. Programming the HPS GPIO Peripheral

12.2.4.3 Launching the Bare-metal Code in the Debugger
19. Once you have finished writing all the application’s code, right-click on the
“DE1_SoC_demo_hps_baremetal” project, and select “Build Project”.
20. Switch to the DS-5 Debug perspective, as shown in Figure 12-12.

03/10/2018 Page | 64

SoC-FPGA Design Guide [DE1-SoC Edition]

= is o]

1eralpurpo = g | g=Outlin 2 = g
3 AR R e T
= assert.h
™ stdboolh
o stdioh

[B [N

Figure 12-12. Switching to the DS-5 Debug Perspective

21. In the “Debug Control” view, click on the “DE1_SoC_demo_hps_baremetal” entry, then click on the
“Connect to Target” button, as shown on Figure 12-13. Our debug script will load and execute the
preloader, then it will load and wait at our application’s “main()” function.

DebugC ® |[5ProjectE #Remote = O

=N R ®X %

=

» . DE1_SoC_demo_hps_baremetal disconnected

&i DE1_SoC_demo_hps_baremetal disconnected
Mo OS5 Support

Figure 12-13. Debug Control View

22. You can the use the buttons in the “Debug Control” view to control the application’s execution.

%5 DebugC 2 = 8
alvw % a2y p o oa|

¥ & DE1_SoC_demo_hps_baremetal connected
v ﬁ Cortex-A9 0 #1 stopped on breakpoint

main

__£s3 premain+0x30

_ 53 start_c+0xBC

5: 0xFFFF4808

" DE1_SoC_demo_hps_baremetal connected
Mo QS Support

Figure 12-14. DS-5 Debugger Controls
12.2.4.4 DS-5 Bare-metal Debugger Tour

12.2.4.4.1 “Registers” View [UNAVAILABLE IN SoC EDS 16.0]
DS-5's greatest feature is its “Registers®” view.

03/10/2018 Page |65

SoC-FPGA Design Guide [DE1-SoC Edition]

Recall that we provided the debugger with a PERIPHERAL DESCRIPTION FILE in 12.2.3. This file allows the
debugger’s “Registers” view to display information about all the HPS’ internal and FPGA peripherals, as

shown in Figure 12-15.

#=Variables ®s Breakpoints = Registers i

Name
= Core
[= CP15
= VFP
= NEON

= acpidmap

= can@

= canl

= clkmgr

(= dap

[dmanonsecure

(= dmasecure

= emac@

[emacl

(= fpga2hpsregs

= fpgamgrdata

(= fpgamgrregs

(= gpio0

= gpiol

(= gpio2

= hps2fpgaregs

= 12cO

= i12cl

= 12c2

= 12c3

= 13regs

= 1dwdD

= 1 awdl

= lwhps2fpgaregs

= mpul2

[mpuscu

(= nandregs

= oscltimer®

= oscltimerl

(= gspiregs

(= rstmgr

[scanmgr

= sdmmc

= sdr

[spim@

= spiml

(= spis0

[spisl

= sptimerd

= sptimerl

= stm

(= sysmagr

(= uarto

[uartl

= ushO

= usbl

(= altera_avalon_pio_buttons_0O_sl
(= altera_avalon_pio_hex 0O sl
(= altera_avalon_pio hex 1 sl
= altera_avalon_pio_hex_2 sl
(= altera_avalon_pio_hex 3 sl
(= altera_avalon_pio_hex 4 sl

= altera_avalon_pio_hex 5 sl

Value|S

=

= & Peripherals |]

EHE-E -

g T Y

o

gpiol

@ gpiol_gpio_swporta dr

@ gpiol_gpio_swporta_ddr
@ gpiol gpic_inten

@ gpiol _gpio_intmask

@ gpiol_gpio_inttype_level
@ gpiol gpio int polarity
@ gpiol_gpio_intstatus

@ gpiol_gpio_raw_intstatus
@ gpiol gpio_debounce

gpiol_gpio_porta_eoi

@ gpiol_gpio_ext_porta
@ gpiol_gpio_ls_sync

@ gpiol _gpio_id code

@ gpiol_gpio_ver_id_code
@ gpiol gpio config reg2
@ gpiol gpic_config_regl

== altera_avalon_pio_hex_0 sl

1l

-

e

POPPPCPe PP CEPESOPP

altera_avalon_pio_hex 0O sl DATA
altera_avalon_pio_hex O sl DIRECTION
altera_avalon_pio_hex_0_sl_IRQ MASK
altera_avalon_pioc_hex 0O sl EDGE_CAP
altera_avalon_pio_hex 0 sl SET BIT
altera_avalon_pio_hex_0_sl_CLEAR BITS

-
=1
(=]
=

gplol_gpilo_swporta_dr
gpiol_gpio_swporta_ddr
gpiol_gpio_inten
gplol_gpio_intmask
gpiol_gpio_inttype_lewel
gpiol_gpio_int_polarity
gplol_gpio_intstatus
gplol_gpio_raw_intstatus
gpiol_gpio_debounce
gplol_gplo_porta_eol
gpiol_gpio_ext_porta
gpiol_gpio_ls_sync
gplol_gpio_id_code
gpiol_gpio_ver_id_code
gplol_gpio_config_reg2
gpiol_gpio_config_regl

Figure 12-15. DS-5 Debugger Registers View

Ox 00000000
Ox 00000000
Ox 00000000
Ox 00000000
Ox 00000000
Ox 00000000
Ox 00000000
Ox 00000000
Ox 00000000
write only
Ox1FF7FFCF
Ox 00000000
Ox 00000000
0x 323035824
0x00Q39CFC
OxD01FFOF2

0x 0000007F
Ox 00000000
Ox 00000000
0x 00000000
write only
write only

0x 00000000
Ox 01000000
Ox 00000000
0x 00000000
Ox 00000000
Ox 00000000
0x 00000000
Ox 00000000
0x 03000000
write only
Ox1EF7FFCF
Ox 00000000
0x 00000000
Ox 32303824
0xQOR39CFC
0xQOLFFOF2

You can MODIFY any value in this view, and they will automatically be applied to the corresponding
peripheral. For example, you can manually switch on one of the LEDs, or manually trigger a button press of
HPS_KEY_N (assuming you write the correct bit in the correct place).

32 R/W
32 R/W
32 R/W
32 R/W
32 R/W
32 R/W
32 R/W
32 R/W
32 R/W
32 WO
32 RO
32 R/W
32 RO
32 RO
32 RO
32 RO

32 R/W
32 R/W
32 R/W
32 R/W
32 W0
32 W0

32 R/W
32 R/'W
32 R/W
32 R/W
32 R/W
32 R/W
32 R/W
32 R/W
32 R/W
32 WO
32 RO
32 R/W
32 RO
32 RO
32 RO
32 RO

The view also highlights the values that changed when stepping through the code while debugging, which
helps you track down invalid peripheral writes, side-effects, ...

03/10/2018

Page | 66

SoC-FPGA Design Guide [DE1-SoC Edition]

However, there is one downside with the “Registers” view. With so many details in this view, one would
normally start browsing through each peripheral’s registers (much easier than reading the Cyclone V manual,
isn’t it?).

The problem occurs when you expand a peripheral that has not been enabled in the preloader, or that has
side-effects when some of its registers are accessed.

Indeed, DS-5 will try to access an invalid address, and it will crash the debugging session, therefore leaving the
software on the board in an unrecoverable state. You will have to SWITCH OFF THE BOARD and reprogram it
to relaunch the application. Don’t forget to REPROGRAM THE FPGA FABRIC with your design as well.

12.2.4.4.2 App Console
Data sent to standard output is shown in the “App Console” view. Figure 12-16 shows the result of a
“printf()” call in our demo code shown in Figure 12-8.

B App Console 2 | B Console &3 Progress = O
'-'3-| " ug

<}~==f? Linked: DEl_SoC _demo_hps_baremetal -
DEl1-SoC bare-metal demo|

Figure 12-16. DS-5 App Console View

03/10/2018 Page | 67

SoC-FPGA Design Guide [DE1-SoC Edition]

13 USING THE CYCLONE V - HPS - ARM - LINUX

In Figure 7-8, we saw that there are 3 stages before a linux application can be launched:

e Preloader
e Bootloader
e Operating System

In this section, we detail each step needed to create such a linux system from scratch.

13.1PRELOADER
The first step is to generate and compile the preloader which sets up the HPS.

13.1.1 Preloader Generation

1. Execute the following command to launch the preloader generator.
$ bsp-editor

2. Choose “File > New BSP..”.

a. The preloader will need to know which of the HPS’ peripherals were enabled so it can
appropriately initialize them in the boot process. Under “Preloader settings directory”,
select the “DE1_SoC_demo/hw/quartus/hps_isw_handoff/soc_system hps 0> directory.
This directory contains settings relative to the HPS’ HARD peripherals, as configured in the
“Arria V/Cyclone V Hard Processor System” component in Qsys.

b. Disable the “Use default locations” checkbox and under the “BSP target directory”,
select the “DE1_SoC_demo/sw/hps/preloader” directory. You should have something similar
to Figure 13-1.

New BSP

Hardware

Preloader settings directory: |:|C,‘DEl_SDC_denw{hw}qL|ar‘tLls,fhps_isw_handUfffsoc_systen'l_hps_0| I:I

Software

COperating system: |U-Boot SPL Preloader (Cyclo... |v| Version: |default :

[]use default locations

BSP target directory: |nts,’DeveIDpment,‘githle,fDEl—SOC,fDEl_SOC_demofsw,’hps,fpreloader| I:I

BSP Settings File name: |1e|'|t.‘githubeE1—SoC,‘DEl_Sc-C_demDJ‘swfhps;’prelnaden‘settings.bsp| I:I

Enable Settings File relative paths

[] Enable Additional Tel script

I oK || Cancel

Figure 13-1. New BSP Dialog

c. Pressthe “OK” button. You should then arrive on a page with many settings, as shown on
Figure 13-2. Take some time to read through them to see what the preloader has the ability to
do.

03/10/2018 Page |68

SoC-FPGA Design Guide [DE1-SoC Edition]

File Help
l/ Main |
SOPC Information ...
CPU name
Operating system: Preloader Version: :
BSP target directory: ./
[Eettings :| spl.reset_assert <
¢ Common :] L4wD1
¢ spl B
PRELOADER TGZ E [] OSCITIMERL 3
CROSS_COMPILE []SPTIMERO
¢ boot : LI SPTIMERL B
BOOT_FROM_GSPI B
- . GPIOD
BOOT_FROM_SDMMC B U
BOOT_FROM_MAND i [lariol
BOOT_FROM_RAM [JGPio2
QSPI_NEXT_BOOT_IMAGE ;] oMa
SDMMC_MEXT_BOOT_IMAGE [JsoR
MNAND_MEXT_BOOT_IMAGE B
FAT SUPPORT spl.warm_reset_handshake
FAT BOOT_PARTITION FPGA
FAT_LOAD_PAYLOAD_NAME ETR
¢ Advanced :
o spl G [] SDRAM -
l/ Information rProblems r Processing |
@ Searching for BSP components with category: driver_element
@ searching for BSP components with category: software_package_element
@ Added operating system component "spl:1.0"

Figure 13-2. Preloader Settings Dialog

3. On the main settings page of Figure 13-2, we will only need to modify 1 parameter for our design.
a. Under “spl.boot”, enabled the “FAT_SUPPORT” checkbox. This option configures the
preloader to load the image of the next boot stage from the FAT32 partition of the sdcard
(instead of from a binary partition located immediately after the preloader on the sdcard).
The image of the next boot stage is named “u-boot.img” by default, but can be modified by
editing “spl.boot.FAT_LOAD PAYLOAD NAME”. We will leave the default name for this
tutorial.
b. Pressthe “Generate” button to finish. You can then exit the bsp-editor.
4. Execute the following command to build the preloader.

$ cd DE1_SoC_demo/sw/hps/preloader
$ make

IF YOU EVER DECIDE TO MOVE THE “DE1_SoC_demo” PROJECT DIRECTORY DEFINED IN FIGURE 8-1, YOU
WILL HAVE TO REGENERATE THE PRELOADER. UNFORTUNATELY, THE SCRIPT PROVIDED BY ALTERA WHICH
GENERATES THE PRELOADER HARD-CODES MULTIPLE ABSOLUTE PATHS DIRECTLY IN THE RESULTING FILES,

RENDERING THEM USELESS ONCE MOVED.

13.1.2 Creating Target sdcard Artifacts
5. Copy the preloader binary to the sdcard target directory. Execute the following command.

$ cp \
DE1_SoC_demo/sw/hps/preloader/preloader-mkpimage.bin \
DE1_SoC_demo/sdcard/a2/preloader-mkpimage.bin

13.2BOOTLOADER

The second step is to obtain a bootloader that is capable of loading the linux kernel. Altera provides a copy of
the U-Boot bootloader alongside the preloader. However, this copy is quite old as it dates back to 2013.
Instead, we will download the official U-Boot sources online and use a more recent version.

13.2.1 Getting & Compiling U-Boot
6. Download the latest version of the U-Boot bootloader by executing the following command. This
command downloads the latest U-Boot sources and saves it to the “DE1_SoC_demo/sw/hps/u-boot”
directory.

03/10/2018 Page |69

SoC-FPGA Design Guide [DE1-SoC Edition]

$ git clone \
git://git.denx.de/u-boot.git \
DE1_SoC_demo/sw/hps/u-boot

7. Change your current working directory to the U-Boot directory.
$ cd DE1_SoC_demo/sw/hps/u-boot

8. We need to compile U-Boot for an ARM machine, but are compiling on an x86-64 machine, so we
must cross-compile the bootloader. To cross-compile U-Boot, define the following environment

variable:
$ export CROSS COMPILE=arm-linux-gnueabihf-

9. Clean up the source tree to be sure it is in a clean state before we compile it.
$ make distclean

10. Checkout the following U-Boot commit. This corresponds to the last commit against which the
instructions in this guide were tested. You can skip this step if you want to use a more recent version
of U-Boot, but keep in mind that there may be regressions that make some things not work.

commit b104b3dcldd99cdbf67ccf3c51b06e4f1592fe91l
Author: Tom Rini trini@konsulko.com

Date: Mon Jun 6 17:43:54 2016 -0400

#

Prepare v2016.07-rcl
#
Signed-off-by: Tom Rini trini@konsulko.com

$ git checkout b104b3dcldd90cdbf67ccf3c51b06e4f1592fe91

11. Configure U-Boot for the Cyclone V SoC architecture.
$ make socfpga cyclone5 config

By default, U-Boot loads some environment variables from a specific flash sector on the sdcard, then
continues executing the commands specified in the macro called “CONFIG_BOOTCOMMAND” (defined in the U-
Boot source code). If this flash sector is empty, then U-Boot emits the following error message.

*¥** Warning - bad CRC, using default environment

To get around this issue, we are going to patch U-Boot’s source code to ignore the empty flash sector (if it
exists), and instruct it to always load and execute the contents of a user-defined script that we will provide. As
we will see in 13.2.2, U-Boot can be scripted to perform steps of your choosing.

12. Open “DE1_SoC_demo/sw/hps/u-boot/include/configs/socfpga_cyclone5_socdk.h" with a text

editor.

13. Replace the value of the “CONFIG_BOOTCOMMAND” macro with the following definition. This macro
contains the first instruction that will be executed by U-Boot when it boots. In our case, we are telling
U-Boot to execute the contents of the environment variable called “callscript”.

#define CONFIG_BOOTCOMMAND "run callscript”

The “callscript” environment variable does not yet exist in U-Boot, so we are going to set it in the source
code as an extra environment variable.

03/10/2018 Page |70

mailto:trini@konsulko.com
mailto:trini@konsulko.com

SoC-FPGA Design Guide [DE1-SoC Edition]

14. Replace the value of the “CONFIG_EXTRA_ENV_SETTINGS” macro with the following definition. We
define the environment variables needed to load a user-defined script called “u-boot.scr” from

sdcard 0, partition 1 (FAT32 partition) into memory, and to execute it.
#define CONFIG_EXTRA_ENV_SETTINGS \
"scriptfile=u-boot.scr" "\0" \
"fpgadata=0x2000000" "\0" \
"callscript=fatload mmc ©:1 $fpgadata $scriptfile;" \
"source $fpgadata" "\o"

15. At this point, we have finished modifying U-Boot’s source code, and we can compile the bootloader.
$ make

13.2.2 Scripting U-Boot
U-Boot can be scripted to perform steps of your choosing. We will use this ability to automate a few steps
before booting into linux.

16. Create a new file for our U-Boot script and save it under “DE1_SoC_demo/sw/hps/u-boot/u-
boot.script”.

17. Populate the file with the code shown in Figure 13-3. This script instructs U-Boot to
a. Define some environment variables.

Load the FPGA . rbf file from the FAT32 partition into memory.
Program the FPGA.
Enable the FPGA2HPS and HPS2FPGA bridges.
Load linux kernel image and devicee tree into memory.

f. Boot linux.
In our case, we use such a script to ensure that the FPGA is programmed BEFORE linux boots.

® oo T

B e e s s s s g
echo --- Resetting Env variables ---

reset environment variables to default
env default -a

echo --- Setting Env variables ---

Set the kernel image
setenv bootimage zImage;

address to which the device tree will be loaded
setenv fdtaddr 0x00000100

Set the devicetree image
setenv fdtimage socfpga.dtb;

set kernel boot arguments, then boot the kernel
setenv mmcboot 'setenv bootargs mem=1024M console=ttyS@,115200 root=${mmcroot} rw rootwait; bootz
${loadaddr} - ${fdtaddr}’;

load linux kernel image and device tree to memory
setenv mmcload 'mmc rescan; ${mmcloadcmd} mmc @:${mmcloadpart} ${loadaddr} ${bootimage}; ${mmcloadcmd}
mmc 0:${mmcloadpart} ${fdtaddr} ${fdtimage}'

command to be executed to read from sdcard
setenv mmcloadcmd fatload

sdcard fat32 partition number
setenv mmcloadpart 1

sdcard ext3 identifier
setenv mmcroot /dev/mmcblkep2

standard input/output
setenv stderr serial
setenv stdin serial
setenv stdout serial

03/10/2018 Page |71

SoC-FPGA Design Guide [DE1-SoC Edition]

save environment to sdcard (not needed, but useful to avoid CRC errors on a new sdcard)
saveenv

B S T S
echo --- Programming FPGA ---

load rbf from FAT partition into memory
fatload mmc 0:1 ${fpgadata} socfpga.rbf;

program FPGA
fpga load 0 ${fpgadata} ${filesize};

enable HPS-to-FPGA, FPGA-to-HPS, LWHPS-to-FPGA bridges
bridge enable;

ARFFHBHAFEAFFHHHHAEARFH BB HAHEARFHHHHAEARF RSB HAAEARF R B HAAEARR R BB HASARA R R BB HARARH
echo --- Booting Linux ---

load linux kernel image and device tree to memory
run mmcload;

set kernel boot arguments, then boot the kernel
run mmcboot;

Figure 13-3. U-Boot Script

18. Convert the U-Boot script to binary form.

$ mkimage \
-A arm \
-0 linux \
-T script \
-C none \
-a 0\
-e 0\
-n DE1_SoC_demo \
-d DE1_SoC_demo/sw/hps/u-boot/u-boot.script \
DE1_SoC_demo/sw/hps/u-boot/u-boot.scr

13.2.3 Creating Target sdcard Artifacts
19. Copy the U-Boot image to the sdcard target directory.

$ cp\
DE1_SoC_demo/sw/hps/u-boot/u-boot.img \
DE1_SoC_demo/sdcard/fat32/u-boot.img

20. Copy the binary U-Boot script to the sdcard target directory.

$ cp\
DE1_SoC_demo/sw/hps/u-boot/u-boot.scr \
DE1_SoC_demo/sdcard/fat32/u-boot.scr

13.3LiNux KERNEL
The third step is to obtain and compile the linux kernel.

13.3.1 Getting & Compiling Linux

21. Download the latest version of the linux kernel by executing the following command. This command
downloads the latest linux sources and saves it to the “DE1_SoC-demo/sw/hps/linux/source”
directory.
Note that we are not going to use the sources directly from the mainline kernel branch, as it is
generally behind the various development branches maintained by Altera (which contain drivers for
most of the FPGA-related components specific to the socfpga architecture). Once Altera’s branches
are merged back into the mainline kernel, we can switch to that source tree, but for the moment, we
will continue to use Altera’s branch.

03/10/2018 Page |72

SoC-FPGA Design Guide [DE1-SoC Edition]

22.

23.

24.

25.

26.

27.

28.

13.3.2

29.

30.

$ git clone \
https://github.com/altera-opensource/linux-socfpga.git \
DE1_SoC_demo/sw/hps/linux/source

Change your current working directory to the linux directory.
$ cd DE1_SoC_demo/sw/hps/linux/source

We need to compile linux for an ARM machine, but are compiling on an x86-64 machine, so we must
cross-compile the kernel. To cross-compile linux, define the following environment variables:

$ export ARCH=arm
$ export CROSS_COMPILE=arm-linux-gnueabihf-

Clean up the source tree to be sure it is in a clean state before we compile it.
$ make distclean

Checkout the following linux commit. This corresponds to the last commit against which the
instructions in this guide were tested. You can skip this step if you want to use a more recent version
of linux, but remember that there may be regressions that make some things not work.

commit 9735a22799b9214d17d3c231fe377fc852f042e9

Author: Linus Torvalds <torvalds@linux-foundation.org>
Date: Sun Apr 3 09:09:40 2016 -0500

#

Linux 4.6-rc2

$ git checkout 9735a22799b9214d17d3c231fe377fc852f042e9

Configure linux for the Cyclone V SoC architecture.
$ make socfpga defconfig

Compile the linux kernel “zImage” binary, which corresponds to a self-extracting compressed version

of the linux kernel image.
$ make zImage

Compile the device tree blob for the Cyclone V Development Kit. This device tree does not exactly
correspond to the device tree needed for the DE1-SoC, but given that there are no predefined device
trees available for the DE1-SoC, we will use the one provided for the (more feature-rich) Cyclone V
Development Kit.

$ make socfpga_cyclone5_socdk.dtb

Creating Target sdcard Artifacts
Copy the linux zlmage binary to the sdcard target directory

$ cp\
DE1_SoC_demo/sw/hps/linux/source/arch/arm/boot/zImage
DE1_SoC_demo/sdcard/fat32/zImage

Copy the linux device tree blob to the sdcard target directory.

$ cp \
DE1_SoC_demo/sw/hps/linux/source/arch/arm/boot/dts/socfpga_cyclone5_socdk.dtb \
DE1_SoC_demo/sdcard/fat32/socfpga.dtb

03/10/2018 Page |73

SoC-FPGA Design Guide [DE1-SoC Edition]

13.4UBUNTU CORE ROOT FILESYSTEM

At this stage, we technically have everything needed to have a fully-working linux machine. The machine,
however, is quite minimal. This is normal, as we merely have the linux KERNEL available at this point. We will
now install a linux DISTRIBUTION in order to have more tools and functionality.

In this guide, we will install Ubuntu Core on our DE1-SoC. Ubuntu Core is the minimal root filesystem (rootfs)
needed to run Ubuntu. It consists of a very basic command-line version of the distribution, and can be
customized to eventually ressemble the desktop version of Ubuntu most people are familiar with. Most
importantly, it comes with a package manager.

13.4.1 Obtaining Ubuntu Core
31. Download the Ubuntu Core 14.04.4 rootfs for the armhf architecture from Canonical’s servers.
$ wget \
http://cdimage.ubuntu.com/ubuntu-base/releases/14.04.5/release/ubuntu-base-
14.04.5-base-armhf.tar.gz \
-0 DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-base-14.04.5-base-armhf.tar.gz

32. Create a directory where we will extract the root filesystem.
$ mkdir -p DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs

33. Change your working directory to the previously created directory and extract the root filesystem.
Note that you need to extract the archive with root permissions to allow the “mknod” commands to
work.
$ cd DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs
$ sudo tar -xzpf ../ubuntu-base-14.04.5-core-armhf.tar.gz

13.4.2 Customizing Ubuntu Core
The Ubuntu Core rootfs is not very useful in its current state, as it is completely unconfigured. By
unconfigured, we mean that there is no user installed, no DNS configuration, no network interfaces ...

We must therefore configure the rootfs before we can use it. Normally, root filesystems are configured by
means of the “chroot” command, which allows you to obtain an interactive shell in a root directory different
from the one used on your host machine. After “chroot”ing in a directory, one essentially executes the
binaries from the chrooted directory as if they were in a different computer. This is very practical for
configuring a rootfs, as we can issue commands to configure it as we want, then “exit” the chroot to return
back to our host operating system and package the configured rootfs for deployment to another machine.

Unfortunately, we will not be able to use this technique in our case. The reason is that our host machine has
an x86-64 architecture, but the Cyclone V SoC has an armhf architecture. It is not possible to chroot into a
directory with binaries targetting a different architecture, because your host machine’s CPU will not recognize
the instructions. If you attempted this, your operating system would return “Exec format error” and abort the
chroot. One could use an emulator such as QEMU to emulate the binaries in the chroot directory so your host
CPU can correctly execute them, but such emulators are difficult to set up, and do not work on all machines.

What we will instead do is configure the rootfs directly on the target machine (DE1-SoC) when it boots the
operating system for the first time. For this, we will write a shell script “config_system.sh” on our host
macine and place it in the extracted rootfs. We will then configure the rootfs to launch our script when it
boots for the first time.

13.4.2.1 System configuration on first boot
34. Create a new file for our rootfs system configuration script and save it under
“DE1_SoC_demo/sw/hps/linux/rootfs/config_system.sh”.

03/10/2018 Page |74

http://cdimage.ubuntu.com/ubuntu-base/releases/14.04.5/release/ubuntu-base-14.04.5-base-armhf.tar.gz
http://cdimage.ubuntu.com/ubuntu-base/releases/14.04.5/release/ubuntu-base-14.04.5-base-armhf.tar.gz

SoC-FPGA Design Guide [DE1-SoC Edition]

35. Populate the file with the code shown in Figure 13-4. The script takes care of setting up the overall
system. This includes language support, timezone information, machine names, network connectivity,
support for users, ...

#!/bin/bash -x

Configure the locale to have proper language support.
localedef -i en_US -c -f UTF-8 en_US.UTF-8
dpkg-reconfigure locales

Configure the timezone.
echo "Europe/Zurich" > "/etc/timezone"
dpkg-reconfigure -f noninteractive tzdata

Set the machine’s hostname.

echo "DE1-SoC" > "/etc/hostname"
tee "/etc/hosts" >"/dev/null" <<EOF
127.90.0.1 localhost

127.0.1.1 DE1-SoC

EOF

Create the “/etc/network/interfaces” file that describes the network
interfaces available on the board.

tee "/etc/network/interfaces" > "/dev/null" <<EOF

interfaces(5) file used by ifup(8) and ifdown(8)

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface

auto ethe
iface eth@ inet dhcp
EOF

DNS configuration for name resolution. We use google's public DNS server here.
sudo tee "/etc/resolv.conf" > "/dev/null" <<EOF

nameserver 8.8.8.8

EOF

Configure Ubuntu Core to display a login shell on the serial console once the
kernel boots. We had previously configured U-Boot to supply the command-line
argument "console=ttyS0,115200" to the linux kernel. This argument instructs
the kernel to use serial console “ttySe@” as the boot shell, so here we choose
to use the same serial console for the login shell-

tee "/etc/init/ttySe@.conf" > "/dev/null" <<EOF

ttySe - getty

#

This service maintains a getty on ttySe

description "Get a getty on ttySe"

start on runlevel [2345]
stop on runlevel [016]

respawn

exec /sbin/getty -L 115200 ttySe vtile2
EOF

Create a user and a password. In this example, we create a user called

“sahand” with password "1234". Note that we compute an encrypted version of

the password, because useradd does not allow plain text passwords to be used

in non-interactive mode.

username="sahand"

password="1234"

encrypted_password="$(perl -e 'printf("%s\n", crypt($ARGV[O], "password"))' "${password}")"
useradd -m -p "${encrypted_password}" -s "/bin/bash" "${username}"

Ubuntu requires the admin to be part of the "adm
the previously-created user to the 2 groups.
addgroup ${username} adm

addgroup ${username} sudo

and "sudo" groups, so add

Set root password to "1234" (same as previously-created user).
echo -e "${password}\n${password}\n" | passwd root

03/10/2018 Page |75

SoC-FPGA Design Guide [DE1-SoC Edition]

Remove "/rootfs_config.sh" from /etc/rc.local to avoid reconfiguring system on
next boot

tee "/etc/rc.local" > "/dev/null" <<EOF

#!1/bin/sh -e

#

rc.local

#

This script is executed at the end of each multiuser runlevel.

Make sure that the script will "exit @" on success or any other

value on error.

#

In order to enable or disable this script just change the execution
bits.

#

By default this script does nothing.

exit o

EOF

Figure 13-4. Rootfs system configuration script to be used on first boot ("config_system.sh")

36. Copy the system configuration script to the extracted rootfs directory.

$ cp \
DE1_SoC_demo/sw/hps/linux/rootfs/config_system.sh \
DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs

37. Edit “DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs/etc/rc.local” such that
“config_system.sh” is run when the operating system boots. Populate the file with the code shown
in Figure 13-5.

#!/bin/sh -e

rc.local

This script is executed at the end of each multiuser runlevel.
Make sure that the script will "exit ©" on success or any other

value on error.

In order to enable or disable this script just change the execution
bits.

HHHHHHHHHHH

By default this script does nothing.
/config_system.sh

exit o

Figure 13-5. Rootfs /etc/rc.local file.

13.4.2.2 Post-install configuration script

In Section 13.8 we see how to use the remote debugging feature of our IDE to debug our linux applications.
Remote debugging uses SSH to connect to the target device, then uses a GDB server to debug the application
on the target while coordinating back with a GDB client running in our IDE. Ubuntu core does not come pre-
installed with the ssh and gdbserver packages, so we would need to install them from the Ubuntu package
manager.

We could be tempted to call the package manger in our previous “config system.sh” script so all required
packages can also be installed when the operating system boots for the first time. However, if you look closely
at what the script does, you see that it configures the system’s network interfaces, which means that the
system does NOT have any network connectivity while the previous script is running. Because of this reason,
we cannot call the package manager in “config_system.sh”, and must instead do this once the system has
finished booting and is running. We create a second configuration script for this purpose and also place it on
the rootfs.

03/10/2018 Page |76

SoC-FPGA Design Guide [DE1-SoC Edition]

38. Create a new file for our rootfs post-install configuration script and save it under
“DE1_SoC_demo/sw/hps/linux/rootfs/config_post_install.sh”.

39. Populate the file with the code shown in.

#!/bin/bash -x

+*

apt sources
uncomment the "deb" lines (no need to uncomment "deb src" lines)

+*

Edit the “/etc/apt/sources.list” file to configure the package manager. This
file contains a list of mirrors that the package manager queries. By default,
this file has all fields commented out, so the package manager will not have
access to any mirrors. The following command uncomments all commented out
lines starting with "deb". These contain the mirrors we are interested in.
sudo perl -pi -e 's/M+\s+(deb\s+http)/$1/g' "/etc/apt/sources.list"

H H HHH

When writing our linux applications, we want to use ARM DS-5’s remote

debugging feature to automatically transfer our binaries to the target device
and to start a debugging session. The remote debugging feature requires an SSH
server and a remote gdb server to be available on the target. These are easy

to install as we have a package manager available

sudo apt update

sudo apt -y install ssh gdbserver

Allow root SSH login with password (needed so we can use ARM DS-5 for remote
debugging)
sudo perl -pi -e 's/~(PermitRootLogin) without-password$/$1 yes/g' "/etc/ssh/sshd_config"

Figure 13-6. Rootfs post-install configuration script to be used AFTER the first boot (“config_post_install.sh”).

40. Copy the post-install configuration script to the extracted rootfs directory.

$ cp\
DE1_SoC_demo/sw/hps/linux/rootfs/config_post_install.sh \
DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs

At this stage we are done configuring the rootfs.

13.4.3 Creating Target sdcard Artifacts
41. Copy the customized root filesystem to the sdcard target directory. For the previous artifacts, we used

to simply copy files with the “cp” command. However, we will create an archive for the rootfs, as
there are many special files in some directories that the standard “cp” command does not copy
correctly.
$ cd DE1_SoC_demo/sw/hps/linux/rootfs/ubuntu-core-rootfs
Note: there is a “.” at the end of the next command
$ sudo tar -czpf DE1_SoC_demo/sdcard/ext3_rootfs.tar.gz

13.5WRITING EVERYTHING TO THE SDCARD
If you have followed all the steps in sections 9 and 13 until this point, then you should have the file structure
shown in Figure 13-7 as your “DE1_SoC_demo/sdcard” directory.

sdcard/
a2
L preloader-mkpimage.bin
ext3_rootfs.tar.gz
fat32
socfpga.dtb
socfpga.rbf
u-boot.img
u-boot.scr
zImage

Figure 13-7. Target sdcard directory

We now have all the files needed to create our final sdcard.

03/10/2018 Page |77

SoC-FPGA Design Guide [DE1-SoC Edition]

42.

43,

44,

45.

46.

47.

48.

49.

Create 2 directories where you will mount the FAT32 and EXT3 partitions of the sdcard.
$ mkdir -p DE1_SoC_demo/sdcard/mount_point_fat32
$ mkdir -p DE1_SoC_demo/sdcard/mount_point_ext3

Mount the sdcard partitions.
$ sudo mount /dev/sdbl DE1_SoC_demo/sdcard/mount_point_fat32
$ sudo mount /dev/sdb2 DE1_SoC_demo/sdcard/mount_point_ext3

Write the preloader to the custom “a2” partition.

$ sudo dd \
if=DE1_SoC_demo/sdcard/a2/preloader-mkpimage.bin \
of=/dev/sdb3 \
bs=64K \
seek=0

Write the FPGA . rbf file, U-Boot . img file, U-Boot . scr file, linux zImage file, and linux .dtb file to
the FAT32 partition.
$ sudo cp \

DE1_SoC_demo/sdcard/fat32/* \

DE1_SoC_demo/sdcard/mount_point_fat32

Write the customized Ubuntu Core root filesystem to the EXT3 partition.
$ cd DE1_SoC_demo/sdcard/mount_point_ext3
$ sudo tar -xzf ../ext3_rootfs.tar.gz

Flush all write buffers to target.
$ sudo sync

Unmount sdcard partitions.
$ sudo umount DE1_SoC_demo/sdcard/mount_point_fat32
$ sudo umount DE1_SoC _demo/sdcard/mount_point_ext3

Delete sdcard mount points.
$ rm -rf DE1_SoC_demo/sdcard/mount_point_fat32
$ rm -rf DE1_SoC _demo/sdcard/mount point ext3

The sdcard is now finally ready.

13.6 SCRIPTING THE COMPLETE PROCEDURE
It is important to perform all steps above by hand once to see how one creates a linux system for a new
device from scratch. As previously stated, the full design used in this tutorial is available in DE1_SoC_demo.zip

[5].

However, due to the very large number of steps required to build the current linux system from scratch, we
provide a “create_linux_system.sh” script that performs all steps described until now automatically. The
script performs the following tasks:

Compile the Quartus Prime hardware project.

Generate, configure, and compile the preloader.
Download, configure, and compile U-Boot.

Download, configure, and compile Linux.

Download and configure the Ubuntu Core root filesystem.
Partition the sdcard.

03/10/2018 Page |78

SoC-FPGA Design Guide [DE1-SoC Edition]

e Write the sdcard.

The script has a large number of constants at the beginning that you can modify to tailor the process to your
needs. The default linux user account created is “sahand” and the password is “1234”. The root password is
also set to “1234”.

usage: create_linux_system.sh [sdcard_device]

positional arguments:
sdcard_device path to sdcard device file [ex: "/dev/sdb", "/dev/mmcblke"]

IT IS RECOMMENDED TO USE THE SCRIPT TO AUTOMATE THE FULL SYSTEM CREATION PIPELINE, AND TO GO
GET A SNACK WHILE YOU WAIT FOR IT TO FINISH ©

13.7 TESTING THE SETUP
50. Wire up the DE1-SoC as described in Figure 9-19.
51. Plug in the microSD card.

BE SURE YOU ARE PART OF THE “dialout” GROUP BEFORE YOU CONTINUE, OTHERWISE YOU WON’T BE
ABLE TO ACCESS THE SERIAL CONSOLE ON YOUR MACHINE IN ORDER TO CONNECT TO THE DE1-SOC.

52. Launch a serial console on your host machine by executing the following command.
$ minicom --device /dev/ttyUSBe

53. Configure the serial console as shown below.

T T R +
| A - Serial Device : /dev/ttyUSBO |
| B - Lockfile Location : /var/lock |
| ¢ - Ccallin Program

| D - Callout Program

| E - Bps/Par/Bits : 115200 8N1 |
| F - Hardware Flow Control : No |
| G - Software Flow Control : No |
| |
| Change which setting? |
e +

BE SURE TO SET THE MSEL SWITCH ON THE BOTTOM SIDE OF THE DE1-SOC TO “00000” BEFORE
CONTINUING.

54. Power-on the DE1-SoC.

If SOMETHING GOES WRONG and you end up with an error message similar to the one shown in Figure 13-8,
then perform the following steps to help fix the problem.

fatload - load binary file from a dos filesystem

Usage:
fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]
- Load binary file 'filename' from 'dev' on 'interface'

to address 'addr' from dos filesystem.
'pos' gives the file position to start loading from.
If 'pos' is omitted, © is used. 'pos' requires 'bytes’.
'bytes' gives the size to load. If 'bytes' is © or omitted,
the load stops on end of file.
If either 'pos' or 'bytes' are not aligned to
ARCH_DMA_MINALIGN then a misaligned buffer warning will
be printed and performance will suffer for the load.

03/10/2018 Page |79

SoC-FPGA Design Guide [DE1-SoC Edition]

Kernel image @ ©x1000000 [0x000000 - 0x363908]
FDT and ATAGS support not compiled in - hanging
ERROR ### Please RESET the board #i##

Figure 13-8. Incorrect DE1-SoC Boot Messages (from U-Boot)

55. Reset the board and interrupt U-Boot’s boot process by pressing any button on the serial console

when you see the following message.
Hit any key to stop autoboot:

56. Overwrite the environment variables stored on the sdcard by executing the following commands on

the U-Boot command prompt.
$ env default -a
$ saveenv

57. Reset the board. The system should now run correctly at this point.

If you DID EVERYTHING CORRECTLY until now, you should see the messages shown in Figure 13-9. The

sequence is as follows:

e The preloader starts (“U-Boot SPL 2013.01.01”), followed by
e U-Boot (“U-Boot 2016.07-rcl-dirty”), and finally
e The linux kernel (“Starting Kernel ...”).

The output you obtain when the linux kernel is loading may be slightly different as some interleaving may
occur when all system services boot. Note that all lines starting with a “+” are those executed in our system

configuration script, “config_system.sh”.

U-Boot SPL 2013.01.01 (Feb 08 2017 - 10:24:55)
BOARD : Altera SOCFPGA Cyclone V Board
CLOCK: EOSC1 clock 25000 KHz

CLOCK: EOSC2 clock 25000 KHz

CLOCK: F2S_SDR_REF clock © KHz

CLOCK: F2S_PER_REF clock @ KHz

CLOCK: MPU clock 925 MHz

CLOCK: DDR clock 400 MHz

CLOCK: UART clock 100000 KHz

CLOCK: MMC clock 50000 KHz

CLOCK: QSPI clock 370000 KHz

RESET: COLD

INFO : Watchdog enabled

SDRAM: Initializing MMR registers
SDRAM: Calibrating PHY

SEQ.C: Preparing to start memory calibration
SEQ.C: CALIBRATION PASSED

SDRAM: 1024 MiB

ALTERA DWMMC: ©

reading u-boot.img

reading u-boot.img

U-Boot 2016.07-rcl-dirty (Feb 08 2017 - 10:25:37 +0100)

CPU: Altera SoCFPGA Platform
FPGA: Altera Cyclone V, SE/A5 or SX/C5 or ST/D5, version 0x®
BOOT: SD/MMC Internal Transceiver (3.0V)

Watchdog enabled

I2C: ready

DRAM: 1 GiB

MMC : dwmmcoO@ff704000: ©

In: serial

Out: serial

Err: serial

Model: Altera SOCFPGA Cyclone V SoC Development Kit
Net:

Error: ethernet@ff702000 address not set.
No ethernet found.
Hit any key to stop autoboot: ©

03/10/2018 Page |80

SoC-FPGA Design Guide [DE1-SoC Edition]

—

e e e
[OROE G GIRIORO RO R E IR R

[ORGIGI RO R ORI IR ORI RO BRI R RO RO BT ORI R RN R

— A W M A A A A A A A A A A A A A e e

[SRGCICRORO RIS

000383]

000396]

reading u-boot.scr

1772 bytes read in 5 ms (345.7 KiB/s)

Executing script at 02000000

--- Resetting Env variables ---

Resetting to default environment

--- Setting Env variables ---

Saving Environment to MMC...

Writing to MMC(@)... done

--- Programming FPGA ---

reading socfpga.rbf

7007204 bytes read in 372 ms (18 MiB/s)

--- Booting Linux ---

reading zImage

4018912 bytes read in 214 ms (17.9 MiB/s)

reading socfpga.dtb

31348 bytes read in 7 ms (4.3 MiB/s)

Kernel image @ ©x1000000 [0x000000 - 0x3d52e0]

Flattened Device Tree blob at 00000100
Booting using the fdt blob at ©x000100
reserving fdt memory region: addr=0 size=1000
Loading Device Tree to 03ff5000, end ©3fffa73 ... OK

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x@
[0.000000] Linux version 4.5.0-00160-gffea805 (sahand@thinkpad) (gcc version 4.8.3 20140401
(prerelease) (crosstool-NG linaro-1.13.1-4.8-2014.04 - Linaro GCC 4.8-2014.04)) #1 SMP Wed Feb 8
10:34:50 CET 2017
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
init, 140K bss, 15904K reserved, OK cma-reserved)
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000005]
.000017]
.000364]
0.
0goMIPS (1pj=1000000)
0.
.000483]
.000494]
.001010]
.001038]
.031704]
.031931]
.0933305]

CPU: ARMv7 Processor [413fc@90] revision @ (ARMv7), cr=10c5387d

CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache

Machine model: Altera SOCFPGA Cyclone V SoC Development Kit

Truncating RAM at ©x00000000-0x40000000 to -0x30000000

Consider using a HIGHMEM enabled kernel.

Memory policy: Data cache writealloc

PERCPU: Embedded 13 pages/cpu @ef9c3000 s21824 r8192 d23232 u53248

Built 1 zonelists in Zone order, mobility grouping on. Total pages: 195072

Kernel command line: mem=1024M console=ttyS0,115200 root=/dev/mmcblk@p2 rw rootwait
PID hash table entries: 4096 (order: 2, 16384 bytes)

Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)

Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)

Memory: 770528K/786432K available (6131K kernel code, 423K rwdata, 1532K rodata, 452K

Virtual kernel memory layout:
vector : Oxffffoeee - oxffff1000 (4 kB)
fixmap : @xffcooeee - oxfffo00oo (3072 kB)
vmalloc : Oxf0800000 - Oxf{800000 (240 MB)
lowmem : ©OxCO0000RO - OxT0OOO (768 MB)
modules : Oxbf0000OO - OxCOOOOVO (16 MB)
.text : Oxco008000 - ©xcO78423cC (7665 kB)
.init : Oxc@785000 - Oxc0O7f6000 (452 kB)
.data : Oxc@7f6000 - 0xco85fe3c (424 kB)
.bss : Oxc@85fe3c - Oxc0882eb4 (141 kB)
SLUB: HWalign=64, Order=0-3, MinObjects=0, CPUs=2, Nodes=1
Hierarchical RCU implementation.
Build-time adjustment of leaf fanout to 32.
NR_IRQS:16 nr_irqs:16 16
L2C: platform provided aux values permit register corruption.
L2C-310 erratum 769419 enabled
L2C-310 enabling early BRESP for Cortex-A9
L2C-310 full line of zeros enabled for Cortex-A9
L2C-310 ID prefetch enabled, offset 1 lines
L2C-310 dynamic clock gating enabled, standby mode enabled
L2C-310 cache controller enabled, 8 ways, 512 kB
L2C-310: CACHE_ID 0x410030c9, AUX_CTRL 0x76460001
clocksource: timerl: mask: Oxffffffff max_cycles: Oxffffffff, max_idle_ns: 19112604467 ns
sched_clock: 32 bits at 100MHz, resolution 1@ns, wraps every 21474836475ns
Switching to timer-based delay loop, resolution 10ns
Console: colour dummy device 80x30
Calibrating delay loop (skipped), value calculated using timer frequency.. 200.00

pid_max: default: 32768 minimum: 301

Mount-cache hash table entries: 2048 (order: 1, 8192 bytes)
Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes)
CPU: Testing write buffer coherency: ok

ftrace: allocating 20284 entries in 60 pages

CPU@: thread -1, cpu @, socket @, mpidr 80000000

Setting up static identity map for ©x8280 - 0x82d8

CPUl: thread -1, cpu 1, socket 0, mpidr 80000001

03/10/2018

Page |81

SoC-FPGA Design Guide [DE1-SoC Edition]

[0.033369] Brought up 2 CPUs

[0.033384] SMP: Total of 2 processors activated (400.00 BogoMIPS).

[0.033389] CPU: All CPU(s) started in SVC mode.

[0.034058] devtmpfs: initialized

[0.040815] VFP support ve@.3: implementor 41 architecture 3 part 30 variant 9 rev 4
[0.041095] clocksource: jiffies: mask: Oxffffffff max_cycles: Oxffffffff, max_idle_ns:
19112604462750000 ns

[0.042040] NET: Registered protocol family 16

[0.042759] DMA: preallocated 256 KiB pool for atomic coherent allocations

[0.049053] hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers.
[0.049065] hw-breakpoint: maximum watchpoint size is 4 bytes.

[0.082040] SCSI subsystem initialized

[0.082312] usbcore: registered new interface driver usbfs

[0.082374] usbcore: registered new interface driver hub

[0.082433] usbcore: registered new device driver usb

[0.082579] soc:usbphy@@ supply vcc not found, using dummy regulator

[0.083712] lcd_load_custom_fonts: i2c_master_send returns -121

[0.083963] lcd_cmd_no_params: i2c_master_send returns -121

[0.090029] lcd_cmd_one_param: i2c_master_send returns -121

[0.099763] lcd_cmd_no_params: i2c_master_send returns -121

[0.099789] lcd-comm ©-0028: LCD driver initialized

[0.100165] pps_core: LinuxPPS API ver. 1 registered

[0.100174] pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti <giometti@linux.it>
[0.100207] PTP clock support registered

[0.100366] FPGA manager framework

[0.101138] clocksource: Switched to clocksource timerl

[0.128973] NET: Registered protocol family 2

[0.129469] TCP established hash table entries: 8192 (order: 3, 32768 bytes)

[0.129546] TCP bind hash table entries: 8192 (order: 4, 65536 bytes)

[0.129652] TCP: Hash tables configured (established 8192 bind 8192)

[0.129738] UDP hash table entries: 512 (order: 2, 16384 bytes)

[0.129783] UDP-Lite hash table entries: 512 (order: 2, 16384 bytes)

[0.129957] NET: Registered protocol family 1

[0.130237] RPC: Registered named UNIX socket transport module.

[0.130247] RPC: Registered udp transport module.

[0.130253] RPC: Registered tcp transport module.

[0.130259] RPC: Registered tcp NFSv4.1 backchannel transport module.

[0.131503] futex hash table entries: 512 (order: 3, 32768 bytes)

[0.140599] NFS: Registering the id_resolver key type

[0.140641] Key type id_resolver registered

[0.140648] Key type id_legacy registered

[0.140704] ntfs: driver 2.1.32 [Flags: R/W].

[0.141035] jffs2: version 2.2. (NAND) €© 2001-2006 Red Hat, Inc.

[0.142204] io scheduler noop registered (default)

[0.147681] Serial: 8250/16550 driver, 2 ports, IRQ sharing disabled

[0.148750] console [ttyS@] disabled

[0.148788] ffc02000.seriald: ttySe@ at MMIO Oxffc02000 (irq = 45, base_baud = 6250000) is a 16550A
[0.723743] console [ttyS@] enabled

[0.727835] ffc@3000.seriall: ttyS1l at MMIO OxffcO3000 (irq = 46, base_baud = 6250000) is a 16550A
[0.738404] brd: module loaded

[0.741560] at24 ©-0051: 4096 byte 24c32 EEPROM, writable, 32 bytes/write

[0.749127] cadence-qspi ff705000.spi: Read data capture delay for 100000000 baud calibrated to 8 (©
- 15)

[0.758785] cadence-gqspi ff705000.spi: unrecognized JEDEC id bytes: ff, ff, ff

[0.765990] cadence-qspi ff705000.spi: Cadence QSPI NOR probe failed -2

[0.772621] cadence-gspi: probe of ff705000.spi failed with error -2

[0.780850] CAN device driver interface

[0.785353] c_can_platform ffc00000.can: c_can_platform device registered (regs=f08ee000, irq=26)
[0.794674] stmmac - user ID: 0x10, Synopsys ID: 0x37

[0.799706] Ring mode enabled

[0.802767] DMA HW capability register supported

[0.807276] Enhanced/Alternate descriptors

[0.811633] Enabled extended descriptors

[0.815625] RX Checksum Offload Engine supported (type 2)

[0.821082] TX Checksum insertion supported

[0.825341] Enable RX Mitigation via HW Watchdog Timer

[0.831007] socfpga-dwmac ff702000.ethernet eth@: No MDIO subnode found

[0.843117] libphy: stmmac: probed

[0.846512] ethe: PHY ID 00221611 at 1 IRQ POLL (stmmac-0:01) active

[0.853302] ffb40000.usb supply vusb_d not found, using dummy regulator

[0.859931] ffb40000.usb supply vusb_a not found, using dummy regulator

[1.141149] dwc2 ffb40000.usb: EPs: 16, dedicated fifos, 8064 entries in SPRAM

[1.241227] dwc2 ffb40000.usb: DWC OTG Controller

[1.245936] dwc2 ffb40000.usb: new USB bus registered, assigned bus number 1

[1.252997] dwc2 ffb40000.usb: irg 47, io mem ©x00000000

[1.258526] usb usbl: New USB device found, idVendor=1déb, idProduct=0002

[1.265304] usb usbl: New USB device strings: Mfr=3, Product=2, SerialNumber=1

[1.272506] usb usbl: Product: DWC OTG Controller

03/10/2018

Page | 82

SoC-FPGA Design Guide [DE1-SoC Edition]

PRRRPRRPRRPRRRPRPRRRPRPRRPRRPRRPRPRRRPRRPRPRRRPRRPRRRPRRPRRERRRRRRRRRRR

iv = 9)

RRRRPRRRRRR

A R QA A
NNNNNNNRRRRR

Starting
Stopping
Starting
Starting
Stopping
Starting
Starting
Stopping
Stopping
Stopping
Starting
Starting

*OX K X X X X X X X X ¥

.277191] usb usbl: Manufacturer: Linux 4.5.0-00160-gffea805 dwc2_hsotg
.283959] usb usbl: SerialNumber: ffb40000.usb

.289079] hub 1-0:1.0: USB hub found

.292869] hub 1-0:1.0: 1 port detected

.297411] usbcore: registered new interface driver usb-storage
.303774] mousedev: PS/2 mouse device common for all mice
.310107] rtc-ds1307: probe of 0-0068 failed with error -5
.315818] i2c /dev entries driver

.320089] Synopsys Designware Multimedia Card Interface Driver
.326365] dw_mmc ff704000.dwmmc@: IDMAC supports 32-bit address mode.
.333009] dw_mmc ff704000.dwmmcO®: Using internal DMA controller.
.339168] dw_mmc ff704000.dwmmcO: Version ID is 240a

.344334] dw_mmc ff704000.dwmmc@: DW MMC controller at irq 34,32 bit host data width,1024 deep fifo
.353676] dw_mmc ff704000.dwmmcO®: Got CD GPIO

.391226] dw_mmc ff704000.dwmmcO@: 1 slots initialized

.397129] ledtrig-cpu: registered to indicate activity on CPUs

.403334] usbcore: registered new interface driver usbhid

.408884] usbhid: USB HID core driver

.412949] fpga_manager fpgad: Altera SOCFPGA FPGA Manager registered

.419844] altera_hps2fpga_bridge ff400000.fpga_bridge: fpga bridge [lwhps2fpga] registered
.428490] altera_hps2fpga_bridge ff500000.fpga_bridge: fpga bridge [hps2fpga] registered
.437103] fpga-region soc:base_fpga_region: FPGA Region probed

.443356] oprofile: no performance counters

.447791] oprofile: using timer interrupt.

.453158] NET: Registered protocol family 10

.458355] sit: IPv6e over IPv4 tunneling driver

.463634] NET: Registered protocol family 17

.468085] NET: Registered protocol family 15

.472537] can: controller area network core (rev 20120528 abi 9)

.478752] NET: Registered protocol family 29

.483211] can: raw protocol (rev 20120528)

.487469] can: broadcast manager protocol (rev 20120528 t)

.493128] can: netlink gateway (rev 20130117) max_hops=1

.498796] 8021q: 802.1Q VLAN Support vi1.8

.503038] Key type dns_resolver registered

.507366] ThumbEE CPU extension supported.

.511645] Registering SWP/SWPB emulation handler

.517291] of_cfs_init

.519813] of_cfs_init: OK

.525687] ttySe - failed to request DMA

.529758] Waiting for root device /dev/mmcblkep2...

.569829] mmc_host mmcO: Bus speed (slot @) = 50000000Hz (slot req 50000000Hz, actual 50000000HZ

.579595] mmc@: new high speed SDHC card at address 59b4

.585477] mmcblk@: mmcO:59b4 3.73 GiB

.590820] mmcblko: pl p2 p3

.642095] EXT4-fs (mmcblk@p2): mounting ext3 file system using the ext4 subsystem
.669361] EXT4-fs (mmcblkOp2): mounted filesystem with ordered data mode. Opts: (null)
.677470] VFS: Mounted root (ext3 filesystem) on device 179:2.

.685018] devtmpfs: mounted

.688304] Freeing unused kernel memory: 452K (c0785000 - c07f6000)

.741174] usb 1-1: new high-speed USB device number 2 using dwc2

ount failed for selinuxfs on /sys/fs/selinux: No such file or directory

.951361] usb 1-1: New USB device found, idVendor=0424, idProduct=2512

.958061] usb 1-1: New USB device strings: Mfr=0, Product=0, SerialNumber=0
.965781] hub 1-1:1.0: USB hub found

.969624] hub 1-1:1.0: 2 ports detected

.974513] random: init urandom read with 18 bits of entropy available

.106056] init: plymouth-upstart-bridge main process (638) terminated with status 1
.114098] init: plymouth-upstart-bridge main process ended, respawning

.167825] init: hwclock main process (640) terminated with status 1

.177919] init: plymouth-upstart-bridge main process (648) terminated with status 1
.188180] init: plymouth-upstart-bridge main process ended, respawning

.221887] init: plymouth-upstart-bridge main process (654) terminated with status 1
.229812] init: plymouth-upstart-bridge main process ended, respawning

2.252610] init: ureadahead main process (641) terminated with status 5

Mount filesystems on boot[OK]

Send an event to indicate plymouth is up[OK]
Signal sysvinit that the rootfs is mounted[OK]
Populate /dev filesystem[OK]

Populate /dev filesystem[OK]

Clean /tmp directory[OK]

Populate and link to /run filesystem[OK]

Clean /tmp directory[OK]

Populate and link to /run filesystem[OK]

Track if upstart is running in a container[OK]
Initialize or finalize resolvconf[OK]

set console keymap[OK]

03/10/2018

Page | 83

SoC-FPGA Design Guide [DE1-SoC Edition]

Starting Signal sysvinit that virtual filesystems are mounted[OK]
Starting Signal sysvinit that virtual filesystems are mounted[OK]
Starting Bridge udev events into upstart[OK]
Starting Signal sysvinit that local filesystems are mounted[OK]
Starting device node and kernel event manager[OK]
Starting Signal sysvinit that remote filesystems are mounted[OK]
Stopping set console keymap[OK]
Starting load modules from /etc/modules[OK]
Starting cold plug devices[OK]
Starting log initial device creation[OK]
Stopping load modules from /etc/modules[OK]
Starting flush early job output to logs[OK]
Stopping Mount filesystems on boot[OK]
Stopping cold plug devices[OK]
Stopping flush early job output to logs[OK]
Stopping log initial device creation[OK]
Starting load fallback graphics devices[OK]
Starting configure network device security[OK]
Stopping load fallback graphics devices[OK]
Starting save udev log and update rules[OK]
Stopping save udev log and update rules[OK]
Starting set console font[OK]
Stopping set console font[OK]
Starting userspace bootsplash[OK]
Starting configure network device security[OK]
Starting configure network device security[OK]
Starting configure network device[OK]
Stopping userspace bootsplash[OK]
Starting Send an event to indicate plymouth is up[OK]
Starting configure network device[OK]
Stopping Send an event to indicate plymouth is up[OK]
Starting system logging daemon[OK]
Starting System V initialisation compatibility[OK]
Starting configure virtual network devices[OK]
Starting configure network device security[OK]
Starting configure network device security[OK]
Starting configure network device[OK]
Starting configure network device[OK]
Starting Mount network filesystems[OK]
Starting Failsafe Boot Delay[OK]
Stopping System V initialisation compatibility[OK]
Stopping Mount network filesystems[OK]
Starting System V runlevel compatibility[OK]
Starting regular background program processing daemon[OK]
Starting save kernel messages[OK]
Stopping save kernel messages[OK]
+ localedef -i en_US -c -f UTF-8 en_US.UTF-8

* Starting Bridge socket events into upstart[OK]

* Starting Bridge file events into upstart[OK]
+ dpkg-reconfigure locales
+ echo Europe/Zurich
+ dpkg-reconfigure -f noninteractive tzdata

¥ O X X X X X X X XK X X K K X K X K ¥ K X X X K ¥ X ¥ X ¥ X ¥ X ¥ X ¥ X ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ *

Current default time zone: 'Europe/Zurich'
Local time is now: Thu Jan 1 01:00:11 CET 1970.
Universal Time is now: Thu Jan 1 ©0:00:11 UTC 1970.

echo DE1-SoC

tee /etc/hosts

tee /etc/network/interfaces

sudo tee /etc/resolv.conf

sudo: unable to resolve host localhost.localdomain

+ tee /etc/init/ttySe.conf

+ username=sahand

+ password=1234

++ perl -e 'printf("%s\n", crypt($ARGV[O], "password"))' 1234
+ encrypted_password=pa4.HHSXL55NA

+ useradd -m -p pad.HHSXL55NA -s /bin/bash sahand

+ addgroup sahand adm

Adding user "“sahand' to group "adm
Adding user sahand to group adm
Done.

+ addgroup sahand sudo

Adding user "“sahand' to group sudo’
Adding user sahand to group sudo
Done.

+ echo -e '1234\n1234\n’

+ passwd root

+ + + +

03/10/2018 Page | 84

SoC-FPGA Design Guide [DE1-SoC Edition]

58.

Enter new UNIX password: Retype new UNIX password: passwd: password updated successfully
+ tee /etc/rc.local
* Stopping System V runlevel compatibility[OK]

Figure 13-9. DE1-SoC Boot Messages (first boot)

At this stage, the system has booted and has been configured. You must now restart the board for all
changes to take effect. Once you restart the board, you should get the output shown in Figure 13-10.

Note the absence of lines starting with “+”, indicating that our system configuration script is not re-
run on subsequent boots. You will be greeted by the linux login prompt and can login with user
“sahand” or “root”, and with password “1234”, which we set in Section 13.4.2.1.

U-Boot SPL 2013.01.01 (Feb 08 2017 - 10:24:55)
BOARD : Altera SOCFPGA Cyclone V Board
CLOCK: EOSC1 clock 25000 KHz

CLOCK: EOSC2 clock 25000 KHz

CLOCK: F2S_SDR_REF clock © KHz

CLOCK: F2S_PER_REF clock © KHz

CLOCK: MPU clock 925 MHz

CLOCK: DDR clock 400 MHz

CLOCK: UART clock 100000 KHz

CLOCK: MMC clock 50000 KHz

CLOCK: QSPI clock 370000 KHz

RESET: COLD

INFO : Watchdog enabled

SDRAM: Initializing MMR registers
SDRAM: Calibrating PHY

SEQ.C: Preparing to start memory calibration
SEQ.C: CALIBRATION PASSED

SDRAM: 1024 MiB

ALTERA DWMMC: ©

reading u-boot.img

reading u-boot.img

U-Boot 2016.07-rcl-dirty (Feb 08 2017 - 10:25:37 +0100)

CPU: Altera SoCFPGA Platform
FPGA: Altera Cyclone V, SE/A5 or SX/C5 or ST/D5, version 0xe
BOOT: SD/MMC Internal Transceiver (3.0V)

Watchdog enabled

I2C: ready

DRAM: 1 GiB

MMC : dwmmcoO@ff704000: ©

In: serial

Out: serial

Err: serial

Model: Altera SOCFPGA Cyclone V SoC Development Kit
Net:

Error: ethernet@ff702000 address not set.

No ethernet found.

Hit any key to stop autoboot: ©

reading u-boot.scr

1772 bytes read in 4 ms (432.6 KiB/s)

Executing script at 02000000

--- Resetting Env variables ---

Resetting to default environment

--- Setting Env variables ---

Saving Environment to MMC...

Writing to MMC(®)... done

--- Programming FPGA ---

reading socfpga.rbf

7007204 bytes read in 372 ms (18 MiB/s)

--- Booting Linux ---

reading zImage

4018912 bytes read in 213 ms (18 MiB/s)

reading socfpga.dtb

31348 bytes read in 7 ms (4.3 MiB/s)

Kernel image @ ©x1000000 [0x000000 - 0x3d52e0]

Flattened Device Tree blob at 00000100
Booting using the fdt blob at ©x000100
reserving fdt memory region: addr=0 size=1000
Loading Device Tree to 03ff5000, end ©3fffa73 ... OK

03/10/2018 Page |85

SoC-FPGA Design Guide [DE1-SoC Edition]

[ORORGE R RRORO RO R R R R

®®®®®®®®®®®®®®®®®®®®®®®®®®

()

[ORGIEGINORO RO RO R R R I RN

0

e L R e s s s e R R R R e M R e O S e B e M e R e e e e B B e e R T B e e s B e e R e e B e e e s M e e e e R R R R T e M e e e e e s e e R R e B B

[ORGINGORO RO RO IR IR RO R ORI

000393]

042004]

Starting kernel ...

[0.000000] Booting Linux on physical CPU ©x@
[0.000000] Linux version 4.5.0-00160-gffea805 (sahand@thinkpad) (gcc version 4.8.3 20140401
(prerelease) (crosstool-NG linaro-1.13.1-4.8-2014.04 - Linaro GCC 4.8-2014.04)) #1 SMP Wed Feb 8
10:34:50 CET 2017
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
init, 140K bss, 15904K reserved, 0K cma-reserved)
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000000]
.000006]
.000016]
.000362]
.000380]
0goMIPS (1lpj=1000000)
0.
.000480]
.000491]
.001008]
.001036]
.031679]
.031903]
.033280]
.033342]
.0933356]
.0933362]
.034030]
.040781]
.041062]
9112604462750000 ns
0.
.042726]
.049020]
.049033]
.082067]
.082343]
.082410]
.082470]
.082612]
.083751]
.090039]
.099763]
.109773]
.109799]
.110171]

CPU: ARMv7 Processor [413fc@90] revision © (ARMv7), cr=10c5387d

CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache

Machine model: Altera SOCFPGA Cyclone V SoC Development Kit

Truncating RAM at 0x00000000-0x40000000 to -0x30000000

Consider using a HIGHMEM enabled kernel.

Memory policy: Data cache writealloc

PERCPU: Embedded 13 pages/cpu @ef9c3000 s21824 r8192 d23232 u53248

Built 1 zonelists in Zone order, mobility grouping on. Total pages: 195072

Kernel command line: mem=1024M console=ttyS0,115200 root=/dev/mmcblk@p2 rw rootwait
PID hash table entries: 4096 (order: 2, 16384 bytes)

Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)

Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)

Memory: 770528K/786432K available (6131K kernel code, 423K rwdata, 1532K rodata, 452K

Virtual kernel memory layout:
vector : oxffffoeee - oxffff1000 (4 kB)
fixmap : Oxffcoeeee - oxfffoeeee (3072 kB)
vmalloc : Oxf0800000 - Oxf{800000 (240 MB)
lowmem : OxcO000LLO - OxT0OOLO (768 MB)
modules : Oxbf00000O - OxCcOOOOVOO (16 MB)
.text : Oxc0008000 - 0xcO78423c (7665 kB)
.init : ©@xc0785000 - OxcO7f6000 (452 kB)
.data : Oxc@7f6000 - Oxco85fe3c (424 kB)
.bss : Oxc@85fe3c - Oxc0882eb4 (141 kB)
SLUB: HWallgn 64, Order=0-3, MinObjects=0, CPUs=2, Nodes=1
Hierarchical RCU implementation.
Build-time adjustment of leaf fanout to 32.
NR_IRQS:16 nr_irgs:16 16
L2C: platform provided aux values permit register corruption.
L2C-310 erratum 769419 enabled
L2C-310 enabling early BRESP for Cortex-A9
L2C-310 full line of zeros enabled for Cortex-A9
L2C-310 ID prefetch enabled, offset 1 lines
L2C-310 dynamic clock gating enabled, standby mode enabled
L2C-310 cache controller enabled, 8 ways, 512 kB
L2C-310: CACHE_ID 0x410030c9, AUX_CTRL 0x76460001
clocksource: timerl: mask: Oxffffffff max_cycles: oOxffffffff, max_idle_ns: 19112604467 ns
sched_clock: 32 bits at 100MHz, resolution 1@ns, wraps every 21474836475ns
Switching to timer-based delay loop, resolution 10ns
Console: colour dummy device 80x30
Calibrating delay loop (skipped), value calculated using timer frequency.. 200.00

pid_max: default: 32768 minimum: 301

Mount-cache hash table entries: 2048 (order: 1, 8192 bytes)
Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes)

CPU: Testing write buffer coherency: ok

ftrace: allocating 20284 entries in 60 pages

CPU@: thread -1, cpu 0, socket 0, mpidr 80000000

Setting up static identity map for ©x8280 - 0x82d8

CPU1l: thread -1, cpu 1, socket 0, mpidr 80000001

Brought up 2 CPUs

SMP: Total of 2 processors activated (400.00 BogoMIPS).

CPU: All CPU(s) started in SVC mode.

devtmpfs: initialized

VFP support v@.3: implementor 41 architecture 3 part 30 variant 9 rev 4
clocksource: jiffies: mask: Oxffffffff max_cycles: oxffffffff, max_idle_ns:

NET: Registered protocol family 16

DMA: preallocated 256 KiB pool for atomic coherent allocations
hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers.
hw-breakpoint: maximum watchpoint size is 4 bytes.

SCSI subsystem initialized

usbcore: registered new interface driver usbfs

usbcore: registered new interface driver hub

usbcore: registered new device driver usb

soc:usbphy@@ supply vcc not found, using dummy regulator
lcd_load_custom_fonts: i2c_master_send returns -121
lcd_cmd_no_params: i2c_master_send returns -121
lcd_cmd_one_param: i2c_master_send returns -121
lcd_cmd_no_params: i2c_master_send returns -121

lcd-comm ©-0028: LCD driver initialized

pps_core: LinuxPPS API ver. 1 registered

03/10/2018

Page | 86

SoC-FPGA Design Guide [DE1-SoC Edition]

e e R R R R R K W W W e e e e e E e R K E e R e e R e E e e R R e N e B R R B B R e W B e K B e K B e B e e E e E e e B R R R R W e E e e R R E e e R R R R R R K R R R K R R |

15)

[ORORGE R RN RO RO RO RE RO RO RO R RE R RO RO RO RO B IR ORI RO RO R]

RRRPRRRRRRPRRRRPRRPRRRRPRRPRRRRPRRPEPREPRRARREPREPOOODD DI OD DD DD ODODOOO®®

.110179]
.110212]
.110363]
.111162]
.140399]
.140912]
.140991]
.141097]
.141246]
.141330]
.141517]
.141848]
.141857]
.141863]
.141868]
.142987]
.154155]
.154200]
.154207]
.154275]
.154570]
.155860]
.160651]
.161786]
.161830]
.736522]
.740600]
.751226]
.754352]
.761974]

.771635]
.778828]
.785466]
.793686]
.798158]
.807463]
.812512]
.815555]
.820064]
.824418]
.828410]
.833875]
.838124]
.843805]
.855905]
.859298]
.866097]
.872742]
.151169]
.251256]
.255965]
.263020]
.268544]
.275319]
.282519]
.287205]
.293970]
.299094]
.302879]
.307412]
.313753]
.320094]
.325798]
.330063]
.336332]
.342973]
.349133]
.354295]
.363637]
.401221]
.407065]
.413274]
.418823]
.422873]
.429749]
.438373]
.447031]

pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti <giometti@linux.it>
PTP clock support registered

FPGA manager framework

clocksource: Switched to clocksource timerl

NET: Registered protocol family 2

TCP established hash table entries: 8192 (order: 3, 32768 bytes)

TCP bind hash table entries: 8192 (order: 4, 65536 bytes)

TCP: Hash tables configured (established 8192 bind 8192)

UDP hash table entries: 512 (order: 2, 16384 bytes)

UDP-Lite hash table entries: 512 (order: 2, 16384 bytes)

NET: Registered protocol family 1

RPC: Registered named UNIX socket transport module.

RPC: Registered udp transport module.

RPC: Registered tcp transport module.

RPC: Registered tcp NFSv4.1 backchannel transport module.

futex hash table entries: 512 (order: 3, 32768 bytes)

NFS: Registering the id_resolver key type

Key type id_resolver registered

Key type id_legacy registered

ntfs: driver 2.1.32 [Flags: R/W].

jffs2: version 2.2. (NAND) €© 2001-2006 Red Hat, Inc.

io scheduler noop registered (default)

Serial: 8250/16550 driver, 2 ports, IRQ sharing disabled

console [ttyS@] disabled

f£c02000.seriald: ttySe at MMIO Oxffc02000 (irq = 45, base_baud = 6250000) is a 16550A
console [ttyS@] enabled

ffc03000.seriall: ttyS1l at MMIO ©xffc03000 (irq = 46, base_baud = 6250000) is a 16550A
brd: module loaded

at24 0-0051: 4096 byte 24c32 EEPROM, writable, 32 bytes/write

cadence-qspi ff705000.spi: Read data capture delay for 100000000 baud calibrated to 8 (©

cadence-qspi ff705000.spi: unrecognized JEDEC id bytes: ff, ff, ff
cadence-qgspi ff705000.spi: Cadence QSPI NOR probe failed -2
cadence-qgspi: probe of ff705000.spi failed with error -2
CAN device driver interface

c_can_platform ffc00000.can: c_can_platform device registered (regs=f08ee000, irq=26)
stmmac - user ID: 0x10, Synopsys ID: 0x37

Ring mode enabled

DMA HW capability register supported

Enhanced/Alternate descriptors

Enabled extended descriptors

RX Checksum Offload Engine supported (type 2)

TX Checksum insertion supported

Enable RX Mitigation via HW Watchdog Timer

socfpga-dwmac ff702000.ethernet etho: No MDIO subnode found
libphy: stmmac: probed
etho: PHY ID 00221611 at 1 IRQ POLL (stmmac-0:01) active
ffb40000.usb supply vusb_d not found, using dummy regulator
ffb40000.usb supply vusb_a not found, using dummy regulator
dwc2 ffb40000.usb: EPs: 16, dedicated fifos, 8064 entries in SPRAM
dwc2 ffb40000.usb: DWC OTG Controller
dwc2 ffb40000.usb: new USB bus registered, assigned bus number 1
dwc2 ffb4e000.usb: irq 47, io mem ©x00000000

usb usbl: New USB device found, idVendor=1déb, idProduct=0002

usb usbl: New USB device strings: Mfr=3, Product=2, SerialNumber=1
usb usbl: Product: DWC OTG Controller

usb usbl: Manufacturer: Linux 4.5.0-00160-gffea805 dwc2_hsotg

usb usbl: SerialNumber: ffb40000.usb

hub 1-0:1.0: USB hub found

hub 1-0:1.0: 1 port detected

usbcore: registered new interface driver usb-storage
mousedev: PS/2 mouse device common for all mice

rtc-ds1307: probe of 0-0068 failed with error -5

i2c /dev entries driver
Synopsys Designware Multimedia Card Interface Driver
dw_mmc ff704000.dwmmcO: IDMAC supports 32-bit address mode.
dw_mmc ff704000.dwmmcO: Using internal DMA controller.
dw_mmc ff704000.dwmmcO: Version ID is 240a
dw_mmc ff704000.dwmmcO: DW MMC controller at irq 34,32 bit host data width,1024 deep fifo
dw_mmc ff704000.dwmmcO: Got CD GPIO
dw_mmc ff704000.dwmmcO: 1 slots initialized

ledtrig-cpu: registered to indicate activity on CPUs

usbcore: registered new interface driver usbhid

usbhid: USB HID core driver
fpga_manager fpgad: Altera SOCFPGA FPGA Manager registered
altera_hps2fpga_bridge ff400000.fpga_bridge: fpga bridge [lwhps2fpga] registered
altera_hps2fpga_bridge ff500000.fpga_bridge: fpga bridge [hps2fpga] registered
fpga-region soc:base_fpga_region: FPGA Region probed

03/10/2018

Page | 87

SoC-FPGA Design Guide [DE1-SoC Edition]

RRRRPRRRRRRPRRRPRRRPRRRRRRRR

n
<
U}

@)

NNNNNNRRPRRRRRRRR

— e R A A A A A QA A A A A A A A A
WWwwwwwwww

Stopping
Starting
Starting
Starting
Stopping
Starting
Starting
Stopping
Stopping
Stopping
Starting
Starting
Starting
Starting
Starting
Starting
Starting
Stopping
Starting
Starting
Starting
Starting
Stopping
Starting
Stopping
Stopping
Stopping
Stopping
Starting
Starting
Stopping

¥ OX K X X X X X X X X K X K K K X K K K X X ¥ X ¥ X ¥ X ¥ X ¥

.453303] oprofile: no performance counters

.457742] oprofile: using timer interrupt.

.463111] NET: Registered protocol family 10

.468225] sit: IPv6 over IPv4 tunneling driver

.473487] NET: Registered protocol family 17

.477938] NET: Registered protocol family 15

.482389] can: controller area network core (rev 20120528 abi 9)
.488593] NET: Registered protocol family 29

.493051] can: raw protocol (rev 20120528)

.497309] can: broadcast manager protocol (rev 20120528 t)
.502966] can: netlink gateway (rev 20130117) max_hops=1
.508633] 8021q: 802.1Q VLAN Support v1.8

.512875] Key type dns_resolver registered

.517205] ThumbEE CPU extension supported.

.521483] Registering SWP/SWPB emulation handler

.527230] of_cfs_init

.529731] of_cfs_init: OK

.534552] ttySe - failed to request DMA

.538600] Waiting for root device /dev/mmcblkep2...

.579850] mmc_host mmcO: Bus speed (slot @) = 50000000Hz (slot req 50000000Hz, actual 50000000HZ

.589631] mmc@: new high speed SDHC card at address 59b4

.595529] mmcblk@: mmc@:59b4 3.73 GiB

.600861] mmcblke: pl p2 p3

.652114] EXT4-fs (mmcblkOp2): mounting ext3 file system using the ext4 subsystem
.691159] usb 1-1: new high-speed USB device number 2 using dwc2

.901348] usb 1-1: New USB device found, idVendor=0424, idProduct=2512

.908031] usb 1-1: New USB device strings: Mfr=0, Product=0, SerialNumber=0
.915790] hub 1-1:1.0: USB hub found

.919620] hub 1-1:1.0: 2 ports detected

.037962] random: nonblocking pool is initialized

.633724] EXT4-fs (mmcblk@p2): recovery complete

.651781] EXT4-fs (mmcblk@p2): mounted filesystem with ordered data mode. Opts: (null)
.659865] VFS: Mounted root (ext3 filesystem) on device 179:2.

.668181] devtmpfs: mounted

.671487] Freeing unused kernel memory: 452K (c©785000 - c0@7f6000)

ount failed for selinuxfs on /sys/fs/selinux: No such file or directory

.031579] init: plymouth-upstart-bridge main process (641) terminated with status 1
.039559] init: plymouth-upstart-bridge main process ended, respawning

.073301] init: plymouth-upstart-bridge main process (649) terminated with status 1
.081399] init: plymouth-upstart-bridge main process ended, respawning

.111731] init: hwclock main process (643) terminated with status 1

.120597] init: plymouth-upstart-bridge main process (654) terminated with status 1
.128562] init: plymouth-upstart-bridge main process ended, respawning

.158626] init: plymouth-upstart-bridge main process (656) terminated with status 1
.166701] init: plymouth-upstart-bridge main process ended, respawning

3.223595] init: ureadahead main process (644) terminated with status 5

Send an event to indicate plymouth is up[OK]

Mount filesystems on boot[OK]

Signal sysvinit that the rootfs is mounted[OK]
Populate /dev filesystem[OK]

Populate /dev filesystem[OK]

Clean /tmp directory[OK]

Populate and link to /run filesystem[OK]

Populate and link to /run filesystem[OK]

Clean /tmp directory[OK]

Track if upstart is running in a container[OK]
Initialize or finalize resolvconf[OK]

set console keymap[OK]

Signal sysvinit that virtual filesystems are mounted[OK]
Signal sysvinit that virtual filesystems are mounted[OK]
Bridge udev events into upstart[OK]

Signal sysvinit that local filesystems are mounted[OK]
device node and kernel event manager[OK]

set console keymap[OK]

Signal sysvinit that remote filesystems are mounted[OK]
load modules from /etc/modules[OK]

cold plug devices[OK]

log initial device creation[OK]

load modules from /etc/modules[OK]

flush early job output to logs[OK]

Mount filesystems on boot[OK]

flush early job output to logs[OK]

cold plug devices[OK]

log initial device creation[OK]

load fallback graphics devices[OK]

configure network device security[OK]

load fallback graphics devices[OK]

03/10/2018

Page | 88

SoC-FPGA Design Guide [DE1-SoC Edition]

Starting save udev log and update rules[OK]
Stopping save udev log and update rules[OK]
Starting configure network device security[OK]
Starting set console font[OK]

Starting configure network device security[OK]
Stopping set console font[OK]

Starting userspace bootsplash[OK]

Starting configure network device[OK]

Stopping userspace bootsplash[OK]

Starting Send an event to indicate plymouth is up[OK]
Starting system logging daemon[OK]

Stopping Send an event to indicate plymouth is up[OK]
Starting configure network device security[OK]
Starting configure network device security[OK]
Starting configure network device[OK]

Starting configure network device[OK]

Starting Mount network filesystems[OK]

Starting Failsafe Boot Delay[OK]

Starting configure network device[OK]

Stopping Failsafe Boot Delay[OK]

Stopping Mount network filesystems[OK]

Starting System V initialisation compatibility[OK]
Starting configure virtual network devices[OK]
Starting Bridge socket events into upstart[OK]
Stopping System V initialisation compatibility[OK]
Starting System V runlevel compatibility[OK]
Starting save kernel messages[OK]

Starting Get a getty on ttySe[OK]

Starting regular background program processing daemon[OK]
Starting Bridge file events into upstart[OK]
Stopping save kernel messages[OK]

Stopping System V runlevel compatibility[OK]

*OX K X K X K X X X KX X K X K X X X X X X X X X X X X ¥ X ¥ ¥ ¥

Ubuntu 14.04.5 LTS DE1-SoC ttySe

DE1-SoC login: sahand
Password:
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 4.5.0-00160-gffea805 armv7l)

* Documentation: https://help.ubuntu.com/
The programs included with the Ubuntu system are free software;
the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

sahand@DE1-SoC:~$

Figure 13-10. DE1-SoC Boot Messages (second boot)

59. Finally, once you are logged in, we can call our post-installation configuration script to install the
required tools from the package manager.

sahand@DE1-SoC:~$ sudo /config_post_install.sh

Now that full system is booted and fully configured, we can move on towards building a linux application ©

13.8ARM DS-5

60. Launch the ARM DS-5 IDE by executing the following command.
$ eclipse

13.8.1 Setting Up a New C Project
61. Create a new C project by going to “File > New > C Project”.
a. Use “DE1_SoC_demo_hps_linux” as the project name.
b. Disable the “Use default location” checkbox.
c. Set“DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_linux” as the target
location for the project.

03/10/2018 Page |89

SoC-FPGA Design Guide [DE1-SoC Edition]

d.

We want to create a single output executable for our project, so choose “Executable >
Empty Project” as the project type.

Choose “GCC 4.x [arm-linux-gnueabihf] (DS-5 built-in)” asthe Toolchain.

You should have something similar to Figure 13-11. Then, press the “Finish” button to
create the project.

C Project

C Project

Project name: DEl_SoC_demo_hps_linux

Use default location

Location: shome/sahand/Documents/Development /github/DEL-S0C/DEL_SoC demo/sw/hps, | Browse... |

Choose file system: |default <

Project type: Toolchains:
¥ = Executable ARM Compiler 5 (DS-5 built-in)
® Empty Project ARM Compiler 6 (DS-5 built-in)
® Hello World ANSI C Project Altera Baremetal GCC
® (= Shared Library GCC 4.x [arm-linwx-gnueabihf] (D5-5 built-in)
P = Static Library GCC for ARM Bare-metal
B (= Makefile project Linux GCC

& show project types and toclchains only if they are supported on the platform

= -
|\‘?)| Next = Einish Cancel

Figure 13-11. New C Project Dialog

62. When programming the HPS, we will need access to a few standard header and linker files provided
by Altera. We need to add these files to the ARM DS-5 project.

a.
b.

e.

Right-click on the “DE1_SoC_demo_hps_linux” project, and go to “Properties®”.

We are going to use a RESTRICTED SUBSET of Altera’s HWLIB to develop our linux application,
so we need to define a macro that is needed by the library to know which board is being
targetted. The reason we use a restricted subset of the library is due to the fact that the
library is not fully usable in a user application, as many physical peripheral addresses are
employed. We will only use the library to compute offsets and to use the non-intrusive
functions it has available.

Under “C/C++ Build > Settings > GCC C Compiler > Symbols”, add “soc_cv_av” to
the “Defined symbols (-D)” list.

Under “C/C++ Build > Settings > GCC C Compiler > Includes?”, add
“<altera_install directory>/<version>/embedded/ip/altera/hps/altera_hps/hwli
b/include” to the “Include paths (-I)” list.

Under “C/C++ Build > Settings > GCC C Compiler > Includes”, add
“<altera_install_directory>/<version>/embedded/ip/altera/hps/altera_hps/hwli
b/include/soc_cv_av” to the “Include paths (-I)” list.

Click on the “Apply” button, then on the “Ok” button to close the project properties dialog.

63. In order to unlock a few settings later in this tutorial, we will create a C file that simply contains an
empty “main()” function for the moment.

a. Right-click on the “DE1_SoC_demo_1linux” project, and go to “New > Source File”. Use
“hps_linux.c” as the file name, and click on the “Finish” button to create the new source
file.

03/10/2018 Page |90

SoC-FPGA Design Guide [DE1-SoC Edition]

b. Right-click on the “DE1_SoC_demo_linux” project, and go to “New > Header File”. Use
“hps_linux.h” as the file name, and click on the “Finish” button to create the new header
file.

c. Fill “hps_linux.c” with the code shown in Figure 13-12.

int main(void) {
return 0;

}

Figure 13-12. hps_linux.c with an empty main() function.

d. Right-click on the “DE1_SoC_demo_linux” project and select “Build Project”.
13.8.2 Creating a Remote Debug Connection to the Linux Distribution

13.8.2.1 Find the Linux Distribution’s IP Address

Later in this tutorial, we will need to know the IP address assigned to the DE1-SoC so ARM DS-5 can
automatically use an SSH connection to transfer linux binaries and launch gdb debug sessions for us. In this
step, we will use a serial terminal to manually connect to the linux distribution running on the board and find
out its IP address.

64. Although we can continue to use the “minicom” program as we previously did in Figure 13-9, we will
use the built-in serial terminal available in ARM DS-5 to have all development windows in one area.
Go to “Window > Show View > Other.. > Terminal > Terminal” to open ARM DS-5’s the built-in
serial terminal. You should see the terminal shown in Figure 13-13.

A8 Terminal 32 5 E| u;l - - = B8
Serial: (COMI, 115200, &, 1, None, None - CLOSED) - Enceding: (150-8859-1)

Figure 13-13. ARM DS-5 Serial Terminal

65. Modify the serial terminal’s settings to match those shown in Figure 13-14, then press “OK” to start
the connection.

03/10/2018 Page |91

SoC-FPGA Design Guide [DE1-SoC Edition]

— N Terminal Setkings) 2 2%

View Settings:

Wiew Title: |DE1-SoC

Encoding: |1S0-8859-1 b

Connection Type:

Serial .
Settings:

Port: Jdev/ttyUSBO v

Baud Rate: 115200 =

Data Bits: 8 =

Stop Bits: 1 =

Parity: Mone =

Flow Contral: | None

Timeout (sec). |5

Cancel 44

Figure 13-14. ARM DS-5 Serial Terminal Settings

66. You should see the linux login prompt. Login with the same username and password we defined
earlier. You should see something similar as Figure 13-15.

Memory [l App Console J®DEL-SoC 82 [Console Progress & B 5 B8 v =
Serial: ({devittyUSBO, 115200, 8, 1, None, None - CONMECTED) - Encoding: (IS0-8859-1)

* Starting System V initialisation compatibility [OK]
*# Starting configure virtual network devices [oK 1]
* Stopping Mount network filesystems [oK 1]
* Stopping System V initialisation compatibility [OK]
* Starting System V runlevel compatibility [oK 1]
* Starting save kernel messages [OK]
* Starting Get a getty on ttys0 [oK 1]
* Starting regular background program processing daemon [OK]
* Stopping System V runlevel compatibility [oK 1]
* Stopping save kernel messages [oK 1]

Ubuntu 14.04.4 LTS DEL-SoC ttysS0
DEl-SoC Llogin: sahand
Password:

Last login: Mon Apr 18 08:17:22 CEST 2016 on ttysS0
Welcome to Ubuntu 14,04.4 LTS (GHNU/Linux 4.6,.0-rc2 armv7l)

* Documentation: https://help.ubuntu. comys
sahand@DEL-SoC: ~§ |}
Figure 13-15. ARM DS-5 Serial Terminal Linux Prompt

67. Type “ifconfig ethe | grep inet” to obtain the IP address attributed to the device. You should
get something similar to Figure 13-16. If you don’t see an IP address listed, then run the following
command to try to get one automatically through DHCP.
$ sudo dhclient ethe

03/10/2018 Page |92

SoC-FPGA Design Guide [DE1-SoC Edition]

Memory [l App Console J®DE1-SoC 32 B Console Progress + B (5 LB v =
Serial: (jdevfttyUSBO, 115200, 8, 1, None, Mone - CONNECTED) - Encoding: (I50-8859-1)

sahand@DEL-SoC: ~§ ifconfig eth® | grep inet
inet addr:10.42.0.200 Bcast:10.42.0.255 Mask:255,255,255.0
inet6 addr: feB80::acd9:31ff:feab:29df/64 Scope:Link
sahand@DEL-SoC: ~§ ||

Figure 13-16. Obtaining the DE1-SoC's IP Address through ARM DS-5’s Serial Terminal

13.8.2.2 Create an SSH Remote Connection
68. Goto “File > New > Other.. > Remote System Explorer > Connection”.
69. Choose to create an “SSH Only” connection.
70. Enter the IP address you found in 13.8.2.1 as the “Host name”.
71. Enter “DE1-SoC” as the “Connection name”. You should have something similar to Figure 13-17.
72. Click on “Finish” to create the connection.

MNew Connection

Femote S5H Only System Connection

Define connection information

Parent profile: sahand-thinkpad =
Host name: |10.42.0.200 b4
Connection name: DE1-SoC

Description: |

Verify host name

Configure proxy settings

® = Back MNext = | Finish Cancel

Figure 13-17. New SSH Only Connection

73. You should be able to see the remote system in ARM DS-5’s “Remote Systems” view, as shown in
Figure 13-18.

03/10/2018 Page |93

SoC-FPGA Design Guide [DE1-SoC Edition]

#5 DebugC [5ProjectE |#8Remote 3| = B
£ & SR -1
¥ Ef Local
» *Iy Local Files
% Local shells
v (5 DE1-SoC
» T SFtp Files
% Sshshells
&8 55k Terminals

Figure 13-18. New SSH Connection In "Remote Systems" View

13.8.2.3 Setting Up the Debug Configuration
74. Right-click on the “DE1_SoC_demo_linux” project, and go to “Debug As > Debug

Configurations..”.
75. Choose to create a new debugger configuration by right-clicking on “DS-5 Debugger” on the left and
selecting “New”. Use “DE1_SoC_demo_hps_1linux” as the name of the new debug configuration.

76. Under the “Connection” tab:
a. Use“Altera > Cyclone V SoC (Dual Core) > Linux Application Debug > Download

and debug application” as the target platform.
b. Setthe “RSE connection” to “DE1-SoC”. This is the remote system connection we created

earlier. You should have something similar to Figure 13-19.

Name: |DE1_SoC_demo_hps_linux
<= Connectiony, [Files| % Debugger| % OS Awareness| ®: Arguments | B8 Environment

Select target
Select the manufacturer, board, project type and debug operation to use. Currently selected:
Altera/ Cyclone V SoC (Dual Core) / Linux Application Debug / Download and debug application

¥ Altera
» ArriaV SoC
¥ Cyclone V SoC (Dual Core)
» Bare Metal Debug
¥ Linux Application Debug
Conneck to already running gdbserver

Download and debug application

Start gdbserver and debug target resident application

» Linux Kernel and/or Device Driver Debug

D5S-5 Debugger will download your application to the target system and then start a new gdbserver session to debug the
application. This configuration requires ssh and gdbserver on the target platform.

Connections

RSE connection | DE1-SoC z
Address: Use RSE Host

gdbserver (TCP) | Part: 5000

B Use Extended Mode

Figure 13-19. Debug Configuraton “Connection” Tab

77. Under the “Files” tab:
a. Set“Application on host to download” to the built binary of our project. Use the

“Workspace” button to choose the binary. You should have something similar to
“${workspace_loc:/DE1_SoC_demo_hps_ linux/Debug/DE1_SoC demo_hps_ linux}”.

03/10/2018 Page |94

SoC-FPGA Design Guide [DE1-SoC Edition]

b. Setthe “Target download directory” to your user directory. In my case it is
“/home/sahand”.

c. Setthe “Target working directory” to your user directory. In my case it is
“/home/sahand”. You should have something similar to Figure 13-20.

Name: DEl_SoC_demo_hps_linux
<= Connection Eﬁ Files #k Debugger ‘.” 0S Awareness| (®)- Arguments E Environment
Target Configuration
Application on host to download:
${workspace_locyDE1 SoC_demo_hps_linux/Debug/DE1 SoC_dermo_hps_linux}
File System...| | Workspace...| [Load symbols
Target download directory:
fhorme/sahand
Target working directory:

Jhomefsahand

Files

Load symbols from file

File System...| |Workspace...

Figure 13-20. Debug Configuration "Files" Tab

78. Under the “Debugger” tab, make sure that “Debug from symbol” is selected and that “main” is the
name of the symbol, as shown in Figure 13-21.
79. Click on the “Apply” button, then on the “Close” button to save the debug configuration.

MName: |DE1l_SoC_demo_hps_linux
<= Connection [l Files [#5 Debuggery, & OS Awareness| ®: Arguments | B§ Environment

Run control

") [Connect only| () Debug from entry point @ Debug from symbol |main

Run target initialization debugger script (ds / .py)
Run debug initialization debugger script (.ds /.py)

Execute debugger commands

Host working directory

B use default

Figure 13-21. Debug Configuration "Debugger" Tab

13.8.3 Linux Programming

The interrupt-driven nature of operating systems requires that error-prone processes be unable to harm the
correct operation of the computer. Modern processors provide a hardware solution to this issue by means of
a DUAL-MODE operating state. CPUs define two modes which operating systems can then use to implement
protection mechanisms among processes they are handling.

03/10/2018 Page |95

SoC-FPGA Design Guide [DE1-SoC Edition]

The linux operating system calls these modes USER MODE and KERNEL MODE. Processors remain in user
mode when executing harmless code in user applications, whereas they transition to kernel mode when
executing potentially dangerous code in the system kernel. Examples of dangerous code are handling an
interrupt from a peripheral, copying data from a peripheral’s registers to main memory, ...

User code cannot be executed in kernel mode. When a user process needs to perform an action that is only
allowed in kernel mode, it performs a system call and asks the operating system to take care of the task in its
place. What this boils down to is that USER CODE CANNOT ACCESS THE HARDWARE DIRECTLY, as there is too
much of a risk for the code to have an error and cause the system to crash. User code must always ask the
operating system to perform dangerous operations in its place.

The main advantage of Cyclone V SoCs is the ability to have the HPS and FPGA communicate with each other
easily. This is simple to accomplish in a standard bare-metal application as there are absolutely no protection
mechanisms implemented. However, this is not possible while the HPS is running linux, as user code doesn’t
have the right to access hardware directly.

There are 2 solutions to this problem:

o If developers are knowledgeable enough, they can write a device driver for the target peripheral they
want to access in their user code, and package this in a loadable linux kernel module. This is the
correct way to access hardware in linux, but it requires that the developer know how to write a device
driver. Administrative users can load the kernel module, then any standard user code can interact
with the peripheral.

e Asimpler technique often used in embedded linux environments is to leverage the virtual memory
system in order to access any MEMORY-MAPPED peripherals (peripherals and operations that are
only accessible through priviledged machine instructions cannot be accessed with this method).
Unfortunately, this method requires code to be run with root privileges. However, it does not require
any kernel code to be written.

Writing a linux device driver is outside the scope of this tutorial, so we will use the memory mapping
technique here.

The code for this part of the application is quite large to be inserted in this document. Therefore, we will just
go over a few practical aspects of the code which are worth paying attention to. The full source can be found
in DE1_SoC_demo.zip [5].

Recall that we cannot handle interrupts in linux user mode. Therefore, in order to satisfy the HPS-related goals
specified in 8.4, we will need to use an infinite loop and do some polling. This can be seen in our application’s
“main()” function, which is shown in Figure 13-22.

int main() {
printf("DE1-SoC linux demo\n");

open_physical_memory_device();
mmap_peripherals();

setup_hps_gpio();
setup_fpga_leds();

while (true) {
handle_hps_led();
handle_fpga_leds();
usleep(ALT_MICROSECS IN_A_SEC / 10);
¥

munmap_peripherals();
close_physical_memory_device();

return 0;

Figure 13-22. hps_linux.c main() function.

03/10/2018 Page |96

SoC-FPGA Design Guide [DE1-SoC Edition]

13.8.3.1 Using Altera’s HWLIB - Prerequisites
We will use a SUBSET of Altera’s HWLIB in this tutorial. In order to be able to use HWLIB to configure a
peripheral, 2 steps need to be performed:

e You need to INCLUDE the HPS peripheral’s HWLIB HEADER FILE to your code.

e You must COPY the HPS peripheral’s HWLIB SOURCE FILE in your DS-5 project directory. The HWLIB
source files can be found in directory
“<altera_install _directory>/<version>/embedded/ip/altera/hps/altera_hps/hwlib/src”,
and must be copied to “DE1_SoC_demo/sw/hps/application/DE1_SoC_demo_hps_linux”.

In the example used in this linux programming tutorial, we use some HWLIB functions related to the HPS’
GPIO peripheral, so you must copy “alt_generalpurpose_io.c” to your DS-5 project directory.

13.8.3.2 Accessing Hardware Peripherals from User Space

13.8.3.2.1 Opening the Physical Memory File Descriptor

In Figure 7-3 we saw that the FPGA slaves and HPS peripherals are visible to the MPU unit and are therefore
subject to memory-mapped |0. We need to be able to access these peripherals’ addresses in order to interact
with them.

Unfortunately, a process can only interact with the virtual address space it is assigned by the linux kernel. Any
attempt to access memory outside this region will cause the process to be terminated. Nevertheless, it is
possible for a process to gain access to another virtual memory region by using the “mmap()” function. The
mmap () function maps another memory region into the running process’ virtual address space. Therefore, all
we need to do is to mmap () the FPGA slaves and HPS peripherals’ memory regions into our address space.

The mmap () function’s prototype is shown in Figure 13-23. Note that it memory maps a FILE into the running
process’ address space, so we need to find a file that “represents” our peripherals.

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

Figure 13-23. Prototype of the mmap() function.

By design, linux represents everything as a file, including all devices. In particular, the special “/dev/mem” file
represents the content of the system’s physical memory. This is the file we will nmap () in order to access the
memory regions we are interested in.

Since we are memory-mapping a file, the first step is to open this file. Figure 13-24 shows how to open the
/dev/mem file. Remember that /dev/mem grants access to physical memory, so a user requires elevates rights
in order to open it. Therefore, don’t forget to launch this code as the root user in order to have enough
privileges.

// physical memory file descriptor
int fd_dev_mem = 0;

void open_physical_memory_device() {
// We need to access the system's physical memory so we can map it to user
// space. We will use the /dev/mem file to do this. /dev/mem is a character
// device file that is an image of the main memory of the computer. Byte
// addresses in /dev/mem are interpreted as physical memory addresses.
// Remember that you need to execute this program as ROOT in order to have
// access to /dev/mem.

fd_dev_mem = open("/dev/mem", O RDWR | O _SYNC);

if?fd_dev_mem == -1) {
printf("ERROR: could not open \"/dev/mem\".\n");
printf(" errno = %s\n", strerror(errno));

exit(EXIT_FAILURE);

Figure 13-24. open_physical_memory_device() function.

03/10/2018 Page |97

SoC-FPGA Design Guide [DE1-SoC Edition]

13.8.3.2.2 Accessing HPS Peripherals

Now that we have opened the physical memory file, we can memory-map a subset of it into our process’
virtual address space. Figure 13-25 shows how this is done for memory-mapping the HPS’ GPIO peripheral.
Note that you must know the offset of your peripheral within the physical memory file, as well as the amount
of memory you want to be memory-mapped from that offset. In our case, we will start memory-mapping
from the GPIO1 peripheral’s offset, and we choose to map the size of the full peripheral.

#include "socal/hps.h"

void *hps_gpio = NULL;
size_t hps_gpio_span = ALT_GPIO1_UB_ADDR - ALT_GPIO1_LB_ADDR + 1;
size_t hps_gpio_ofst = ALT_GPIO1_OFST;

void mmap_hps_peripherals() {
hps_gpio = mmap(NULL, hps_gpio_span, PROT_READ | PROT_WRITE, MAP_SHARED, fd_dev_mem, hps_gpio_ofst);
if (hps_gpio == MAP_FAILED) {
printf("Error: hps_gpio mmap() failed.\n");
printf(" errno = %s\n", strerror(errno));
close(fd_dev_mem);
exit(EXIT_FAILURE);

Figure 13-25. mmap_hps_peripherals() function.

Finally, after having memory-mapped the HPS’ GPIO peripheral, we can access any of its internal registers
with the low-level functions we saw in 11.3. Figure 13-26 shows how we configure the HPS’ GPIO peripheral,
and Figure 13-27 shows how we can toggle HPS_LED on the DE1-SoC by using the HPS_KEY_N button.

#define HPS_LED_IDX (ALT_GPIO_1BIT_53) // GPIO53

#define HPS_LED_PORT (alt_gpio_bit_to_pid(HPS_LED_IDX)) // ALT_GPIO_PORTB
#define HPS_LED_PORT_BIT (alt_gpio_bit_to_port_pin(HPS_LED_IDX)) // 24 (from GPIO1[24])
#define HPS_LED_MASK (1 << HPS_LED_PORT_BIT)

#define HPS_KEY_N_IDX (ALT_GPIO_1BIT 54) // GPIO54

#define HPS_KEY_N_PORT (alt_gpio_bit_to_pid(HPS_KEY_N_IDX)) // ALT_GPIO_PORTB
#tdefine HPS_KEY_N_PORT_BIT (alt_gpio_bit_to_port_pin(HPS_KEY_N_IDX)) // 25 (from GPIO1[25])
#define HPS_KEY_N_MASK (1 << HPS_KEY_N_PORT_BIT)

void setup_hps_gpio() {
// Initialize the HPS PIO controller:
// Set the direction of the HPS_LED GPIO bit to "output”
// Set the direction of the HPS_KEY_N GPIO bit to "input"
void *hps_gpio_direction = ALT_GPIO_SWPORTA_DDR_ADDR(hps_gpio);
alt_setbits_word(hps_gpio_direction, ALT_GPIO_PIN_OUTPUT << HPS_LED_PORT_BIT);
alt_setbits_word(hps_gpio_direction, ALT_GPIO_PIN_INPUT << HPS_KEY_N_PORT_BIT);

Figure 13-26. setup_hps_gpio() function.

void handle_hps_led() {
void *hps_gpio_data = ALT_GPIO_SWPORTA_DR_ADDR(hps_gpio);
void *hps_gpio_port = ALT_GPIO_EXT_PORTA_ADDR(hps_gpio);

uint32_t hps_gpio_input = alt_read_word(hps_gpio_port) & HPS_KEY_N_MASK;

// HPS_KEY_N is active-low
bool toggle_hps_led = (~hps_gpio_input & HPS_KEY_N_MASK);

if (toggle_hps_led) {
uint32_t hps_led_value = alt_read_word(hps_gpio_data);
hps_led_value >>= HPS_LED_PORT_BIT;
hps_led_value = !hps_led_value;

03/10/2018 Page |98

SoC-FPGA Design Guide [DE1-SoC Edition]

hps_led_value <<= HPS_LED_PORT_BIT;
alt_replbits_word(hps_gpio_data, HPS_LED_MASK, hps_led_value);

Figure 13-27. handle_hps_led() function.

The key to doing memory-mapped IO in linux is to use HWLIB’s OFFSET-based macros with the virtual address
returned by mmap() as the base address. Note that HWLIB also has macros with ABSOLUTE addresses for
every device, but those can only be used in bare-metal or linux device driver code as they directly access
certain physical addresses.

In Figure 13-26 and Figure 13-27, we used three such offset-based macros to access the HPS GPIO peripheral’s
“Port A Data Register”, “Port A Data Direction Register”, and “External Port A Register”.
These macros were the following:

e ALT_GPIO_SWPORTA_DR_ADDR(base)
e ALT_GPIO_SWPORTA DDR_ADDR(base)
e ALT_GPIO_EXT_PORTA_ADDR(base)

13.8.3.2.3 Accessing FPGA Peripherals

Memory-mapping FPGA peripherals is identical to the process used for HPS peripherals. However, there is one
subtlety that must be taken care of. When using mmap () you must specify an offset within the file that is to be
mapped, as well as the amount of memory to be mapped. The mmap () manual page states that the offset
provided MUST BE A MULTIPLE OF THE SYSTEM’S PAGE SIZE, which is 0x1000 bytes in our case.

Figure 13-28 shows how we memory-map the FPGA peripherals in our design from the Lightweight HPS-to-
FPGA bridge, and Figure 13-30 shows how we can write to the FPGA leds.

void *h2f_lw_axi_master NULL;
size_t h2f_lw_axi_master_span = ALT_LWFPGASLVS_UB_ADDR - ALT_LWFPGASLVS_LB_ADDR + 1;
size_t h2f_lw_axi_master_ofst = ALT_LWFPGASLVS_OFST;

void *fpga_leds = NULL;

void mmap_fpga_peripherals() {
// Use mmap() to map the address space related to the fpga leds into user
// space so we can interact with them.

// The fpga leds are connected to the h2f_lw_axi_master, so its base
// address is calculated from that of the h2f_lw_axi_master.

// IMPORTANT: If you try to only mmap the fpga leds, it is possible for the
// operation to fail, and you will get "Invalid argument" as errno. The

// mmap() manual page says that you can only map a file from an offset which
// is a multiple of the system's page size.

// In our specific case, our fpga leds are located at address ©OxFF200000,

// which is a multiple of the page size, however this is due to luck because
// the fpga leds are the only peripheral connected to the h2f_lw_axi_master.
// The typical page size in Linux is 0x1000 bytes.

// So, generally speaking, you will have to mmap() the closest address which
// is a multiple of your page size and access your peripheral by a specific
// offset from the mapped address.

h2f_lw_axi_master = mmap(NULL, h2f_lw_axi_master_span, PROT_READ | PROT_WRITE, MAP_SHARED,
fd_dev_mem, h2f_lw_axi_master_ofst);
if (h2f_lw_axi_master == MAP_FAILED) {
printf("Error: h2f_lw_axi_master mmap() failed.\n");
printf(" errno = %s\n", strerror(errno));
close(fd_dev_mem);
exit(EXIT_FAILURE);
}

fpga_leds = h2f_lw_axi_master + HPS_FPGA_LEDS_BASE;

Figure 13-28. mmap_fpga_peripherals() function.

03/10/2018 Page |99

SoC-FPGA Design Guide [DE1-SoC Edition]

void setup_fpga_leds() {
// Switch on first LED only
alt_write_word(fpga_leds, ox1);

Figure 13-29. setup_fpga_leds() function.

void handle_fpga_leds() {
uint32_t leds_mask = alt_read_word(fpga_leds);

if (leds_mask != (@x@1 << (HPS_FPGA_LEDS_DATA_WIDTH - 1))) {
// rotate leds
leds_mask <<= 1;
} else {
// reset leds
leds_mask = ox1;

}

alt_write_word(fpga_leds, leds_mask);

Figure 13-30. handle_fpga_leds() function.

13.8.3.2.4 Cleaning Up Before Application Exit

Although the operating system should take care of this for you, it is always a good practice to remove any
unneeded memory mappings and to close the physical memory file descriptor before your application
terminates.

Figure 13-31 shows how to unmap the GPIO peripheral’s memory-mapping, and Figure 13-32 shows how to
close the physical memory file descriptor.

void munmap_peripherals() {
munmap_hps_peripherals();
munmap_fpga_peripherals();

}

void munmap_hps_peripherals() {
if (munmap(hps_gpio, hps_gpio_span) != @) {
printf("Error: hps_gpio munmap() failed\n");
printf(" errno = %s\n", strerror(errno));
close(fd_dev_mem);
exit(EXIT_FAILURE);

}

hps_gpio = NULL;
}

void munmap_fpga_peripherals() {
if (munmap(h2f_lw_axi_master, h2f_lw_axi_master_span) != 0) {
printf("Error: h2f_lw_axi_master munmap() failed\n");
printf(" errno = %s\n", strerror(errno));
close(fd_dev_mem);
exit(EXIT_FAILURE);
}

h2f_lw_axi_master
fpga_leds

NULL;
NULL;

Figure 13-31. munmap_peripherals() family of functions.

void close_physical_memory_device() {
close(fd_dev_mem);

}

Figure 13-32. close_physical_memory_device() function.

13.8.3.3 Launching the Linux code in the Debugger
80. Once you have finished writing all the application’s code, right-click on the
“DE1_SoC_demo_hps_linux” project, and select “Build Project”.
81. Switch to the DS-5 Debug perspective, as shown in Figure 12-12.

03/10/2018 Page | 100

SoC-FPGA Design Guide [DE1-SoC Edition]

= is o]

1eralpurpo = B B=Eoutln B8 G = g
3 AR R e T
= assert.h
™ stdboolh
o stdioh

[B [N

Figure 13-33. Switching to the DS-5 Debug Perspective

82. In the “Debug Control” view, click on the “DE1_SoC_demo_hps_1linux” entry, then click on the
“Connect to Target” button, as shown on Figure 13-34. The debugger will start an SSH conection to
the linux distribution running on the DE1-SoC and will automatically transfer our binary file and wait
at our application’s “main()” function. If you are prompted to log in, then log in with the ROOT user
and password.

% DebugC 2 |~ ProjectE #§ Remote = g

=N B X %

ey

& DE1_SoC_demo_hps linux disconnected

b DE1_SoC_demo_hps_linux disconnected
Mo QS Support

Figure 13-34. Debug Control View

83. You can the use the buttons in the “Debug Control” view to control the application’s execution.

& DebugC 32 |[5ProjectE #8Remote = O
=] k] % olvd vy B 2

F DE1_SoC_demo_hps_linux connected

¥ (= Active Threads
¥ i Thread 306 #1 stopped on breakpoint
= main
= 0x76FL4FDA [/1ib/libc.so.6]
B = ALl Threads

ts DE1_SoC_demo_hps_linux connected
Mo OS5 Supporkt

Figure 13-35. DS-5 Debugger Controls

13.8.3.4 App Console
Data sent to standard output is shown in the “App Console” view. Figure 13-36 shows the result of a

“printf()” call in our demo code shown in Figure 13-22.

03/10/2018 Page | 101

SoC-FPGA Design Guide [DE1-SoC Edition]

B App Consol 8 = A

5 E @l
<§} Linked: DEl_SoC demo_hps_linux-
DE1-SoC linux demo

Figure 13-36. DS-5 App Console View

13.8.3.5 DS-5 Linux Debugger Restrictions

In12.2.4.4.1, we saw that the DS-5 BARE-METAL debugger had a “Registers” view which could show the
registers of all HPS and FPGA peripherals. This was a very handy tool, as it made it easy to verify if registers
were accessed and updated correctly.

Unfortunately, when it comes to debugging LINUX binaries, the DS-5 debugger is subject to the same
constraints our linux applications are. Namely, it cannot directly access physical hardware addresses directly.
As such, there is no “Registers” view when debugging linux applications, and you must resort to manually
memory-mapping and verifying peripheral accesses yourself.

03/10/2018 Page | 102

SoC-FPGA Design Guide [DE1-SoC Edition]

14TODO

e Explain MSEL when reprogramming the FPGA from the HPS.
e Talk about what the JTAG to Avalon masters are.
e Find out how to automatically program the FPGA when writing a bare-metal HPS application. Use

“tftp” command?

03/10/2018 Page | 103

SoC-FPGA Design Guide [DE1-SoC Edition]

15REFERENCES

[1] Terasic Technologies, "Terasic - DE Main Boards - Cyclone - DE1-SoC Board," [Online]. Available:
http://del-soc.terasic.com.

[2] Altera Corporation, "Cyclone V Device Handbook, Volume 3: Hard Processor System Technical Reference
Manual," 31 July 2014. [Online]. Available: http://www.altera.com/literature/hb/cyclone-v/cv_5v4.pdf.

[3] S.Kashani-Akhavan, "DE1_SoC_top_level.vhd," [Online]. Available:
https://github.com/sahandKashani/Altera-FPGA-top-level-files/blob/master/DE1-
SoC/DE1_SoC_top_level.vhd.

[4] S. Kashani-Akhavan, "pin_assignment_DE1_SoC.tcl," [Online]. Available:
https://github.com/sahandKashani/Altera-FPGA-top-level-files/blob/master/DE1-
SoC/pin_assignment_DE1_SoC.tcl.

[5] S.Kashani-Akhavan, "DE1_SoC_demo.zip," [Online]. Available: https://github.com/sahandKashani/SoC-
FPGA-Design-Guide/blob/master/DE1_SoC/DE1_SoC_demo.zip.

[6] ISSI. [Online]. Available: https://github.com/sahandKashani/SoC-FPGA-Design-
Guide/blob/master/DE1_SoC/Documentation/SDRAM%20Datasheet.pdf.

[7] Terasic Technologies, [Online]. Available: https://github.com/sahandKashani/SoC-FPGA-Design-
Guide/blob/master/DE1_SoC/Documentation/DE1-SoC%20Schematic.pdf.

[8] ISSI. [Online]. Available: https://github.com/sahandKashani/SoC-FPGA-Design-
Guide/blob/master/DE1_SoC/Documentation/DDR3%20SDRAM%20Datasheet.pdf.

[9] ARM, "DS-5 Debugger Commands," [Online]. Available:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0452c/CIHJIBIH.html.

[10] Altera Corporation, "Documentation: Cyclone V Devices," [Online]. Available:
http://www.altera.com/literature/lit-cyclone-v.jsp?In=devices_fpga&I3=Low-Cost%20FPGAs-
Cyclone%20V%20%28E,%20GX,%20GT,%20SE,%20SX,%20ST%29&l|4=Documentation.

[11] Altera Corporation, "Address Map for HPS," [Online]. Available:
http://www.altera.com/literature/hb/cyclone-v/hps.html.

[12] Altera Corporation, "A Look Inside: SoC FPGAs Embedded Development Tools (Part 5 of 5)," 25
November 2013. [Online]. Available: http://www.youtube.com/watch?v=NxZznvf5EKc.

[13] Altera Corporation, "A Look Inside: SoC FPGAs Introduction (Part 1 of 5)," 25 November 2013. [Online].
Available: http://www.youtube.com/watch?v=RVM-ESUMOMU.

[14] Altera Corporation, "A Look Inside: SoC FPGAs Reliability and Flexibility (Part 3 of 5)," 25 November
2013. [Online]. Available: http://www.youtube.com/watch?v=cWIlaqt2RU84.

[15] Altera Corporation, "A Look Inside: SoC FPGAs System Cost and Power (Part 4 of 5)," 25 November 2013.
[Online]. Available: http://www.youtube.com/watch?v=gUE669XKhUY.

03/10/2018 Page | 104

SoC-FPGA Design Guide [DE1-SoC Edition]

[16] Altera Corporation, "A Look Inside: SoC FPGAs System Performance (Part 2 of 5)," 25 November 2013.
[Online]. Available: http://www.youtube.com/watch?v=Ssxf8ggmQk4.

[17] Altera Corporation, "Cyclone V Device Datasheet," July 2014. [Online]. Available:
http://www.altera.com/literature/hb/cyclone-v/cv_51002.pdf.

[18] Altera Corporation, "Cyclone V Device Handbook, Volume 1: Device Interfaces and Integration," 22 July
2014. [Online]. Available: http://www.altera.com/literature/hb/cyclone-v/cv_5v2.pdf.

[19] ARM, "DS-5 Altera Edition: Bare-metal Debug and Trace," 21 October 2013. [Online]. Available:
http://www.youtube.com/watch?v=u_xKybPhcHI.

[20] ARM, "FPGA-adaptive debug on the Altera SoC using ARM DS-5," 16 December 2013. [Online]. Available:
http://www.youtube.com/watch?v=2NBcUv2Txbl.

[21] EE Journal, "OpenCL on FPGAs Accelerating Performance and Design Productivity -- Altera," 28
November 2013. [Online]. Available: http://www.youtube.com/watch?v=M6vpg6slh_A.

[22] Altera Corporation, "Bare-Metal Debugging using ARM DS-5 Altera Edition," 3 December 2013. [Online].
Available: http://www.youtube.com/watch?v=CJOEHJ90QZ7Y.

[23] Altera Corporation, "Cyclone V Device Overview," 7 July 2014. [Online]. Available:
http://www.altera.com/literature/hb/cyclone-v/cv_51001.pdf.

[24] Altera Corporation, "Linux Kernel Debug using ARM DS-5 Altera Edition," 3 December 2013. [Online].
Available: http://www.youtube.com/watch?v=QcA39060fGw.

[25] Altera Corporation, "Architecting FPGAs beyond 1M LEs," Altera Corporation, 3 September 2014.
[Online]. Available: http://www.fpl2014.org/fileadmin/w00bpo/www/hutton.pdf.

[26] S. Kashani-Akhavan and R. Beuchat. [Online]. Available: https://github.com/sahandKashani/SoC-FPGA-
Design-Guide.

03/10/2018 Page | 105

	2 List of Figures
	3 Table of Tables
	4 Prerequisites
	4.1 Hardware
	4.2 Software
	4.2.1 Software Versions Used in this Guide
	4.2.2 Licenses

	5 Introduction
	6 Terasic DE1-SoC Board
	6.1 Specifications
	6.1.1 FPGA Device
	6.1.2 Configuration and Debug
	6.1.3 Memory Device
	6.1.4 Communication
	6.1.5 Connectors
	6.1.6 Display
	6.1.7 Audio
	6.1.8 Video Input
	6.1.9 ADC
	6.1.10 Switches, Buttons and Indicators
	6.1.11 Sensors
	6.1.12 Power
	6.1.13 Block Diagram

	6.2 Layout

	7 Cyclone V Overview
	7.1 Introduction to the Cyclone V Hard Processor System
	7.2 Features of the HPS
	7.3 System Integration Overview
	7.3.1 MPU Subsystem
	7.3.2 SDRAM Controller Subsystem
	7.3.3 Support Peripherals
	7.3.3.1 System Manager
	7.3.3.2 FPGA Manager

	7.3.4 Interface Peripherals
	7.3.4.1 GPIO Interfaces

	7.3.5 On-Chip Memory
	7.3.5.1 On-Chip RAM
	7.3.5.2 Boot ROM

	7.4 HPS-FPGA Interfaces
	7.5 HPS Address Map
	7.5.1 HPS Address Spaces
	7.5.2 HPS Peripheral Region Address Map

	7.6 HPS Booting and FPGA Configuration
	7.6.1 HPS Boot and FPGA Configuration Ordering
	7.6.2 Zooming In On the HPS Boot Process
	7.6.2.1 Preloader

	8 Using the Cyclone V – General Information
	8.1 Introduction
	8.2 FPGA-only
	8.3 HPS & FPGA
	8.3.1 Bare-metal Application
	8.3.2 Application Over an Operating System (Linux)

	8.4 Goals
	8.5 Project Structure

	9 Using the Cyclone V – Hardware
	9.1 General Quartus Prime Setup
	9.2 System Design with Qsys – Nios II
	9.3 System Design with Qsys – HPS
	9.3.1 Instantiating the HPS Component
	9.3.1.1 FPGA Interfaces Tab
	9.3.1.2 Peripheral Pins Tab
	9.3.1.2.1 Theory
	9.3.1.2.2 Configuration

	9.3.1.3 HPS Clocks Tab
	9.3.1.4 SDRAM Tab

	9.3.2 Interfacing with FPGA Peripherals

	9.4 Generating the Qsys System
	9.5 Instantiating the Qsys System
	9.6 HPS DDR3 Pin Assignments
	9.7 Wiring the DE1-SoC
	9.8 Programming the FPGA
	9.9 Creating Target sdcard Artifacts

	10 Using the Cyclone V – FPGA – Nios II – Bare-metal
	10.1 Project Setup
	10.2 Nios II Programming Theory – Accessing Peripherals
	10.3 Nios II Programming Practice

	11 Using the Cylone V – HPS – ARM – General
	11.1 Partitioning the sdcard
	11.2 Generating a Header File for HPS Peripherals
	11.3 HPS Programming Theory

	12 Using the Cyclone V – HPS – ARM – Bare-metal
	12.1 Preloader
	12.1.1 Preloader Generation
	12.1.2 Creating Target sdcard Artifacts

	12.2 ARM DS-5
	12.2.1 Setting Up a New C Project
	12.2.2 Writing a DS-5 Debug Script
	12.2.3 Setting Up the Debug Configuration
	12.2.4 Bare-metal Programming
	12.2.4.1 Accessing FPGA Peripherals
	12.2.4.2 Accessing HPS Peripherals
	12.2.4.2.1 Using Altera’s HWLIB - Prerequisites
	12.2.4.2.2 Global Timer & Clock Manager
	12.2.4.2.3 GPIO

	12.2.4.3 Launching the Bare-metal Code in the Debugger
	12.2.4.4 DS-5 Bare-metal Debugger Tour
	12.2.4.4.1 “Registers” View [UNAVAILABLE IN SoC EDS 16.0]
	12.2.4.4.2 App Console

	13 Using the Cyclone V – HPS – ARM – Linux
	13.1 Preloader
	13.1.1 Preloader Generation
	13.1.2 Creating Target sdcard Artifacts

	13.2 Bootloader
	13.2.1 Getting & Compiling U-Boot
	13.2.2 Scripting U-Boot
	13.2.3 Creating Target sdcard Artifacts

	13.3 Linux Kernel
	13.3.1 Getting & Compiling Linux
	13.3.2 Creating Target sdcard Artifacts

	13.4 Ubuntu Core Root Filesystem
	13.4.1 Obtaining Ubuntu Core
	13.4.2 Customizing Ubuntu Core
	13.4.2.1 System configuration on first boot
	13.4.2.2 Post-install configuration script

	13.4.3 Creating Target sdcard Artifacts

	13.5 Writing Everything to the sdcard
	13.6 Scripting the Complete Procedure
	13.7 Testing the Setup
	13.8 ARM DS-5
	13.8.1 Setting Up a New C Project
	13.8.2 Creating a Remote Debug Connection to the Linux Distribution
	13.8.2.1 Find the Linux Distribution’s IP Address
	13.8.2.2 Create an SSH Remote Connection
	13.8.2.3 Setting Up the Debug Configuration

	13.8.3 Linux Programming
	13.8.3.1 Using Altera’s HWLIB - Prerequisites
	13.8.3.2 Accessing Hardware Peripherals from User Space
	13.8.3.2.1 Opening the Physical Memory File Descriptor
	13.8.3.2.2 Accessing HPS Peripherals
	13.8.3.2.3 Accessing FPGA Peripherals
	13.8.3.2.4 Cleaning Up Before Application Exit

	13.8.3.3 Launching the Linux code in the Debugger
	13.8.3.4 App Console
	13.8.3.5 DS-5 Linux Debugger Restrictions

	14 TODO
	15 References

