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ANSWERS TO QUESTION SET 4

Exercise 1: Inhibitory rebound

1.1 The effect of an applied current is to vertically shift the w-nullcline. Thus, as I becomes more
negative, the fixed point moves away from the origin in the region u,w < 0.

1.2 For a long current pulse, the system will have settled at its fixed point at the moment the current
is switched off. Thus at ¢ = 0 the u-nullcline will instantaneously return to its original position and the
system will move to the new fixed point (u,w) = (0,0). If I is large enough, it will do so by emitting an
action potential (see Fig. 1).
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Figure 1: Response of the system of exercise 1 to the removal of a sustained inhibitory current. When
the inhibitory current is large enough, a rebound spike occurs.

Exercise 2: Phase Plane Analysis

2.1 The flow arrows should qualitatively look like in figures 2(b) and 2(c)). For readability we split it
into two figures. Note that the scales of the flow vectors are different across figures! Figure 2(a) shows a
complete picture and a few trajectories.

2.2 From the phase plane (and more clearly from the flow vectors along the nullclines in figures 2(b)
and 2(c)), we see an opposite dynamic for u and w at (ugz,ws): small deviations of w are pushed back
while small deviations of v will grow exponentially away from the fixed point. This is the signature of a
saddle point. In figures 3(a), 3(b) and 3(c) we have plotted the flow vectors and a few trajectories in the



neighbourhood of each fixed point.

2.3 The key to analyze the stability of a nonlinear system is to do a linear approximation of the system
at each fixed point and then apply the same techniques as discussed in question set 3 for linear systems.
If you are not familiar with this strategy, you find a very clear introduction in chapter 6.2 in ”Steven
Strogatz, Nonlinear Dynamics and Chaos”; the book is available in the library).

We have the following system:

%u = F(u,w) = f(u) —w+ I(t)

(1)
g = Glu,w) = e(g(u) —w)
with e = 0.1 and I(t) = 0.
The stability of the system in the neighbourhood of the fixed point 3 is analyzed by studying the eigen-
values of the Jacobian matrix at (us,ws).

For completeness, we show, how you get the Jacobian matrix from linearizing the system at (usz,ws). The
first order Taylor expansion of equation 1 is:

F(us + Au,ws + Aw) =~ F(uz,ws) + Au‘g—s + Awg—i
G(us + Au,ws + Aw) ~ G(us, ws) + Au%—f +Awg?

At the fixed point we have F(usz,w3) = 0 and G(ug, ws) = 0. Then, in matrix notation, we get
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That matrix of partial derivatives is the Jacobian of the system. We now plug the actual expressions
from 1 into J and evaluate them at (us, ws).

d
f(u) —1
J = (dd (w)
edug(u) —€ |(ug,ws)

The functions f(u) and g(u) are not given explicitly. But the only thing we need to know is their rate
of change with respect to u at (ug,ws). We can estimate those values from the figure: We first note
that the given function graphs of the two nullclines actually correspond to w = f(u) and w = g(u)
respectively. Then, we try to estimate the slopes of f and g at (us,ws). Note that the scales in the u-
and w direction are slightly different. From the figure, we estimate the following values: % f(u)|us = 0.5
and - g(u)|y, ~ 2.3.

We can now use these values and calculate the eigenvalues A _ of J:
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det(J — M) = det
0.1x23 —-0.1-

/\) 20 (This is the characteristic equation of J)

= A2 — 0.4\ + 0.18 = 0 (The left hand side is the characteristic polynomial of J)
= Ao ~ 0.2+ 0.75¢

We have complex eigenvalues with Re{A} > 0. Therefore, (us3,ws) is unstable and a small perturbation
will spiral (because A is complex) outwards (see figure 3(c)).

Note that, for the stability analysis, we do not need exact values for A\. Therefore there is no need to do
the numeric calculation exactly or to estimate the derivatives very precisely from the figure.

2.4

(i) The injected pulse immediately moves the membrane voltage to uz. Because the current is very short
with respect to the systems dynamics, we can assume that the nullclines do not move. The resulting
trajectory is shown in figure 2(a) (the one starting at (us,w;)).

(ii) We plot u(t) in figure 4. Note the regions of fast and slow voltage changes.
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(b) Flow vectors along the u-nullcline (c) Flow vectors along the w-nullcline

Figure 2: Flow vectors along the nullclines. For readability, the scales of the flow vectors are different
across figures!

2.5 Look at the four trajectories in figure 2(a). The starting points are the results of pulse currents of
different amplitude. We see that the neuron elicits a spike if the depolarization is large enough. From
figure 2(a) one could make the (wrong) conclusion that we get a spike by crossing the u-nullcline. Looking
more closely at figure 3(b) we see that crossing the nullcline is not sufficient. The line we have to cross
is the stable manifold of the saddle point. That line is not shown in the figure but you can see from
the trajectories in 3(b) that there is a boundary separating trajectories evolving towards the left and the
right.

2.6 For t > ty the system is described by

(2)

(i) The u-nullcline then is fu =0 = f(u) —w+ 3 = w = f(u) + 3. The u-nullcline is shifted by +3.
This changes the dynamics of the system as we can see from figure 5.

(ii) The resting state of the neuron is at (u1,w;) which is its only stable fixed point. When we inject
a current at ¢t > 0, the u-nullcline is shifted as an effect of I(¢) and (u1,w;) is no longer a fixed point.
Instead, the neuron evolves according to the new dynamics. The trajectory is shown if figure 5. We
observe that the new system does not have a stable fixed point. Instead it keeps evolving along a closed
trajectory, called a limit cycle. For the neuron, this oscillation corresponds to a regular firing.

For completeness, we have added a second trajectory, starting near the unstable fixed point. We see that
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(a) Flow vectors at fixed point 1 (b) Flow vectors at fixed point 2 (¢) Flow vectors at fixed point 3

Figure 3: Flow vectors in the neighbourhood of the fixed points. Black lines indicate a few trajectories
when the system evolves from one of the small black points.
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Figure 4: u(t) and (for completeness) w(t) after a pulse current is injected at o

this trajectory approaches, from ”inside”, the same limit cycle. The system has a stable limit cycle.
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(a) Phase Plane, I(t) = 3. The u-nullcline is shifted by +3 (blue line). Two trajectories are
shown in black.
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(b) u(t) for the two different trajectories shown in figure 5(a)

Figure 5: Phase plane and u(t).



Exercise 3: Impulse response

Two typical trajectories are shown on Fig. 6. Since the dynamics of u is much faster than that of w, the
state of the system moves almost horizontally in the phase plane. The vertical component of the velocity
of the system has a non-negligible effect only on the wu-nullcline. If the initial pulse is strong enough
to cross the middle branch of the u-nullcline, then the system will come back to the stable fixed point
with a long detour, by initially following the u-nullcline and then moving horizontally. This trajectory
corresponds to a spike. In the limit ¢ < 1, the middle branch of the u-nullcline acts as the spiking
threshold when the system is subjected to short current pulses.
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(a) Trajectories in the phase plane (b) Trajectories in the temporal domain

Figure 6:



