Neural Networks and Biological Modeling

Professor Wulfram Gerstner
Laboratory of Computational Neuroscience

Question set 7

Exercise 1: Mean field model

Consider a network of N neurons with all-to-all connectivity and scaled synaptic weights $w_{i j}=J_{0} / N$. The transfer function (rate as a function of input potential) of the neurons is piecewise linear:

$$
f=g(h)=\left\{\begin{array}{lll}
0 & , & h<h_{1} \tag{1}\\
\frac{h-h_{1}}{h_{2}-h_{1}} & , & h_{1} \leq h \leq h_{2} \\
1 & , & h_{2}<h
\end{array}\right.
$$

The dynamics of the input potential for neuron i is

$$
\begin{equation*}
\tau \frac{d h_{i}}{d t}=-h_{i}+R I_{i}(t) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{i}(t)=I^{\mathrm{ext}}(t)+\sum_{j} \sum_{f} w_{i j} \alpha\left(t-t_{j}^{f}\right) \tag{3}
\end{equation*}
$$

where α denotes the shape of a the input current caused by a single spike. We assume a constant external current $I^{e x t}$ and are interested in the stationary solutions.
1.1 Find graphically the value of stationary activity $A(t)=A_{0}$ in the asynchronous state. You may assume that N is large $(N \rightarrow \infty)$.
1.2 How does the solution change if you change the coupling constant J_{0} ? Choose $h_{1}=1$ and $h_{2}=2$ and consider $J_{0}=1$ and $J_{0}=3$. You can assume $R=1$ and $I^{\text {ext }}(t)=0$. What happens at $J_{0}=2$? How does the solution change if we additionally have $I^{\text {ext }}(t) \neq 0$?
1.3 Find the solutions analytically (for arbitrary J_{0}, h_{1}, h_{2}).

Exercise 2: Randomly connected network: Fixed number of inputs

We consider a homogeneous network of N neurons. Each neuron receives input from K presynaptic neurons (see figure $1)$. When a spike arrives it generates a postsynaptic current pulse $\alpha\left(t-t_{k}^{f}\right)$. The current to neuron i is therefore:

$$
\begin{equation*}
I_{i}=\sum_{k, f} w_{i k} \alpha\left(t-t_{k}^{f}\right) \tag{4}
\end{equation*}
$$

Assume the weights are $w_{i k}=\frac{w_{0}}{K}$ and the network activity is constant: $A(t)=A_{0}$.
2.1 Give an intuitive or mathematical argument for the following relationship:

$$
\begin{equation*}
I_{i} \approx w_{0} A_{0} \int_{0}^{\infty} \alpha(s) d s \tag{5}
\end{equation*}
$$

2.2 What happens if N increases? Does the current increase? How about fluctuations?

Figure 1: Two randomly connected networks of different size N. The number of inputs per neuron is fixed. (Left: inputs to two representative neurons. Right: inputs to one representative neuron).

