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ANSWERS TO QUESTION SET 11

Exercise 1: Poisson neuron

1.1 We present two methods to solve this problem.

Method 1: The probability that the neuron does not fire during a small time interval At is given by
S(At) = 1 — pAt. Since a Poisson process is independent of its past history, the probability that the
neuron does not fire during n such time intervals is the product of the probabilities for each time intervals,
ie.,

S(nAt) = (1 — pAt)™. (1)
Although this expression is correct for a discrete process, it has the drawback of being dependent on the
discretization time step At. Thus it is desirable to take the limit as At — 0. This can be done by setting
t = nAt and taking the limit as n — oo with ¢ fixed. Remembering the formula lim,, (1 + %)™ = e?,
one concludes that

S(t) = lim (1 - pt)n — et 2)

n—00 n

Alternatively, one can use the identity

(1 - pAt)" = exp [Z log (1 — pAt)| , (3)
i=1
and expand the logarithm as log(1 + z) =  + ..., which yields
n t
S(t) = lim exp prAt — exp [/ pdt} = exp[—pt] . (4)
n—oo
i=1 0

The latter calculation has the advantage that it also works for time dependent rates p = p(t), which is
less obvious from Eq.(2).

Method 2 A different way to obtain this result is to consider the variation of S(¢) during a small time
interval At. Because of independence, we have
S(t+ At) = S(t)S(At), (5)
where S(At) = 1 — pAt by assumption. Rearranging. we obtain
S(t+ At) — S(t)

=—pS(t 6
= pS(t), (6)
which becomes as At — 0 p
—S8(t) =—pS(t 7
L5(t) = —pS(1), @
the solution of which is indeed S(t) = e~ *t.
1.2 Again, due to independence, we have
P(t,t + At) = P (fire for the first time in (¢,¢ + At)) = P (not fire until ¢) x P (fire in (¢,t + At))

= e P x pAt. (8)



As At — 0, this probability vanishes; however, the probability density, defined by p(t)dt = P(t,t + dt),

has finite value,

P(t,t+ At
p(fire at t) = A1)'151510 % = pe P, (9)

1.3
(i) The interval distribution was calculated earlier, P(t) = pe~*t.

(ii) The probability to observe an interspike interval smaller than 20 ms is

20ms
P(IST < 20ms) = /0 pe PPds = [—e_ps]jozlgs =1—e 207, (10)
Due to independence, the probability of getting a burst of two such intervals is just the square of this
probability. Thus, for p = 2Hz = 2 - 103ms™!, we get ppurst ~ 0.0015, whereas for p = 20Hz, ppurst ™~
0.109.

(iii) Given knowledge of the interspike interval distribution and survivor function as a function of the
firing rate p, the observer can determine the strength of the input with fair confidence after observing a
few spikes.

1.4 Let us label the spike trains corresponding to each neuron S; and Ss. The percentage is the number
of spikes in S7 coincident with a spike in So, Neoine, divided by the total number of spikes (N) in spike

train one:
< Ncoinc >

T (11)

And ( Neoine) is just the probability to observe a spike in Sy within a small observation window size
2A = 4 ms, times the number of spikes in Sy:

2Ap0N

P:

P~ = 2p0A = 8%. (12)

Here, we had to assume that the observation windows do not overlap, i. e. A < pyg.

Exercise 2: Stochastic spike arrival

We first need to solve the linear equation
du
T— =
dt

We know (c.f. exercise set 1) that the solution is given by

—(u — Urest) + RI(t) (13)

R [t ,
u(t) = Urest + — / e~ EO/T I dt (14)
T J-—c

Let us first solve the general problem with arbitrary presynaptic current shape a(t — t/). The case of
problem 2.1 then corresponds to the choice a(t — tf) = ¢é(t — tf).

So for I(t) =3, a(t — t/) we have:

t e—(t=t)/T

t) = Upest + R - t'—th)dt' . 15
ut) =t + B [ Y alt 1) (15)

oo 7

Writing a(t' — t/) = [ a(s)d(s — (' — t/))ds, we obtain

t 0 —(t—t)/T
u(t) = Urest + R/ dt// dsz(S) Z 5(5 - (tl - tf)) : (16)
—00 —o00 f



Taking the average over all possible spike trains,

¢ o m(t-t)/r
(u(t)) = Upest + R/ dt’/ dsfa(s) < g 5(s — (t' —t1)) > (17)
—00 —00 I

because all the deterministic quantities can be pulled out of the average.
Now since! <Zf 5(s — (¢ —tf)) > =v,

t o e=(t=t)/T poo
(u(t)) = Urest + Rv / ' ——— / dsa(s)
oo T o
=1

= Upest + RV/ a(s)ds. (18)

—00
2.1 With a(t —tf) = ¢6(t — t/), we obtain:

<u(t)> = Uest + Rug. (19)

2.2 The general solution is given by Eq. (18).

Exercise 3: Renewal process

Given an output spike at ¢t = #, the survivor function S(t — #) is given by

S(t —t) = exp [ - /{t p(t’|f)dt’] = exp [— /: p(t' — f)dt’] = exp [— /Otf p(s)ds} .

where we made the variable change s = t' — {.
The interspike interval distribution is P(t —t) = p(t — #)S(t — ). Thus we only need to calculate the
integral of the hazard function p(t — t). This gives

tabs
/ p(s)ds =0 for s < taps
t—i Otabd t—t 0 . 5
/ p(s)ds = / p(s)ds + / p(s)ds = 1 (t —t— tabs) for taps < 8 < taps + 2
0 abs
’ tabs ttt;bs+2 t—i A

/ p(s)ds + / p(s)ds + / p(s)ds = po (—1 +t—t— tabs) for taps +2 < s.

0

tabs tabs+2

!this can be seen by remarking that [ &(s)ds = 1 so that 3, fOT 5(s —tl)ds = w =v.



Exercise 4: Homework

4.1 We take the limit and use Stirling’s approximation and lim, . (1 —z/n)" =e 7 :

. N! v\ 7F o\ F
A= e (%) () .
W)k NNe—N v\ TR 1\F
TR A (N )N ke N (1 - N) (N) (21)
orpet (=)
N k! N (1— k/N)N*k (22)
vT k:efk efl/T
- 23)
_ (VT)ke—uT (24)

The expected number of spikes in an interval of duration 7" can be calculated from the definition of
expectation,

(k)= kPy(T) (25)
k=0

— - (VT)ke—yT

= kzzok Bl (26)
_ e—yT = (VT)k

= kZ:lk Bl (27)
= (VT)F

— T}; (li_)l)! (28)

=e T (D) i (V]Z:)k (29)

k=0 '
=T. (30)

For the third equality we considered that for £k = 0 the sum is 0, so we can start with £ = 1. For the
fourth equality we performed a change of variables and for the last one we used the definition of the

. . n
exponential function e* =Y | .



