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Answers to question set 11

Exercise 1: Poisson neuron

1.1 We present two methods to solve this problem.

Method 1: The probability that the neuron does not fire during a small time interval ∆t is given by
S(∆t) = 1 − ρ∆t. Since a Poisson process is independent of its past history, the probability that the
neuron does not fire during n such time intervals is the product of the probabilities for each time intervals,
i.e.,

S(n∆t) = (1− ρ∆t)n . (1)

Although this expression is correct for a discrete process, it has the drawback of being dependent on the
discretization time step ∆t. Thus it is desirable to take the limit as ∆t→ 0. This can be done by setting
t = n∆t and taking the limit as n → ∞ with t fixed. Remembering the formula limn→∞(1 + a

n )n = ea,
one concludes that

S(t) = lim
n→∞

(
1− ρt

n

)n
= e−ρt . (2)

Alternatively, one can use the identity

(1− ρ∆t)n = exp

[
n∑
i=1

log (1− ρ∆t)

]
, (3)

and expand the logarithm as log(1 + x) = x+ . . . , which yields

S(t) = lim
n→∞

exp

[
−

n∑
i=1

ρ∆t

]
→ exp

[
−
∫ t

0

ρdt

]
= exp [−ρt] . (4)

The latter calculation has the advantage that it also works for time dependent rates ρ = ρ(t), which is
less obvious from Eq.(2).

Method 2 A different way to obtain this result is to consider the variation of S(t) during a small time
interval ∆t. Because of independence, we have

S(t+ ∆t) = S(t)S(∆t) , (5)

where S(∆t) = 1− ρ∆t by assumption. Rearranging. we obtain

S(t+ ∆t)− S(t)

∆t
= −ρS(t) , (6)

which becomes as ∆t→ 0
d

dt
S(t) = −ρS(t) , (7)

the solution of which is indeed S(t) = e−ρt.

1.2 Again, due to independence, we have

P (t, t+ ∆t) ≡ P (fire for the first time in (t, t+ ∆t)) = P (not fire until t)× P (fire in (t, t+ ∆t))

= e−ρt × ρ∆t . (8)



As ∆t → 0, this probability vanishes; however, the probability density, defined by p(t)dt = P (t, t + dt),
has finite value,

p(fire at t) = lim
∆t→0

P (t, t+ ∆t)

∆t
= ρe−ρt . (9)

1.3

(i) The interval distribution was calculated earlier, P (t) = ρe−ρt.

(ii) The probability to observe an interspike interval smaller than 20 ms is

P (ISI < 20ms) =

∫ 20ms

0

ρe−ρsds =
[
−e−ρs

]20ms

s=0
= 1− e−20ρ . (10)

Due to independence, the probability of getting a burst of two such intervals is just the square of this
probability. Thus, for ρ = 2Hz = 2 · 10−3ms−1, we get pburst ' 0.0015, whereas for ρ = 20Hz, pburst '
0.109.

(iii) Given knowledge of the interspike interval distribution and survivor function as a function of the
firing rate ρ, the observer can determine the strength of the input with fair confidence after observing a
few spikes.

1.4 Let us label the spike trains corresponding to each neuron S1 and S2. The percentage is the number
of spikes in S1 coincident with a spike in S2, Ncoinc, divided by the total number of spikes (N) in spike
train one:

P =
〈Ncoinc 〉

N
. (11)

And 〈Ncoinc 〉 is just the probability to observe a spike in S2 within a small observation window size
2∆ = 4 ms, times the number of spikes in S1:

P ≈ 2∆ρ0N

N
= 2ρ0∆ = 8% . (12)

Here, we had to assume that the observation windows do not overlap, i. e. ∆� ρ0.

Exercise 2: Stochastic spike arrival

We first need to solve the linear equation

τ
du

dt
= −(u− urest) +RI(t) (13)

We know (c.f. exercise set 1) that the solution is given by

u(t) = urest +
R

τ

∫ t

−∞
e−(t−t′)/τI(t′)dt′ . (14)

Let us first solve the general problem with arbitrary presynaptic current shape α(t − tf ). The case of
problem 2.1 then corresponds to the choice α(t− tf ) = qδ(t− tf ).
So for I(t) =

∑
f α(t− tf ) we have:

u(t) = urest +R

∫ t

−∞

e−(t−t′)/τ

τ

∑
f

α(t′ − tf )dt′ . (15)

Writing α(t′ − tf ) =
∫∞
−∞ α(s)δ(s− (t′ − tf ))ds, we obtain

u(t) = urest +R

∫ t

−∞
dt′
∫ ∞
−∞

ds
e−(t−t′)/τ

τ
α(s)

∑
f

δ(s− (t′ − tf )) . (16)



Taking the average over all possible spike trains,

〈u(t) 〉 = urest +R

∫ t

−∞
dt′
∫ ∞
−∞

ds
e−(t−t′)/τ

τ
α(s)

〈∑
f

δ(s− (t′ − tf ))

〉
(17)

because all the deterministic quantities can be pulled out of the average.

Now since1
〈∑

f δ(s− (t′ − tf ))
〉

= ν,

〈u(t) 〉 = urest +Rν

∫ t

−∞
dt′
e−(t−t′)/τ

τ︸ ︷︷ ︸
=1

∫ ∞
−∞

dsα(s)

= urest +Rν

∫ ∞
−∞

α(s)ds . (18)

2.1 With α(t− tf ) = qδ(t− tf ), we obtain:

〈u(t) 〉 = urest +Rνq. (19)

2.2 The general solution is given by Eq. (18).

Exercise 3: Renewal process

Given an output spike at t = t̂, the survivor function S(t− t̂) is given by

S(t− t̂) = exp
[
−
∫ t

t̂

ρ(t′|t̂)dt′
]

= exp
[
−
∫ t

t̂

ρ(t′ − t̂)dt′
]

= exp
[
−
∫ t−t̂

0

ρ(s)ds
]
.

where we made the variable change s = t′ − t̂.
The interspike interval distribution is P (t − t̂) = ρ(t − t̂)S(t − t̂). Thus we only need to calculate the
integral of the hazard function ρ(t− t̂). This gives

∫ t−t̂

0

ρ(s)ds =



∫ tabs

0

ρ(s)ds = 0 for s < tabs∫ tabs

0

ρ(s)ds+

∫ t−t̂

tabs

ρ(s)ds =
ρ0

4

(
t− t̂− tabs

)2
for tabs < s < tabs + 2∫ tabs

0

ρ(s)ds+

∫ tabs+2

tabs

ρ(s)ds+

∫ t−t̂

tabs+2

ρ(s)ds = ρ0

(
−1 + t− t̂− tabs

)
for tabs + 2 < s .

1this can be seen by remarking that
∫
δ(s)ds = 1 so that 1

T

∑
f

∫ T
0 δ(s− tf )ds =

# of spikes in (0,T )
T

= ν.



Exercise 4: Homework

4.1 We take the limit and use Stirling’s approximation and limn→∞(1− x/n)n = e−x :

Pk(T ) = lim
N→∞

N !

k!(N − k)!

(
1− νT

N

)N−k (
νT

N

)k
(20)

=
(νT )k

k!
lim
N→∞

NNe−N

(N − k)N−ke−N+k

(
1− νT

N

)N−k (
1

N

)k
(21)

=
(νT )ke−k

k!
lim
N→∞

(
1− νT

N

)N−k
(1− k/N)

N−k (22)

=
(νT )ke−k

k!

e−νT

e−k
(23)

=
(νT )k

k!
e−νT (24)

The expected number of spikes in an interval of duration T can be calculated from the definition of
expectation,

〈 k 〉 =

∞∑
k=0

kPk(T ) (25)

=

∞∑
k=0

k
(νT )k

(k)!
e−νT (26)

= e−νT
∞∑
k=1

k
(νT )k

(k)!
(27)

= e−νT
∞∑
k=1

(νT )k

(k − 1)!
(28)

= e−νT (νT )

∞∑
k=0

(νT )k

k!
(29)

= νT . (30)

For the third equality we considered that for k = 0 the sum is 0, so we can start with k = 1. For the
fourth equality we performed a change of variables and for the last one we used the definition of the
exponential function ex =

∑∞
n=0

xn

n! .


