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10.1 Variability in vivo – review from week 1



Crochet et al., 2011

awake mouse, cortex, freely whisking, 

Spontaneous activity in vivo Variability 
- of membrane potential? 
- of spike timing?

10.1 Variability in vivo – review from week 1



visual 
cortex

cells in visual cortex MT/V5
respond to motion stimuli

10.1 Variability in vivo – Detour: Motion Sensitive Neurons
Detour: Receptive fields in V5/MT 



10.1 Variability in vivo – Neurons in MT/V5

adapted from Bair and Koch 1996; 
data from Newsome 1989

15 repetitions of the same random dot motion pattern
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Human Hippocampus 

10.1 Variability in vivo

Quiroga,  Reddy, 
Kreiman,  Koch, 

and Fried  (2005). 
Nature, 435:1102-1107.

(single electrode)



10.1 Variability in vitro 
4 repetitions of the same time-dependent stimulus,

I(t)

brain slice

Image: Gerstner et al.
Neuronal Dynamics (2014)
Adapted from
Naud and Gerstner (2012)



10.1 Summary and Questions: Variability

Observed Fluctuations
-of membrane potential
-of spike times

fluctuations=noise?

model of fluctuations?

relevance for coding?

source of fluctuations?

In vivo data
à looks ‘noisy’
à differences between trials
à fluctuations of

membrane potential

In vitro data
à fluctuations of 

membrane potential
à spikes at slightly different

times in each trail



10.1 Summary and Questions: Variability

We observe fluctuations in data  recorded in vivo or in vitro.

Today and in the next weeks we ask the question:

- Are this fluctuations really noise?

- Or do they reflect a coding scheme?

- What is the physical or biological source
of the observed variability?

- Can we write down a good model
to describe the membrane potential fluctuations
or variability of spike times between trials?
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- Intrinsic noise (ion channels)

Na+

K+

-Finite number of channels
-Finite temperature

10.2. Sources of Variability



Na+ channel from rat heart (Patlak and Ortiz 1985)
A traces from a patch containing several channels. 
Bottom: average gives current time course.
B. Opening times of single channel events

Steps:
Different 
number
of open
channels

Ca2+

Na+

K+

Ions/proteins

Review from week 2 Ion channels

stochastic opening and closing



- Intrinsic noise (ion channels)

Na+

K+

-Finite number of channels
-Finite temperature

-Network noise (background activity)

-Spike arrival from other neurons
-Beyond control of experimentalist

Check intrinisic noise by removing the network

10.2. Sources of Variability



10.2 Variability in vitro is low

Image adapted from
Mainen&Sejnowski 1995

I(t)

neurons are fairly reliable



REVIEW from  week1: How good are integrate-and-fire models?

Aims: - predict spike initiation times
- predict subthreshold voltage

Badel et al., 2008
only possible, because
neurons are fairly reliable



- Intrinsic noise (ion channels)

Na+

K+

-Finite number of channels
-Finite temperature

-Network noise (background activity)

-Spike arrival from other neurons
-Beyond control of experimentalist

Check network noise by simulation!

10.2. Sources of Variability

small contribution!



The Brain: a highly connected system
Brain 

Distributed architecture
1010    neurons

High connectivity:
systematic, organized in local populations

but seemingly random

410    connections/neurons

10.2 Sources of Variability



Population
- 50 000 neurons
- 20 percent inhibitory
- randomly connected

10.2 Random firing  in a population of LIF neurons
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Brunel, J. Comput. Neurosc. 2000
Mayor and Gerstner, Phys. Rev E. 2005
Vogels et al., 2005

Network of deterministic

leaky integrate-and-fire:

‘fluctuations’



Population
- 50 000 neurons
- 20 percent inhibitory
- randomly connected
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10.2 Random firing  in a population of LIF neurons



ISI distribution
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ISI
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- Variability of interspike intervals (ISI)

Variability of  spike trains:
broad ISI distribution

here in simulations, 
but also in vivo

Brunel, 
J. Comput. Neurosc. 2000

Mayor and Gerstner,  
Phys. Rev E. 2005

Vogels and Abbott, 
J. Neuroscience, 2005

10.2. Interspike interval distribution



- Intrinsic noise (ion channels)

Na+

K+

-Network noise 

10.2. Sources of Variability

small contribution!

big contribution!

In vivo data
à looks ‘noisy’

In vitro data
àsmall fluctuations
ànearly deterministic



Quiz 10.1.

B – Interspike Interval Distribution (ISI)
[ ] An isolated deterministic  leaky integrate-and-fire neuron driven by a constant 
current can have  a broad ISI
[ ] A deterministic leaky integrate-and-fire neuron  embedded into a randomly 
connected network of integrate-and-fire neurons can have a broad ISI
[ ] A deterministic  Hodgkin-Huxley model as in week 2 embedded into a randomly 
connected network of Hodgkin-Huxley neurons can have a broad ISI

A- Spike timing in vitro and in vivo
[ ] Reliability of spike timing can be assessed by repeating several times the 
same stimulus
[ ] Spike timing in vitro is more reliable under injection of constant current than 
with fluctuating current
[ ] Spike timing in vitro is more reliable than spike timing in vivo

[x]

[ ]

[x]

[ ]

[x]

[x]



10.2 Summary: Sources of variability
There are two important sources of fluctuations observed in data  recorded 
in vivo or in vitro:
1. Intrinsically generated fluctuations caused by a finite temperature together with 

a finite number of ion channels. Individual Ion channels open and close 
stochastically. We refer to these intrinsically generated fluctuations as ‘intrinsic 
noise’. Given that for current injection into the soma a neuron behaves rather 
reliably, we conclude that the importance of intrinsic noise is relatively low. 

2. A single neuron j embedded in the network receives spikes from many other 
neurons. Since an external observer cannot control the spike times of all 

neurons, the spike arrival times to neuron j the spike arrival times are often 
considered as ‘random’.  In fact, even in a simulation of a deterministic network of 
spiking neurons, spike arrival looks ‘random’. We refer to these effects as ‘network 
noise’.

As a first measure of the variability of spike trains, we have used the interspike
interval distribution (ISI). A deterministic network of spiking neurons with fixed (but 
random) connectivity often exhibits stationary activity with a broad ISI.



Biological Modeling of Neural Networks

Week 10 – Variability and Noise:
The question of the neural code
Wulfram Gerstner
EPFL, Lausanne, Switzerland

10.1 Variability of spike trains
- experiments

10.2 Sources of Variability?
- Is variability equal to noise?

10.3 Poisson Model
- homogeneous/inhomogeneous

10.4 Three definitions of Rate Code
10.5 Stochastic spike arrival

- Membrane potential fluctuations



Homogeneous Poisson model: constant rate

stochastic spiking à Poisson model

Blackboard1:
Poisson model

tD

0FP tr= DProbability of finding a spike

10.3 Poisson Model





tD0FP tr= D
Probability of firing:

10.3 Interval distribution of Poisson Process

0tD ®

?

(i) Continuous time (ii) Discrete time steps
prob to ‘survive’

1 0 0 1 0( | ) ( | )d S t t S t t
dt

r= -

Blackboard2:
Poisson model



Exercise 1.1, 1.2, and 1.3: Poisson neuron 

stimulus

Poisson rate r

1.1. - Probability of NOT firing during time t?
1.2. - Interval distribution p(s)?

s

0t 1t

1.3.- How can we detect if rate switches from
10 rr ®

Start 9:50 - Next lecture at 10:18

(1.4 at home:) 
-2 neurons fire stochastically (Poisson) at 20Hz.
Percentage of spikes that coincide within +/-2 ms?)



Week 10 – Two short quizzes (derivatives)

ˆ

( ) exp( ( ') ')
t

t

x t t dtr= -ò

( ) ?d
x t

dt
=

0
ˆ( ) exp( ( ))x t t tr= - × -

( ) ?d
x t

dt
=

Quiz 1: define
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Quiz 2: define

What is



rate changes
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10.3 Inhomogeneous Poisson Process
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Week 10 Quiz  3 Poisson Process
A Homogeneous Poisson Process:
A spike train is generated by a homogeneous Poisson 
process with rate 25Hz with time steps of 0.1ms.
[ ] The most likely interspike interval is 25ms.
[ ] The most likely interspike interval is 40 ms.
[ ] The most likely interspike interval is 0.1ms
[ ] We can’t say.

B Inhomogeneous Poisson Process
A spike train is generated by an inhomogeneous Poisson process 
with a rate that oscillates periodically (sine wave) between 0 and 
50Hz (mean 25Hz). The period is 40ms. A first spike has been fired at 
a time when the rate was at its maximum.  Time steps are 0.1ms.
[ ] The most likely interval before the next spike is 20ms.
[ ] The most likely interval before the next spike is 40 ms.
[ ] The most likely  interval before the next spike is 0.1ms.
[ ] We can’t say.

[ ]
[ ]
[x]
[ ]

[ ]
[ ]
[x]
[ ]



10.3 Summary: Poisson model
In a Poisson model, spike times are independent from each other. Knowledge of the last 
firing time does not help to predict the present firing time.
The Poisson model is formulated in continuous time with a ‘stochastic intensity’ or ‘firing 
intensity’         , sometimes also called the ‘rate’ of the Poisson process.

In the homogeneous (or stationary) Poisson process, the stochastic intensity is constant.
In the inhomogeneous  Poisson process, the stochastic intensity is time dependent.

Two important concepts are the interval distribution and the survivor function.
The interval distribution of the inhomogeneous Poisson Process is:

And the survivor function is:
For the homogeneous Poisson process both functions simplify to a standard exponential 
decay as a function of the time difference t − $̂ where $̂ is the previous spike time.
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10.4. Three definitions of Rate Codes

3 definitions
-Temporal averaging

- Averaging across repetitions

- Population averaging (‘spatial’ averaging)



Variability of  spike timing

stim
T=1s

trial 1

10.4. Rate codes: spike count

Brain 

rate as a (normalized) spike count:

( )
spnt
T

n =

single neuron/single trial:
temporal average



ISI distribution
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Variability of interspike intervals (ISI)

10.4. Rate codes: spike count

( )
spnt
T

n =

single neuron/single trial:
temporal average

measure regularity



stim
T

trial 1

trial 2

trial K

10.4. Spike count: FANO factor

Brain 
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10.4. Three definitions of Rate Codes

3 definitions
-Temporal averaging (spike count)

ISI distribution (regularity of spike train)
Fano factor     (repeatability across repetitions)

- Averaging across repetitions

- Population averaging (‘spatial’ averaging)

Problem: slow!!!



Variability of  spike timing

stim

trial 1

trial 2

trial K

10.4. Rate codes: PSTH

Brain 



t

tK
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D
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Averaging across repetitions

K repetitions

PSTH(t)

K=50 trials

Stim(t)

10.4. Rate codes: PSTH

single neuron/many trials:
average across trials



10.4. Three definitions of Rate Codes

3 definitions
-Temporal averaging

- Averaging across repetitions

- Population averaging 

Problem: not useful 
for animal!!!



population of neurons
with similar properties

stim

neuron 1

neuron 2

Neuron  K

10.4. Rate codes: population activity

Brain 



population activity - rate defined by population average

t
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tN
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10.4. Rate codes: population activity (review from week 7)

‘natural readout’



population of neurons
with similar properties

Brain 

10.4. Rate codes: population activity (review from week 7)



10.4. Three definitions of Rate codes: summary

Three averaging methods

-over time

- over repetitions

- over population (space)

Not possible 
for animal!!!

Too slow 
for animal!!!

‘natural’

single neuron

single neuron

many neurons
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inhomogeneous Poisson model consistent with rate coding
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10.4 Inhomogeneous Poisson Process  



population of neurons
with similar properties

Brain 

10.4:  Scales of neuronal processes Image: Gerstner et al.
Neuronal Dynamics (2014)



Quiz 4.
Rate codes. Suppose that in some brain area we have a group of 500 neurons. All 
neurons have identical parameters and they all receive the same input (you decide 
what this means!). Input is given by sensory stimulation and passes through 2 preliminary 
neuronal processing steps before it arrives at our group of 500 neurons. Within the group, 
neurons are not connected to each other.  The group is embedded in a brain model 
network containing 100 000 nonlinear integrate-and-fire neurons with some arbitrary 
connectivity, so that we know exactly how each neuron functions.

Experimentalist A makes a measurement in a single trial on all 500 neurons using a multi-
electrode array, during a period of sensory stimulation. 

Experimentalist B picks an arbitrary single neuron and repeats the same sensory 
stimulation 500 times (with long pauses in between, say one per day).

Experimentalist C repeats the same sensory stimulation 500 times (1 per day), but every 
day he picks a random neuron (amongst the 500 neurons).

All three determine the time-dependent firing rate.
[ ] A and B and C are expected to find the same result.
[ ] A and B are expected to find the same result, but that of C is expected to be  different.
[ ] B and C are expected to find the same result, but that of A is expected to be  different.
[ ] None of the above three options is correct.

Start at 10:50, 
Discussion at 10:55



10.4 Summary: Rate models
There are three different definitions of rate.
1. Rate as a temporal average: spike count for a single neuron over a few hundred 

milliseconds are a few seconds, divided by the time. Disadvantage: it is too slow to be 
the biological code.

2. Rate as an average of several repetitions of the same experiment: spike count in a 
short time bin (a few milliseconds), summed over repetitions, divided by bin width and 
number of repetitions.
Disadvantage: it is too slow (we need repetitions!) to be the biological code, even 

though the temporal resolution is high

3.  Rate as an average over a population: Populations activity A(t) defined earlier.
several repetitions of the same experiment. 

Disadvantage: works best for completely homogeneous populations, but should also 
work for ‘similar’ neurons such as those within one layer of a cortical column.

Advantages: it is a rapid code and averaging over group is natural since every 
postsynaptic neuron does this.
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Crochet et al., 2011

awake mouse, freely whisking, 

Spontaneous activity in vivo

10.5 Variability in vivo – review from 10.1

Variability 
of membrane potential? 



Population
- 50 000 neurons
- 20 percent inhibitory
- randomly connected
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10.5 Variability in networks – review from 10.2



10.5 Membrane potential fluctuations

big contribution!
‘Network noise’ 

Pull out one neuron

from neuron’s point
of view:

stochastic spike arrival



0FP K tr= D
Probability of spike arrival:

10.5. Stochastic Spike Arrival (Poisson model of input)

Take 0tD ®

tD

Total spike train of K presynaptic neurons

spike train

1
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K
f
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Pull out one neuron

Blackboard
now!
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10.5. Calculating the mean

tD

( ) ' ( ') ( ' )fk
f

x t dt f t t t td= - -åò

( ) ' ( ') ( ' )fk
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x t dt f t t t td= - -åò

rate of inhomogeneous
Poisson process

use for exercise
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week 10 – Quiz 5

( ) ' ( ') ( ' )fk
f

u t dt f t t t t ad= - - +åò

( ) ( )frest
f

d u u u q t t
dt

t d= - - + -å

A linear (=passive) membrane has a potential given by

Suppose the neuronal dynamics  are given by

[ ] the filter f is exponential with time constant t
[ ] the constant a is equal to the  time constant t
[ ] the constant a is equal to  

restu
[ ] the amplitude of the filter f is proportional to q
[ ] the amplitude of the filter f is q 



Week 10 - Exercise 2.1 NOW

tD

( ) ( ) ( )f
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f
u t ds f s t t sd= - -åò

A leaky integrate-and-fire neuron without threshold 
(=passive membrane) receives stochastic spike arrival, 
described as a homogeneous Poisson process.
Calculate the mean membrane potential. To do so, use 
the above formula. Start at 11:40, 

Discussion at 11:52
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Passive membrane



10.5. Calculating the mean
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10.5. Fluctuation of potential

for a passive membrane, we 
can analytically  predict the 
mean of membrane potential 
fluctuations

Passive membrane
=Leaky integrate-and-fire
without threshold

)()( tIRuuu
dt
d syn

rest +--=t

Passive membrane

Next week:
1) Calculate fluctuations
2) ADD THRESHOLD

à Leaky Integrate-and-Fire



10.5 Summary: Stochastic spike arrival
The network noise is often described as stochastic spike arrivals.
Suppose that spikes arrive stochastically (according to a Poisson Process) with time-
dependent  stochastic intensity !.

Since input currents sum up linearly, we can calculate the mean input current by 
‘averaging over the stochastic spike arrivals’ which is equivalent to ‘taking the expectation 
over stochasticity of the Poisson process’.

Similarly, if the voltage of the neuronal membrane is approximated by a linear model (see 
week 1, passive membrane, or week 8, input potential), then we can also calculate the 
mean membrane potential.

In both cases taking the expectation is easy since the average of the spike arrivals yields 
the stochastic intensity.
∑# $ % − %# = ! %

Next week we extend the calculation so as to also include fluctuations (not just the mean).
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THE END


